Therapeutic Exercise Interventions through Telerehabilitation in Patients with Post COVID-19 Symptoms: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Selection of Studies
- Post COVID-19 patients with symptoms.
- Exclusive groups of Intensive Care Unit patients.
- Any permanent dysfunction generated by complications of treatments or other diseases and not directly generated by COVID-19.
2.2. Data Extraction
2.3. Risk of Bias
2.4. Data Synthesis
3. Results
3.1. Characteristics of Included Studies
3.2. Evaluation Variables
3.3. Telerehabilitation Methods
3.4. Exercise Protocols
3.5. Adverse Events
3.6. Physical and Cardiovascular Results
3.7. Cognitive Results and Quality of Life
3.8. Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Authors | Type of Study | Patients | Telerehabilitation Method | Intervention | Measures | Outcomes |
Jian’an Li et al. (2021) [32] Group one | Randomized controlled trial (n = 120) | Postdischarged patients with British Medical Research Council (mMRC) Dyspnoea Score of 2–3. | Unsupervised exercise program through smartphone app (RehabApp), teleconsultations 1 per week. | Control group (Short educational instructions) Intervention group (breathing control, thoracic expansion, AE, LMS); three to four sessions/week for 6 weeks. | 6MWD (6MWT) Static Squad Test (LMS) SF-12 Spirometry: FEV1 (L) FVC (L) FEV1/FVC, MVV (L/min) (PEF) (L/s) | Intervention group show higher values in 6MWD, LMS and SF-12. No difference in pulmonary function. |
Jose Calvo-Paniagua et al. (2022) [34] Group two | Quasi-experimental study (n = 68) | Fatigue and dyspnea as main post-COVID symptoms from at least three months after the infection. | Supervised video conference (Zoom) | A total of 3 sessions/week until 18 sessions (40 min/session) for 7 weeks. Program: • Sessions of sanitary education and posture ergonomics; • Respiratory control, diaphragmatic respiration, secretion clearance, respiratory muscles exercise; • AE, active mobilisations and motor control exercise. | MBDS, mMRC, SGRQ, 6MWD (6MWT), self-perceived exertion VAS, Sp02, HR | Significant improvements with large effect sizes in all outcomes at self perceived exertion, mMRC, SGRQ, increased Sp02 Increased walked distance (6MWD). |
Claire Colas et al. (2022) [33] Group two | Nonrandomized controlled study (n = 17) | Post-COVID-19 fatigue for > 3 months of COVID-19 infection. | Supervised video conference (Cisco Webex Meetings) | Control group (traditional rehabilitation) and telerehabilitation group Three sessions/week for 4 weeks Program: • 45 min AE; • 15 min RE. | CFS-11, MBDS, VO2 max, MAP, VT1, FEV-1, (VE/VCO2) (PetCO2 rest) (PetCO2 recovery) 6MWD (6MWT) Handgrip test (Kg) | Reduction in fatigue, no difference between groups. No time*group interaction except PetCO2 at rest for control group. Significant time effect in aerobic parameters. Improvement in VO2 max in both groups. Handgrip not increased for any group. |
Estebanez-Pérez et al. (2022) [35] Group two | Quasi-experimental study (n = 32) | Permanent symptoms three months after diagnosis of COVID-19 and that have persisted for at least 2 months | Supervised and personalised program through digital physiotherapy app (Physiotec) and supervised video conference | Three to five session/week for 4 weeks: • Sessions limited to one per day and 45–50 min at maximum, starting at 20–30 min. • Strength training, aerobic training with gradual increase of the intensity (5–10% per week). • Secretion and ventilatory techniques. | 60secSTS, SPPB, Adherence (Physiotec) | Significant changes in the functional capacity of the 60secSTS and in SPPB. Good adherence (18 sessions out of 20). |
Pehlivan et al. (2022) [31] Group one | Randomized controlled trial (n = 40) | Deterioration in physical functions in the first 4 weeks after medical discharge post COVID-19. | Supervised video conference (smartphone) | Three sessions/week for 6 weeks Telegroup: sessions supervised by physiotherapist; patient education, paced running/self-walking on the corridor, breathing exercises, active cycle of breathing technique, range of motion exercise, and standing squat. Control group: one session of exercise training and a brochure including similar exercises. | mMRC, pain and fatigue (VAS), TUG, SPPB, SGRQ, BDI, | mMRC, TUG, SGRQ, significantly improved in tele group. Control group only improved in VAS. SPPB no changues in any groups. Only SGRQ obtain significant differences between groups. |
References
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Bell, K.; Annaswamy, T.; Juengst, S.; Ifejika, N. COVID-19 Guide for the Rehabilitation Clinician: A Review of Nonpulmonary Manifestations and Complications. Am. J. Phys. Med. Rehabil. 2020, 99, 669–673. [Google Scholar] [CrossRef]
- Rodriguez-Morales, A.J.; Cardona-Ospina, J.A.; Gutiérrez-Ocampo, E.; Villamizar-Peña, R.; Holguin-Rivera, Y.; Escalera-Antezana, J.P.; Alvarado-Arnez, L.E.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis. 2020, 34, 101623. [Google Scholar] [CrossRef] [PubMed]
- Leo, F.; Wormanns, D.; Grohé, C. COVID-19 aus Sicht der Pneumologie–Langzeitfolgen und Implikationen für die pneumologische Nachsorge [COVID-19: A Pneumological Point of View-Long-Term Sequelae of COVID-19-Implications For Follow-up In Respiratory Medicine]. Dtsch. Med. Wochenschr. 2020, 145, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Madjid, M.; Safavi-Naeini, P.; Solomon, S.D.; Vardeny, O. Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA Cardiol. 2020, 5, 831–840. [Google Scholar] [CrossRef] [Green Version]
- Edler, C.; Schröder, A.S.; Aepfelbacher, M.; Fitzek, A.; Heinemann, A.; Heinrich, F.; Klein, A.; Langenwalder, F.; Lütgehetmann, M.; Meißner, K.; et al. Dying with SARS-CoV-2 infection-an autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Legal Med. 2020, 134, 1275–1284. [Google Scholar] [CrossRef]
- Mao, R.; Qiu, Y.; He, J.S.; Tan, J.Y.; Li, X.H.; Liang, J.; Shen, J.; Zhu, L.R.; Chen, Y.; Iacucci, M.; et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 667–678. [Google Scholar] [CrossRef]
- Whittaker, A.; Anson, M.; Harky, A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol. Scand. 2020, 142, 14–22. [Google Scholar] [CrossRef]
- Cipollaro, L.; Giordano, L.; Padulo, J.; Oliva, F.; Maffulli, N. Musculoskeletal symptoms in SARS-CoV-2 (COVID-19) patients. J. Orthop. Surg. Res. 2020, 15, 178. [Google Scholar] [CrossRef]
- Gottlieb, M.; Long, B. Dermatologic manifestations and complications of COVID-19. Am. J. Emerg. Med. 2020, 38, 1715–1721. [Google Scholar] [CrossRef]
- Loffredo, L.; Pacella, F.; Pacella, E.; Tiscione, G.; Oliva, A.; Violi, F. Conjunctivitis and COVID-19: A meta-analysis. J. Med. Virol. 2020, 92, 1413–1414. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- Brigo, E.; Rintala, A.; Kossi, O.; Verwaest, F.; Vanhoof, O.; Feys, P.; Bonnechère, B. Using Telehealth to Guarantee the Continuity of Rehabilitation during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10325. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.G.D.S.; Pinto, A.C.P.N.; Garcia, B.M.S.P.; Eid, R.A.C.; Mól, C.G.; Nawa, R.K. Telerehabilitation improves physical function and reduces dyspnoea in people with COVID-19 and post-COVID-19 conditions: A systematic review. J. Physiother. 2022, 68, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Braem, F.; Baudet, L.; Poncin, W.; Fizaine, S.; Aboubakar, F.; Froidure, A.; Pilette, C.; Liistro, G.; De Greef, J.; et al. Follow-up of functional exercise capacity in patients with COVID-19: It is improved by telerehabilitation. Respir. Med. 2021, 183, 106438. [Google Scholar] [CrossRef] [PubMed]
- Werneke, M.W.; Deutscher, D.; Grigsby, D.; Tucker, C.A.; Mioduski, J.E.; Hayes, D. Telerehabilitation During the COVID-19 Pandemic in Outpatient Rehabilitation Settings: A Descriptive Study. Phys. Ther. 2021, 101, pzab110. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, C.; Bernal-Utrera, C.; Anarte-Lazo, E.; Saavedra-Hernandez, M.; De-La-Barrera-Aranda, E.; Serrera-Figallo, M.A.; Gonzalez-Martin, M.; Gonzalez-Gerez, J.J. Breathing exercises versus strength exercises through telerehabilitation in coronavirus disease 2019 patients in the acute phase: A randomized controlled trial. Clin. Rehabil. 2022, 36, 486–497. [Google Scholar] [CrossRef]
- Seid, A.A.; Aychiluhm, S.B.; Mohammed, A.A. Effectiveness and feasibility of telerehabilitation in patients with COVID-19: A systematic review and meta-analysis. BMJ Open 2022, 12, e063961. [Google Scholar] [CrossRef]
- Grundstein, M.J.; Fisher, C.; Titmuss, M.; Cioppa-Mosca, J. The Role of Virtual Physical Therapy in a Post-Pandemic World: Pearls, Pitfalls, Challenges, and Adaptations. Phys. Ther. 2021, 101, pzab145. [Google Scholar] [CrossRef]
- Kim, S.Y.; Daley, K.; Pruski, A.D.; AlFarra, T.; Azola, A.; Gonzalez Fernandez, M.; Keszler, M.S.; Friedel, S.; Haaf, H.; Segall, H.; et al. Implementation of a Framework for Telerehabilitation in Clinical Care Across the Continuum During COVID-19 and Beyond. Am. J. Phys. Med. Rehabil. 2022, 101, 53–60. [Google Scholar] [CrossRef]
- Peretti, A.; Amenta, F.; Tayebati, S.K.; Nittari, G.; Mahdi, S.S. Telerehabilitation: Review of the State-of-the-Art and Areas of Application. JMIR Rehabil. Assist Technol. 2017, 4, e7. [Google Scholar] [CrossRef] [PubMed]
- Seron, P.; Oliveros, M.J.; Gutierrez-Arias, R.; Fuentes-Aspe, R.; Torres-Castro, R.C.; Merino-Osorio, C.; Nahuelhual, P.; Inostroza, J.; Jalil, Y.; Solano, R.; et al. Effectiveness of Telerehabilitation in Physical Therapy: A Rapid Overview. Phys. Ther. 2021, 101, pzab053. [Google Scholar] [CrossRef]
- Groenveld, T.; Achttien, R.; Smits, M.; de Vries, M.; van Heerde, R.; Staal, B.; van Goor, H. COVID Rehab Group. Feasibility of Virtual Reality Exercises at Home for Post-COVID-19 Condition: Cohort Study. JMIR Rehabil. Assist Technol. 2022, 9, e36836. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Utrera, C.; Anarte-Lazo, E.; De-La-Barrera-Aranda, E.; Fernandez-Bueno, L.; Saavedra-Hernandez, M.; Gonzalez-Gerez, J.J.; Serrera-Figallo, M.A.; Rodriguez-Blanco, C. Perspectives and Attitudes of Patients with COVID-19 toward a Telerehabilitation Programme: A Qualitative Study. Int. J. Environ. Res. Public Health 2021, 18, 7845. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, L.; Jaywant, A.; Gupta, A.; Vanderlind, W.M.; Jabbour, G. Use of virtual reality in the inpatient rehabilitation of COVID-19 patients. Gen. Hosp. Psychiatry 2021, 71, 76–81. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herb, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. Available online: https://pubmed.ncbi.nlm.nih.gov/12882612/ (accessed on 26 October 2022). [CrossRef] [Green Version]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials. 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality If Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 14 October 2022).
- Dalbosco-Salas, M.; Torres-Castro, R.; Rojas Leyton, A.; Morales Zapata, F.; Henríquez Salazar, E.; Espinoza Bastías, G.; Beltrán Díaz, M.E.; Tapia Allers, K.; Mornhinweg Fonseca, D.; Vilaró, J. Effectiveness of a Primary Care Telerehabilitation Program for Post-COVID-19 Patients: A Feasibility Study. J. Clin. Med. 2021, 10, 4428. [Google Scholar] [CrossRef]
- Pehlivan, E.; Palalı, İ.; Atan, S.G.; Turan, D.; Çınarka, H.; Çetinkaya, E. The effectiveness of POST-DISCHARGE telerehabilitation practices in COVID-19 patients: Tele-COVID study-randomized controlled trial. Ann. Thorac. Med. 2022, 17, 110–117. [Google Scholar] [CrossRef]
- Li, J.; Xia, W.; Zhan, C.; Liu, S.; Yin, Z.; Wang, J.; Chong, Y.; Zheng, C.; Fang, X.; Cheng, W.; et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): A randomised controlled trial. Thorax 2022, 77, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Colas, C.; Bayle, M.; Labeix, P.; Botelho-Nevers, E.; Gagneux-Brunon, A.; Cazorla, C.; Schein, F.; Breugnon, E.; Garcin, A.; Feasson, L.; et al. Management of Long COVID-The CoviMouv’ Pilot Study: Importance of Adapted Physical Activity for Prolonged Symptoms Following SARS-CoV2 Infection. Front. Sports Act. Living. 2022, 4, 877188. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Paniagua, J.; Díaz-Arribas, M.J.; Valera-Calero, J.A.; Gallardo-Vidal, M.I.; Fernández-de-Las-Peñas, C.; López-de-Uralde-Villanueva, I.; Del Corral, T.; Plaza-Manzano, G. A tele-health primary care rehabilitation program improves self-perceived exertion in COVID-19 survivors experiencing Post-COVID fatigue and dyspnea: A quasi-experimental study. PLoS ONE 2022, 17, e0271802. [Google Scholar] [CrossRef] [PubMed]
- Estebanez-Pérez, M.J.; Pastora-Bernal, J.M.; Martín-Valero, R. The Effectiveness of a Four-Week Digital Physiotherapy Intervention to Improve Functional Capacity and Adherence to Intervention in Patients with Long COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9566. [Google Scholar] [CrossRef] [PubMed]
- Cassar, M.P.; Tunnicliffe, E.M.; Petousi, N.; Lewandowski, A.J.; Xie, C.; Mahmod, M.; Samat, A.H.A.; Evans, R.A.; Brightling, C.E.; Ho, L.-P.; et al. Symptom Persistence Despite Improvement in Cardiopulmonary Health–Insights from longitudinal CMR, CPET and lung function testing post-COVID-19. EClinicalMedicine 2021, 41, 10980107. Available online: https://www.thelancet.com/journals/eclinm/article/PIIS2589-5370(21)00439-9/fulltext (accessed on 26 October 2022). [CrossRef] [PubMed]
- Holdsworth, D.A.; Chamley, R.; Barker-Davies, R.; O’Sullivan, O.; Ladlow, P.; Mitchell, J.L.; Dewson, D.; Mills, D.; May, S.L.J.; Cranley, M.; et al. Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS ONE 2022, 17, e0267392. Available online: /pmc/articles/PMC9187094/ (accessed on 26 October 2022). [CrossRef]
- Becker, J.H.; Lin, J.J.; Doernberg, M.; Stone, K.; Navis, A.; Festa, J.R.; Wisnivesky, J.P. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw. Open 2021, 4, e2130645. Available online: /pmc/articles/PMC8536953/ (accessed on 26 October 2022). [CrossRef]
- Baker, L.D.; Frank, L.L.; Foster-Schubert, K.; Green, P.S.; Wilkinson, C.W.; McTiernan, A.; Plymate, S.R.; Fishel, M.A.; Watson, G.S.; Cholerton, B.A.; et al. Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Arch. Neurol. 2010, 67, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-T. Physical Activity and Cognitive Function in Mild Cognitive Impairment. ASN Neuro 2020, 12, 1759091419901182. [Google Scholar] [CrossRef]
- Lyra, E.; Silva, N.M.; Barros-Aragão, F.G.Q.; De Felice, F.G.; Ferreira, S.T. Inflammation at the crossroads of COVID-19, cognitive deficits and depression. Neuropharmacology 2022, 209, 109023. [Google Scholar] [CrossRef]
- Seo, D.Y.; Heo, J.W.; Ko, J.R.; Kwak, H.B. Exercise and Neuroinflammation in Health and Disease. Int. Neurourol. J. 2019, 23 (Suppl. 2), S82–S92. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.P.; Man, G.C.W.; Xin, H.; Chong, Y.C.; Ong, M.T.; Yung, P.S. The effectiveness of telerehabilitation in patients after total knee replacement: A systematic review and meta-analysis of randomized controlled trials. J. Telemed. Telecare 2022, 1357633X221097469. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, A.H.; Silva Cardoso, J.; Rocha, A.; Moreira, E.; Azevedo, L.F. Effectiveness of Tele-rehabilitation Programs in Heart Failure: A Systematic Review and Meta-analysis. Health Serv. Insights 2021, 14, 11786329211021668. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.; Russell, T.; Crossley, K.; Bourke, M.; McPhail, S. Cost-effectiveness of telerehabilitation versus traditional care after total hip replacement: A trial-based economic evaluation. J. Telemed. Telecare 2021, 27, 359–366. [Google Scholar] [CrossRef]
- Rennie, K.; Taylor, C.; Corriero, A.C.; Chong, C.; Sewell, E.; Hadley, J.; Ardani, S. The Current Accuracy, Cost-Effectiveness, and Uses of Musculoskeletal Telehealth and Telerehabilitation Services. Curr. Sports Med. Rep. 2022, 21, 247–260. [Google Scholar] [CrossRef]
- Amin, J.; Ahmad, B.; Amin, S.; Siddiqui, A.A.; Alam, M.K. Rehabilitation Professional and Patient Satisfaction with Telerehabilitation of Musculoskeletal Disorders: A Systematic Review. BioMed Res. Int. 2022, 2022, 7366063. [Google Scholar] [CrossRef]
- Prvu Bettger, J.; Resnik, L.J. Telerehabilitation in the Age of COVID-19: An Opportunity for Learning Health System Research. Phys. Ther. 2020, 100, 1913–1916. [Google Scholar] [CrossRef]
- Gonzalez-Gerez, J.J.; Saavedra-Hernandez, M.; Anarte-Lazo, E.; Bernal-Utrera, C.; Perez-Ale, M.; Rodriguez-Blanco, C. Short-Term Effects of a Respiratory Telerehabilitation Program in Confined COVID-19 Patients in the Acute Phase: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 7511. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, C.; Gonzalez-Gerez, J.J.; Bernal-Utrera, C.; Anarte-Lazo, E.; Perez-Ale, M.; Saavedra-Hernandez, M. Short-Term Effects of a Conditioning Telerehabilitation Program in Confined Patients Affected by COVID-19 in the Acute Phase. A Pilot Randomized Controlled Trial. Medicina 2021, 57, 684. [Google Scholar] [CrossRef]
Web of Science | (“long COVID” OR “post COVID”) AND exercise AND telerehabilitation (“long COVID” OR “post COVID”) AND physiotherapy AND telerehabilitation |
PubMed | (“long COVID” OR “post COVID”) AND physiotherapy AND telerehabilitation (“long COVID” OR “post COVID”) AND exercise AND telerehabilitation |
Scopus | (“long COVID” OR “post COVID”) AND exercise AND telerehabilitation “long COVID” OR “post COVID”) AND physiotherapy AND telerehabilitation |
PEDro | “Long COVID” “Post COVID” |
Population | Post COVID-19 patients with symptoms. |
Intervention | Different methods of therapeutic exercise involving the use of telerehabilitation. |
Comparison | Difference between initial assessment and final assessment. |
Outcome | Any physical parameter, scale, or test. Validated for evaluation purposes. |
Study Design | Randomized controlled studies or longitudinal studies. |
PEDro Scale (RCT) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | |||||||
Li et al., 2021 | X | X | X | X | - | - | X | X | X | X | X | 8/10 | |||||||
Ismael Palali et al., 2022 | X | X | X | X | X | - | - | X | X | X | X | 8/10 | |||||||
JADAD Scale (RCT) | 1 | 2 | 3 | 4 | 5 | Total | |||||||||||||
Li et al., 2021 | X | X | - | X | X | 4/5 | |||||||||||||
Ismael Palali et al., 2022 | X | X | - | - | X | 3/5 | |||||||||||||
Newcastle–Ottawa Scale (Non-RCT) | 1 | 2 | 3 | 4 | 1 | 1 | 2 | 3 | Total | ||||||||||
Calvo-Paniagua et al., 2022 | X | - | X | X | - | - | X | X | 5/9 | ||||||||||
Colas et al., 2022 | X | X | X | X | XX | - | X | X | 8/9 | ||||||||||
Estebanez-Perez et al., 2022 | X | - | X | X | - | - | X | X | 5/9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal-Utrera, C.; Montero-Almagro, G.; Anarte-Lazo, E.; Gonzalez-Gerez, J.J.; Rodriguez-Blanco, C.; Saavedra-Hernandez, M. Therapeutic Exercise Interventions through Telerehabilitation in Patients with Post COVID-19 Symptoms: A Systematic Review. J. Clin. Med. 2022, 11, 7521. https://doi.org/10.3390/jcm11247521
Bernal-Utrera C, Montero-Almagro G, Anarte-Lazo E, Gonzalez-Gerez JJ, Rodriguez-Blanco C, Saavedra-Hernandez M. Therapeutic Exercise Interventions through Telerehabilitation in Patients with Post COVID-19 Symptoms: A Systematic Review. Journal of Clinical Medicine. 2022; 11(24):7521. https://doi.org/10.3390/jcm11247521
Chicago/Turabian StyleBernal-Utrera, Carlos, Gines Montero-Almagro, Ernesto Anarte-Lazo, Juan Jose Gonzalez-Gerez, Cleofas Rodriguez-Blanco, and Manuel Saavedra-Hernandez. 2022. "Therapeutic Exercise Interventions through Telerehabilitation in Patients with Post COVID-19 Symptoms: A Systematic Review" Journal of Clinical Medicine 11, no. 24: 7521. https://doi.org/10.3390/jcm11247521
APA StyleBernal-Utrera, C., Montero-Almagro, G., Anarte-Lazo, E., Gonzalez-Gerez, J. J., Rodriguez-Blanco, C., & Saavedra-Hernandez, M. (2022). Therapeutic Exercise Interventions through Telerehabilitation in Patients with Post COVID-19 Symptoms: A Systematic Review. Journal of Clinical Medicine, 11(24), 7521. https://doi.org/10.3390/jcm11247521