Improved Survival after Transarterial Radioembolisation for Hepatocellular Carcinoma Gives the Procedure Added Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Evolution of the TARE Procedure
2.3. Adverse Events, Follow-Up, and Subsequent Therapies
2.4. Statistical Analysis
3. Results
3.1. Patient Selection
3.2. Unweighted Efficacy
3.3. Weighted Efficacy
3.4. The Effect of the Tumour-Adsorbed Dose
3.5. The Effect of Subsequent Therapies
3.6. Safety
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liver Cancer [Homepage on the Internet]. The Global Cancer Observatory Cancer Fact Sheets. 2018. Available online: http://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf (accessed on 2 December 2020).
- Llovet, J.M.; Beaugrand, M. Hepatocellular carcinoma: Present status and future prospects. J. Hepatol. 2003, 38 (Suppl. 1), S136–S149. [Google Scholar] [CrossRef] [PubMed]
- Pinna, A.D.; Yang, T.; Mazzaferro, V.; De Carlis, L.; Zhou, J.; Roayaie, S.; Shen, F.; Sposito, C.; Cescon, M.; Di Sandro, S.; et al. Liver Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular Carcinoma. Ann Surg. 2018, 268, 868–875, Erratum in Ann. Surg. 2019, 269, e59. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236, Erratum in J. Hepatol. 2019, 70, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.Y.; Ryu, H.J.; Choi, J.Y.; Park, J.Y.; Lee, D.Y.; Kim, B.K.; Kim, S.U.; Ahn, S.H.; Chon, C.Y.; Han, K.H. Radiological response predicts survival following transarterial chemoembolisation in patients with unresectable hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2012, 35, 1343–1350. [Google Scholar] [CrossRef]
- Sangro, B.; Carpanese, L.; Cianni, R.; Golfieri, R.; Gasparini, D.; Ezziddin, S.; Paprottka, P.M.; Fiore, F.; Van Buskirk, M.; Bilbao, J.I.; et al. Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages: A European evaluation. Hepatology 2011, 54, 868–878. [Google Scholar] [CrossRef]
- Golfieri, R.; Renzulli, M.; Mosconi, C.; Forlani, L.; Giampalma, E.; Piscaglia, F.; Trevisani, F.; Bolondi, L.; Bologna Liver Oncology Group (BLOG). Hepatocellular carcinoma responding to superselective transarterial chemoembolization: An issue of nodule dimension? J. Vasc. Interv. Radiol. 2013, 24, 509–517. [Google Scholar] [CrossRef]
- Takayasu, K.; Arii, S.; Kudo, M.; Ichida, T.; Matsui, O.; Izumi, N.; Matsuyama, Y.; Sakamoto, M.; Nakashima, O.; Ku, Y.; et al. Superselective transarterial chemoembolization for hepatocellular carcinoma. Validation of treatment algorithm proposed by Japanese guidelines. J. Hepatol. 2012, 56, 886–892. [Google Scholar] [CrossRef]
- Facciorusso, A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: Current state of the art. World J. Gastroenterol. 2018, 24, 161–169. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Sposito, C.; Bhoori, S.; Romito, R.; Chiesa, C.; Morosi, C.; Maccauro, M.; Marchianò, A.; Bongini, M.; Lanocita, R.; et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study. Hepatology 2013, 57, 1826–1837. [Google Scholar] [CrossRef]
- Facciorusso, A.; Serviddio, G.; Muscatiello, N. Transarterial radioembolization vs chemoembolization for hepatocarcinoma patients: A systematic review and meta-analysis. World J. Hepatol. 2016, 8, 770–778. [Google Scholar] [CrossRef]
- Salem, R.; Gordon, A.C.; Mouli, S.; Hickey, R.; Kallini, J.; Gabr, A.; Mulcahy, M.F.; Baker, T.; Abecassis, M.; Miller, F.H.; et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016, 151, 1155–1163.e2. [Google Scholar] [CrossRef] [Green Version]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Chow, P.; Gandhi, M.; Tan, S.B.; Khin, M.W.; Khasbazar, A.; Ong, J.; Choo, S.P.; Cheow, P.C.; Chotipanich, C.; Lim, K.; et al. SIRveNIB: Selective Internal Radiation Therapy Versus Sorafenib in Asia-Pacific Patients With Hepatocellular Carcinoma. J. Clin. Oncol. 2018, 36, 1913–1921. [Google Scholar] [CrossRef]
- Yang, H.Y.; Jin, B.; Xu, G.; Sun, L.J.; Du, S.D.; Mao, Y.L. Transarterial radioembolization with Yttrium-90: Current status and future prospects. Gastroenterol. Rep. 2020, 8, 164–165. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Sposito, C.; Mazzaferro, V. The SIRveNIB and SARAH trials, radioembolization vs. sorafenib in advanced HCC patients: Reasons for a failure, and perspectives for the future. Hepatobiliary Surg. Nutr. 2018, 7, 487–489. [Google Scholar] [CrossRef]
- Golfieri, R.; Mosconi, C.; Cappelli, A.; Giampalma, E.; Galaverni, M.C.; Pettinato, C.; Renzulli, M.; Monari, F.; Angelelli, B.; Pini, P.; et al. Efficacy of radioembolization according to tumor morphology and portal vein thrombosis in intermediate-advanced hepatocellular carcinoma. Future. Oncol. 2015, 11, 3133–3142. [Google Scholar] [CrossRef] [Green Version]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef]
- Kokudo, T.; Kokudo, N.; Hasegawa, K. Negative phase 3 study of 90Y microspheres versus sorafenib in HCC. Lancet Oncol. 2018, 19, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garin, E.; Rolland, Y.; Campillo-Gimenez, B.; Edeline, J. Negative phase 3 study of 90Y microspheres versus sorafenib in HCC. Lancet Oncol. 2018, 19, e70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Finn, R.S. Negative phase 3 study of 90Y microspheres versus sorafenib in HCC. Lancet Oncol. 2018, 19, e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spreafico, C.; Sposito, C.; Vaiani, M.; Cascella, T.; Bhoori, S.; Morosi, C.; Lanocita, R.; Romito, R.; Chiesa, C.; Maccauro, M.; et al. Development of a prognostic score to predict response to Yttrium-90 radioembolization for hepatocellular carcinoma with portal vein invasion. J. Hepatol. 2018, 68, 724–732. [Google Scholar] [CrossRef]
- Chiesa, C.; Maccauro, M.; Romito, R.; Spreafico, C.; Pellizzari, S.; Negri, A.; Sposito, C.; Morosi, C.; Civelli, E.; Lanocita, R.; et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: The experience of the National Tumor Institute of Milan. Q. J. Nucl. Med. Mol. Imaging. 2011, 5, 168–197. [Google Scholar]
- Kulik, L.M.; Carr, B.I.; Mulcahy, M.F.; Lewandowski, R.J.; Atassi, B.; Ryu, R.K.; Sato, K.T.; Benson, A., 3rd; Nemcek, A.A.J.; Gates, V.L.; et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008, 47, 71–81. [Google Scholar] [CrossRef]
- Mosconi, C.; Cucchetti, A.; Pettinato, C.; Golfieri, R.; Cappelli, A. Validation of response to yttrium-90 radioembolization for hepatocellular carcinoma with portal vein invasion. J. Hepatol. 2018, 69, 259–260. [Google Scholar] [CrossRef]
- Bargellini, I.; Scalise, P.; Boni, G.; Traino, C.A.; Bozzi, E.; Lorenzoni, G.; Crocetti, L.; Cioni, R. Yttrium-90 Radioembolization for Hepatocellular Carcinoma with Portal Vein Invasion: Validation of the Milan Prognostic Score. J. Vasc. Interv. Radiol. 2020, 31, 2028–2032. [Google Scholar] [CrossRef]
- Gordon, A.C.; Gabr, A.; Riaz, A.; Uddin, O.M.; Abouchaleh, N.; Ali, R.; Kallini, J.; Salem, R.; Lewandowski, R.J. Radioembolization Super Survivors: Extended Survival in Non-operative Hepatocellular Carcinoma. Cardiovasc. Intervent. Radiol. 2018, 41, 1557–1565. [Google Scholar] [CrossRef]
- Garin, E.; Rolland, Y.; Edeline, J.; Icard, N.; Lenoir, L.; Laffont, S.; Mesbah, H.; Breton, M.; Sulpice, L.; Boudjema, K.; et al. Personalized dosimetry with intensification using 90Y-loaded glass microsphere radioembolization induces prolonged overall survival in hepatocellular carcinoma patients with portal vein thrombosis. J. Nucl. Med. 2015, 56, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Hermann, A.L.; Dieudonné, A.; Ronot, M.; Sanchez, M.; Pereira, H.; Chatellier, G.; Garin, E.; Castera, L.; Lebtahi, R.; Vilgrain, V.; et al. Relationship of Tumor Radiation-absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with 90Y in the SARAH Study. Radiology 2020, 296, 673–684. [Google Scholar] [CrossRef]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef]
- Lewandowski, R.J.; Kulik, L.M.; Riaz, A.; Senthilnathan, S.; Mulcahy, M.F.; Ryu, R.K.; Ibrahim, S.M.; Sato, K.T.; Baker, T.; Miller, F.H.; et al. A comparative analysis of transarterial downstaging for hepatocellular carcinoma: Chemoembolization versus radioembolization. Am. J. Transplant. 2009, 9, 1920–1928. [Google Scholar] [CrossRef]
- Ricke, J.; Klümpen, H.J.; Amthauer, H.; Bargellini, I.; Bartenstein, P.; de Toni, E.N.; Gasbarrini, A.; Pech, M.; Peck-Radosavljevic, M.; Popovič, P.; et al. Impact of combined selective internal radiation therapy and sorafenib on survival in advanced hepatocellular carcinoma. J. Hepatol. 2019, 71, 1164–1174. [Google Scholar] [CrossRef]
- Teyateeti, A.; Mahvash, A.; Long, J.P.; Abdelsalam, M.E.; Avritscher, R.; Chasen, B.; Kaseb, A.O.; Kuban, J.D.; Murthy, R.; Odisio, B.C.; et al. Survival Outcomes for Yttrium-90 Transarterial Radioembolization With and Without Sorafenib for Unresectable Hepatocellular Carcinoma Patients. J. Hepatocell. Carcinoma. 2020, 7, 117–131. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
2005–2011 (n = 68) | 2012–2020 (n = 185) | p | |
---|---|---|---|
Age (years) | 67 (60–73) | 67 (56–74) | 0.937 |
Male | 55 (80.9%) | 149 (80.5%) | 1.000 |
Hepatitis C | 41 (60.3%) | 102 (55.1%) | 0.478 |
ECOG–PS of 1 | 11 (16.2%) | 12 (6.5%) | 0.025 |
Unsuccessful TACE | 32 (47.1%) | 60 (32.4%) | 0.039 |
Single tumour | 21 (30.9%) | 75 (40.5%) | 0.189 |
ALBI class | 0.311 | ||
A | 26 (38.2%) | 68 (36.8%) | |
B | 41 (60.3%) | 117 (63.2%) | |
C | 1 (1.5%) | 0 (0.0%) | |
AFP (log10; ng/mL) | 1.94 (1.12–3.31) | 1.72 (0.84–3.01) | 0.147 |
Bilobar involvement | 32 (47.1%) | 47 (25.4%) | 0.001 |
Infiltrative type | 22 (32.4%) | 74 (40.0%) | 0.307 |
Target Tumour volume (cm3) | 193.2 (96.1–295.9) | 153.5 (82.0–331.8) | 0.631 |
Tumour burden (% of liver volume) | 19.2 (10.7–35.0) | 11.1 (6.3–22.7) | 0.006 |
Presence of MaVI | 35 (51.5%) | 102 (55.4%) | 0.670 |
Degree of MaVI | 0.019 | ||
Vp1 | 19/35 (54.3%) | 39/102 (38.2%) | |
Vp2 | 7/35 (20.0%) | 47/102 (46.1%) | |
Vp3 | 9/35 (25.7%) | 16/102 (15.7%) | |
Injected dose (GBq) | 1.66 (1.31–1.89) | 1.40 (1.00–1.83) | 0.001 |
Tumour adsorbed dose (Gy) | NA | 270.3 (152.7–438.5) | - |
≥100 Gy | NA | 174 (94.1%) | - |
≥120 Gy | NA | 165 (89.2%) | - |
Subsequent therapies | 24 (35.3%) | 97 (52.4%) | 0.016 |
Liver transplantation | 2 (2.9%) | 8 (4.3%) | 1.000 |
Hepatic resection | 2 (2.9%) | 6 (3.2%) | 1.000 |
TACE | 15 (22.1%) | 41 (22.2%) | 1.000 |
Sorafenib | 11 (16.2%) | 62 (33.5%) | 0.008 |
2005–2011 (n = 68 *) | 2012–2020 (n = 185) | D † | |
---|---|---|---|
Age > 67 years | 35 (51.4%) | 95 (51.3%) | 0.001 |
Male | 60 (89.0%) | 153 (82.9%) | 0.007 |
Hepatitis C | 37 (55.1%) | 102 (55.2%) | 0.002 |
ECOG–PS of 1 | 4 (6.5%) | 12 (6.5%) | 0.001 |
Unsuccessful TACE | 23 (33.3%) | 59 (31.8%) | 0.003 |
Single tumour | 28 (40.5%) | 75 (40.5%) | 0.001 |
ALBI class B/C | 43 (63.2%) | 117 (63.2%) | 0.001 |
AFP (log10; ng/mL) | 29 (43.2%) | 80 (43.2%) | 0.001 |
Bilobar involvement | 17 (25.4%) | 47 (25.5%) | 0.001 |
Infiltrative type | 27 (40.0%) | 74 (40.0%) | 0.001 |
Tumour volume > 160 cm3 | 32 (47.6%) | 86 (46.5%) | 0.002 |
Tumour burden > 13% | 30 (45.4%) | 86 (46.5%) | 0.002 |
Macrovascular invasion | |||
Absent | 31 (44.9%) | 83 (44.9%) | 0.001 |
Vp1 | 14 (21.1%) | 39 (21.1%) | 0.001 |
Vp2 | 17 (25.4%) | 47 (25.4%) | 0.001 |
Vp3 | 6 (8.6%) | 16 (8.6%) | 0.001 |
Injected dose > 1.5 GBq | 26 (38.4%) | 71 (38.4%) | 0.001 |
Main subsequent therapy adopted | |||
Resection or transplantation | 5 (7.6%) | 14 (7.6%) | 0.001 |
TACE | 14 (20.0%) | 37 (20.0%) | 0.001 |
Sorafenib | 17 (24.9%) | 46 (24.8%) | 0.001 |
Before Weighting | After Weighting | Comparator | |||
---|---|---|---|---|---|
2005–2011 (n = 68) | p † | 2005–2011 (n = 68) | p † | 2012–2020 (n = 185) | |
Mortality | 0 (0.0%) | 1.000 | 0 (0.0%) | 1.000 | 1 (0.5%) |
Any AE | 23 (33.8%) | 0.112 | 15 (22.1%) | 0.867 | 44 (23.8%) |
Ascites | 13 (19.1%) | 0.321 | 8 (11.7%) | 0.834 | 25 (13.5%) |
I-II | 9 (13.2%) | 0.666 | 6 (8.8%) | 0.652 | 21 (11.3%) |
III-IV | 4 (5.9%) | 0.216 | 2 (2.9%) | 0.661 | 4 (2.2%) |
Pulmonary events | 6 (8.8%) | 0.026 | 2 (2.6%) | 0.661 | 4 (2.2%) |
I-II | 2 (2.9%) | 0.613 | 0 (0.0%) | 0.566 | 3 (1.6%) |
III-IV | 4 (5.9%) | 0.019 | 1 (1.5%) | 0.466 | 1 (0.5%) |
RILD III-IV | 5 (7.4%) | 0.016 | 2 (2.6%) | 0.293 | 2 (1.1%) |
Fever | 4 (5.9%) | 0.086 | 1 (1.5%) | 1.000 | 3 (1.6%) |
I-II | 3 (4.4%) | 0.348 | 1 (1.5%) | 1.000 | 3 (1.6%) |
III-IV | 1 (1.5%) | 0.269 | 0 (0.0%) | 1.000 | 0 (0.0%) |
Cholecystitis III-IV | 3 (4.4%) | 0.019 | 0 (0.0%) | 1.000 | 0 (0.0%) |
Fatigue | 2 (2.9%) | 0.112 | 5 (7.4%) | 0.803 | 17 (9.2%) |
I-II | 0 (0.0%) | 0.039 | 4 (5.9%) | 1.000 | 11 (5.9%) |
III | 2 (2.9%) | 0.177 | 0 (0.0%) | 1.000 | 1 (0.5%) |
GI events III-IV | 0 (0.0%) | 1.000 | 1 (1.5%) | 0.466 | 1 (0.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosconi, C.; Cappelli, A.; Pettinato, C.; Cocozza, M.A.; Vara, G.; Terzi, E.; Morelli, M.C.; Lodi Rizzini, E.; Renzulli, M.; Modestino, F.; et al. Improved Survival after Transarterial Radioembolisation for Hepatocellular Carcinoma Gives the Procedure Added Value. J. Clin. Med. 2022, 11, 7469. https://doi.org/10.3390/jcm11247469
Mosconi C, Cappelli A, Pettinato C, Cocozza MA, Vara G, Terzi E, Morelli MC, Lodi Rizzini E, Renzulli M, Modestino F, et al. Improved Survival after Transarterial Radioembolisation for Hepatocellular Carcinoma Gives the Procedure Added Value. Journal of Clinical Medicine. 2022; 11(24):7469. https://doi.org/10.3390/jcm11247469
Chicago/Turabian StyleMosconi, Cristina, Alberta Cappelli, Cinzia Pettinato, Maria Adriana Cocozza, Giulio Vara, Eleonora Terzi, Maria Cristina Morelli, Elisa Lodi Rizzini, Matteo Renzulli, Francesco Modestino, and et al. 2022. "Improved Survival after Transarterial Radioembolisation for Hepatocellular Carcinoma Gives the Procedure Added Value" Journal of Clinical Medicine 11, no. 24: 7469. https://doi.org/10.3390/jcm11247469
APA StyleMosconi, C., Cappelli, A., Pettinato, C., Cocozza, M. A., Vara, G., Terzi, E., Morelli, M. C., Lodi Rizzini, E., Renzulli, M., Modestino, F., Serenari, M., Bonfiglioli, R., Calderoni, L., Tabacchi, E., Cescon, M., Morganti, A. G., Trevisani, F., Piscaglia, F., Fanti, S., ... Golfieri, R. (2022). Improved Survival after Transarterial Radioembolisation for Hepatocellular Carcinoma Gives the Procedure Added Value. Journal of Clinical Medicine, 11(24), 7469. https://doi.org/10.3390/jcm11247469