DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Anthropometry and DXA
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minetto, M.A.; Giannini, A.; McConnell, R.; Busso, C.; Torre, G.; Massazza, G. Common Musculoskeletal Disorders in the Elderly: The Star Triad. J. Clin. Med. 2020, 9, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzocchi, A.; Ponti, F.; Albisinni, U.; Battista, G.; Guglielmi, G. DXA: Technical aspects and application. Eur. J. Radiol. 2016, 85, 1481–1492. [Google Scholar] [CrossRef]
- Albano, D.; Messina, C.; Vitale, J.; Sconfienza, L.M. Imaging of sarcopenia: Old evidence and new insights. Eur. Radiol. 2020, 30, 2199–2208. [Google Scholar] [CrossRef]
- Minetto, M.A.; Busso, C.; Gamerro, G.; Lalli, P.; Massazza, G.; Invernizzi, M. Quantitative assessment of volumetric muscle loss: Dual-energy X-ray absorptiometry and ultrasonography. Curr. Opin. Pharmacol. 2021, 57, 148–156. [Google Scholar] [CrossRef]
- Minetto, M.A.; Busso, C.; Lalli, P.; Gamerro, G.; Massazza, G. DXA-derived adiposity and lean indices for management of cardiometabolic and musculoskeletal frailty: Data interpretation tricks and reporting tips. Front. Rehabilit. Sci. 2021, 2, 712977. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, S.A.; Soh, Y.; Kim, Y.; Won, C.W.; Chon, J. Association between asymmetry in lower extremity lean mass and functional mobility in older adults living in the community: Results from the Korean Frailty and Aging Cohort Study. Medicine 2019, 98, e17882. [Google Scholar] [CrossRef]
- Mertz, K.H.; Reitelseder, S.; Jensen, M.; Lindberg, J.; Hjulmand, M.; Schucany, A.; Binder Andersen, S.; Bechshoeft, R.L.; Jakobsen, M.D.; Bieler, T.; et al. Influence of between-limb asymmetry in muscle mass, strength, and power on functional capacity in healthy older adults. Scand. J. Med. Sci. Sports 2019, 29, 1901–1908. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Heshka, S.; Gallagher, D.; Kotler, D.P.; Mayer, L.; Albu, J.; Shen, W.; Freda, P.U.; Heymsfield, S.B. Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults. J. Appl. Physiol. 2004, 97, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey (NHANES); Anthropometry Procedures Manual; Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2011. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/manuals/Anthropometry_Procedures_Manual.pdf (accessed on 13 December 2021).
- Centers for Disease Control and Prevention (CDC); National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey (NHANES); Body Composition Procedures Manual; Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2011. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2011-2012/manuals/Body_Composition_Procedures_Manual.pdf (accessed on 13 December 2021).
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88, Erratum in J. Appl. Physiol. 2014, 116, 1342. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, S.B.; Gallagher, D.; Mayer, L.; Beetsch, J.; Pietrobelli, A. Scaling of human body composition to stature: New insights into body mass index. Am. J. Clin. Nutr. 2007, 86, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Cawthon, P.M.; Peters, K.W.; Shardell, M.D.; McLean, R.R.; Dam, T.T.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Kittiskulnam, P.; Carrero, J.J.; Chertow, G.M.; Kaysen, G.A.; Delgado, C.; Johansen, K.L. Sarcopenia among patients receiving hemodialysis: Weighing the evidence. J. Cachexia Sarcopenia Muscle 2017, 8, 57–68. [Google Scholar] [CrossRef]
- Brown, J.C.; Heymsfield, S.B.; Caan, B.J. Scaling of computed tomography body composition to height: Relevance of height-normalized indices in patients with colorectal cancer. J. Cachexia Sarcopenia Muscle 2021, 6. Epub ahead of print. [Google Scholar] [CrossRef]
- Ng, B.K.; Hinton, B.J.; Fan, B.; Kanaya, A.M.; Shepherd, J.A. Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur. J. Clin. Nutr. 2016, 70, 1265–1270, Erratum in Eur. J. Clin. Nutr. 2021, 75, 574. [Google Scholar] [CrossRef] [Green Version]
- Redlarski, G.; Palkowski, A.; Krawczuk, M. Body surface area formulae: An alarming ambiguity. Sci. Rep. 2016, 6, 27966. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Bourgeois, B.; Ng, B.K.; Sommer, M.J.; Li, X.; Shepherd, J.A. Digital anthropometry: A critical review. Eur. J. Clin. Nutr. 2018, 72, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar] [PubMed]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, M.J.; Aagaard, P.; Herzog, W. Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scand. J. Med. Sci. Sports 2015, 25, e301–e309. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Ng, B.K.; Sommer, M.J.; Heymsfield, S.B. Body composition by DXA. Bone 2017, 104, 101–105. [Google Scholar] [CrossRef]
- Rothney, M.P.; Brychta, R.J.; Schaefer, E.V.; Chen, K.Y.; Skarulis, M.C. Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity 2009, 17, 1281–1286. [Google Scholar] [CrossRef]
- Silva, A.M.; Heymsfield, S.B.; Sardinha, L.B. Assessing body composition in taller or broader individuals using dual-energy X-ray absorptiometry: A systematic review. Eur. J. Clin. Nutr. 2013, 67, 1012–1021. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, A.Y.; Meskers, C.G.; Ling, C.H.; Narici, M.; Kurrle, S.E.; Cameron, I.D.; Westendorp, R.G.; Maier, A.B. Defining sarcopenia: The impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age 2013, 35, 871–881. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Hirano, H.; Edahiro, A.; Ohara, Y.; Watanabe, Y.; Kojima, N.; Kim, M.; Hosoi, E.; Yoshida, Y.; Yoshida, H.; et al. Sarcopenia: Prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr. Gerontol. Int. 2016, 16, 110–122. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, S.K.; Tsintavis, P.; Potsaki, P.; Papandreou, D. Differences in the Prevalence of Sarcopenia in Community-Dwelling, Nursing Home and Hospitalized Individuals. A Systematic Review and Meta-Analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef]
Variable | Caucasian Males (n = 3770) | African American Males (n = 1619) | Caucasian Females (n = 3328) | African American Females (n = 1297) |
---|---|---|---|---|
Age (years) | 49.4 ± 19.9 | 41.5 ± 18.7 | 50.3 ± 20.3 | 42.6 ± 18.8 |
Weight (kg) | 83.4 ± 14.0 | 80.8 ± 14.9 | 67.9 ± 12.5 | 72.1 ± 13.5 |
Height (m) | 1.77 ± 0.07 | 1.77 ± 0.07 | 1.63 ± 0.07 | 1.63 ± 0.07 |
BMI (kg/m2) | 26.7 ± 3.9 | 25.9 ± 4.3 | 25.7 ± 4.4 | 27.1 ± 4.5 |
ALM (kg) | 25.5 ± 4.1 | 27.7 ± 4.7 | 16.4 ± 2.7 | 19.0 ± 3.2 |
ALMI (kg/m2) | 8.14 ± 1.06 | 8.84 ± 1.23 | 6.20 ± 0.85 | 7.14 ± 1.00 |
TBSMM (kg) | Caucasian Males (n = 3770) | African American Males (n = 1619) | Caucasian Females (n = 3328) | African American Females (n = 1297) |
---|---|---|---|---|
Equation #1 | 29.3 ± 4.9 | 31.9 ± 5.5 | 18.6 ± 3.3 | 21.6 ± 3.8 |
Equation #2 | 29.2 ± 5.0 | 31.9 ± 5.5 | 18.6 ± 3.4 | 21.7 ± 3.8 |
Equation #3 | 29.4 ± 4.8 | 32.0 ± 5.4 | 18.5 ± 3.2 | 21.6 ± 3.7 |
Equation #4 | 28.6 ± 4.9 | 31.3 ± 5.5 | 17.9 ± 3.3 | 21.0 ± 3.8 |
Equation #5 | 28.4 ± 5.1 | 31.3 ± 5.6 | 17.7 ± 3.5 | 21.0 ± 3.9 |
Equation #6 | 28.2 ± 4.9 | 30.5 ± 4.9 | 17.9 ± 3.0 | 21.1 ± 3.5 |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Caucasian Males (n = 603) | African American Males (n = 410) | |||||
Mean ± SD | −1 SD | −2 SD | Mean ± SD | −1 SD | −2 SD | |
TLM (kg) | 54.1 ± 5.5 | 48.6 | 43.1 | 55.1 ± 6.3 | 48.8 | 42.5 |
LMI (kg/m2) | 16.1 ± 0.5 | 15.6 | 15.1 | 16.4 ± 0.1 | 16.3 | 16.2 |
ALM (kg) | 24.4 ± 2.9 | 21 | 19 | 26.5 ± 3.5 | 23 | 19 |
ALMI (kg/m2) | 7.71 ± 0.67 | 7.0 | 6.5 | 8.37 ± 0.80 | 7.5 | 7.0 |
TBSMM (kg) | 27.9 ± 3.5 | 24 | 21 | 30.2 ± 3.1 | 27 | 24 |
TB-MAXI (kg/m2) | 14.80 ± 1.18 | 13.5 | 12.5 | 16.20 ± 0.92 | 15.0 | 14.5 |
Mean ± SD | +1 SD | +2 SD | Mean ± SD | +1 SD | +2 SD | |
Upper Limb AI (%) | 2.9 ± 2.1 | 5.0 | 7.1 | 3.1 ± 2.5 | 5.6 | 8.1 |
Lower Limb AI (%) | 9.7 ± 7.9 | 17.6 | 25.5 | 10.3 ± 8.5 | 18.8 | 27.3 |
Caucasian Females (n = 641) | African American Females (n = 261) | |||||
Mean ± SD | −1 SD | −2 SD | Mean ± SD | −1 SD | −2 SD | |
TLM (kg) | 38.3 ± 3.8 | 34.5 | 30.7 | 38.6 ± 4.1 | 34.5 | 30.4 |
LMI (kg/m2) | 13.1 ± 0.04 | 13.1 | 13.0 | 13.5 ± 0.1 | 13.4 | 13.3 |
ALM (kg) | 16.1 ± 2.0 | 14 | 12 | 17.3 ± 2.2 | 15 | 13 |
ALMI (kg/m2) | 5.95 ± 0.57 | 5.5 | 5.0 | 6.51 ± 0.63 | 6.0 | 5.0 |
TBSMM (kg) | 18.6 ± 1.8 | 17 | 15 | 20.2 ± 1.9 | 18 | 16 |
TB-MAXI (kg/m2) | 11.25 ± 0.76 | 10.5 | 10.0 | 12.47 ± 0.80 | 12.0 | 11.0 |
Mean ± SD | +1 SD | +2 SD | Mean ± SD | +1 SD | +2 SD | |
Upper Limb AI (%) | 1.1 ± 0.8 | 1.9 | 2.7 | 1.1 ± 0.8 | 1.9 | 2.7 |
Lower Limb AI (%) | 5.0 ± 4.0 | 9.0 | 13.0 | 5.8 ± 4.8 | 10.6 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minetto, M.A.; Ballatore, M.G.; Botter, A.; Busso, C.; Pietrobelli, A.; Tabacco, A. DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004. J. Clin. Med. 2022, 11, 603. https://doi.org/10.3390/jcm11030603
Minetto MA, Ballatore MG, Botter A, Busso C, Pietrobelli A, Tabacco A. DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004. Journal of Clinical Medicine. 2022; 11(3):603. https://doi.org/10.3390/jcm11030603
Chicago/Turabian StyleMinetto, Marco Alessandro, Maria Giulia Ballatore, Alberto Botter, Chiara Busso, Angelo Pietrobelli, and Anita Tabacco. 2022. "DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004" Journal of Clinical Medicine 11, no. 3: 603. https://doi.org/10.3390/jcm11030603
APA StyleMinetto, M. A., Ballatore, M. G., Botter, A., Busso, C., Pietrobelli, A., & Tabacco, A. (2022). DXA-Based Detection of Low Muscle Mass Using the Total Body Muscularity Assessment Index (TB-MAXI): A New Index with Cutoff Values from the NHANES 1999–2004. Journal of Clinical Medicine, 11(3), 603. https://doi.org/10.3390/jcm11030603