The Effects of Rapamycin on the Proliferation, Migration, and Apoptosis of Human Tracheal Fibroblasts (HTrF) and Human Tracheal Epithelial Cells (HTEpiC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. CCK-8 Assay
2.2.2. Wound Healing Assay
2.2.3. Transwell Migration Assay
2.2.4. Flow Cytometric Analysis of Annexin V-FITC/7AAD Double Staining
2.3. Statistical Analysis
3. Results
3.1. CCK-8 Assay
3.1.1. The Effect of Drugs on the Proliferation of HTrF
- Paclitaxel, mitomycin C, and rapamycin at different concentrations and action times could inhibit the proliferation of HTrF to varying degrees (Table 1).
- The effective concentration of paclitaxel with an inhibition rate of more than 50% on fibroblasts was 10−7–10−4 mol/L (Figure 1A).
- The effective concentration of mitomycin C with an inhibition rate of more than 50% on fibroblasts was 10−6–10−4 mol/L (Figure 1B).
- The effective concentration of rapamycin with an inhibition rate of more than 50% on fibroblasts was 10−5–10−4 mol/L (Figure 1C).
3.1.2. The Effect of Drugs on the Proliferation of HTEpiC
- Paclitaxel, mitomycin C, and rapamycin at different concentrations and action times could inhibit the proliferation of HTEpiC to varying degrees (Table 2).
- The 72 h inhibition rates of paclitaxel on HTEpiC at the effective concentration (10−7–10−4 mol/L) were (43.03 ± 1.12)%, (49.49 ± 0.86)%, (55.22 ± 1.43)%, and (93.19 ± 0.45)% (Figure 2A).
- The 72 h inhibition rates of mitomycin C on HTEpiC at the effective concentration (10−6–10−4 mol/L) were (88.11 ± 0.69)%, (93.82 ± 0.96)%, and (94.94 ± 0.54)% (Figure 2B).
- The 72 h inhibition rates of rapamycin on HTEpiC at the effective concentration (10−5–10−4 mol/L) were (10.19 ± 0.35)% and (94.55 ± 0.71)% (Figure 2C).
3.1.3. Optimal Concentration Range of Rapamycin
3.2. Wound Healing Assay
3.3. Transwell Migration Assay
3.4. Apoptosis Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennedy, A.S.; Sonett, J.R.; Orens, J.B.; King, K. High dose rate brachytherapy to prevent recurrent benign hyperplasia in lung transplant bronchi: Theoretical and clinical considerations. J. Heart Lung Transplant. 2000, 19, 155–159. [Google Scholar] [CrossRef]
- Remacle, M.; Lawson, G.; Jamart, J.; Keghian, J. Progressive experience in tracheal stenting with self-expandable stents. Eur. Arch. Oto-Rhino-Laryngol. 2003, 260, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Thornton, R.H.; Gordon, R.L.; Kerlan, R.K.; LaBerge, J.M.; Wilson, M.W.; Wolanske, K.A.; Gotway, M.B.; Hastings, G.S.; Golden, J.A. Outcomes of tracheobronchial stent placement for benign disease. Radiology 2006, 240, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.A.; Fruchter, O.; Shitrit, D.; Fox, B.D.; Kramer, M.R. Flexible bronchoscopic management of benign tracheal stenosis: Long term follow-up of 115 patients. J. Cardiothorac. Surg. 2010, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.E.; Elstad, M. Mitomycin C and the endoscopic treatment of laryngotracheal stenosis: Are two applications better than one? Laryngoscope 2009, 119, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Gaissert, H.A.; Grillo, H.C.; Wright, C.D.; Donahue, D.M.; Wain, J.C.; Mathisen, D.J. Complication of benign tracheobronchial strictures by self-expanding metal stents. J. Thorac. Cardiovasc. Surg. 2003, 126, 744–747. [Google Scholar] [CrossRef] [Green Version]
- Correa Reis, J.G.; Takiya, C.M.; Lima Carvalho, A.; Souza Mota, R.; De-Ary-Pires, B.; Pires-Neto, M.A.; de Ary-Pires, R. Myofibroblast persistence and collagen type I accumulation in the human stenotic trachea. Head Neck 2012, 34, 1283–1293. [Google Scholar] [CrossRef]
- Singh, T.; Sandulache, V.C.; Otteson, T.D.; Barsic, M.; Klein, E.C.; Dohar, J.E.; Hebda, P.A. Subglottic stenosis examined as a fibrotic response to airway injury characterized by altered mucosal fibroblast activity. Arch. Otolaryngol.-Head Neck Surg. 2010, 136, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Greenhalgh, D.G. The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol. 1998, 30, 1019–1030. [Google Scholar] [CrossRef]
- Nakaegawa, Y.; Nakamura, R.; Tada, Y.; Nomoto, Y.; Imaizumi, M.; Suzuki, R.; Nakamura, T.; Omori, K. Effect of Structural Differences in Collagen Sponge Scaffolds on Tracheal Epithelium Regeneration. Ann. Otol. Rhinol. Laryngol. 2016, 125, 115–122. [Google Scholar] [CrossRef]
- Wang, C.; Xia, T.; Jiang, K.; Qiao, X.; Zhang, X.; Li, J.; Wang, J.; Nie, J. Apoptosis of the Tracheal Epithelium Can Increase the Number of Recipient Bone Marrow-Derived Myofibroblasts in Allografts and Exacerbate Obliterative Bronchiolitis after Tracheal Transplantation in Mice. Transplantation 2016, 100, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Safronova, E.I.; Dydykin, S.S.; Grigorevskiy, E.D.; Tverye, E.A.; Kolchenko, S.I.; Piskunova, N.N.; Denisova, A.V.; Titova, G.P.; Parshin, V.D.; Romanova, O.A.; et al. Experimental animal model for assessment of tracheal epithelium regeneration. Laryngoscope 2019, 129, E213–E219. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Lu, Y.; Wang, Z.; Shi, H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen. Med. 2021, 16, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Choong, C.K.; Phan, L.; Massetti, P.; Haddad, F.J.; Martinez, C.; Roschak, E.; Cooper, J.D. Prolongation of patency of airway bypass stents with use of drug-eluting stents. J. Thorac. Cardiovasc. Surg. 2006, 131, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, P.F.; Snell, G.I.; Hopkins, P.; Sybrecht, G.W.; Stamatis, G.; Ng, A.W.; Eng, P. Clinical application of airway bypass with paclitaxel-eluting stents: Early results. J. Thorac. Cardiovasc. Surg. 2007, 134, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.H.; Ng, A.H.; Venkatraman, S.S.; Boey, F.Y.; Wee, A.L.; Trasti, S.L.; Yee Lim, L.H. A novel bioabsorbable drug-eluting tracheal stent. Laryngoscope 2011, 121, 2234–2239. [Google Scholar] [CrossRef]
- de Miguel, S.C.; Barrera, J.C.; Medina, M.G.; de Cadiz, L.F.C.G.; Salmeron-Garcia, A.; Lucas, F.R. Topical endotracheal mitomycin C as a complementary treatment for endoscopic treatment of recurrent laryngotracheal stenosis. Farm. Hosp. 2011, 35, 32–35. [Google Scholar] [CrossRef]
- Spector, J.E.; Werkhaven, J.A.; Spector, N.C.; Huang, S.; Page, R.N.; Baranowski, B.; Luther, M.; McGehee, B.; Reinisch, L. Preservation of function and histologic appearance in the injured glottis with topical mitomycin-C. Laryngoscope 1999, 109, 1125–1129. [Google Scholar] [CrossRef]
- Rahbar, R.; Shapshay, S.M.; Healy, G.B. Mitomycin: Effects on laryngeal and tracheal stenosis, benefits, and complications. Ann. Otol. Rhinol. Laryngol. 2001, 110, 1–6. [Google Scholar] [CrossRef]
- Roh, J.L.; Lee, Y.W.; Park, C.I. Can mitomycin C really prevent airway stenosis? Laryngoscope 2006, 116, 440–445. [Google Scholar] [CrossRef]
- Roh, J.L.; Kim, D.H.; Rha, K.S.; Sung, M.W.; Kim, K.H.; Park, C.I. Benefits and risks of mitomycin use in the traumatized tracheal mucosa. Otolaryngol.-Head Neck Surg. 2007, 136, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhang, J.; Wang, T.; Qiu, X.; Wang, Y. Preparation and characterization of paclitaxel-loaded poly lactic acid-co-glycolic acid coating tracheal stent. Chin. Med. J. 2014, 127, 2236–2240. [Google Scholar] [PubMed]
- Wang, T.; Zhang, J.; Wang, J.; Pei, Y.H.; Qiu, X.J.; Wang, Y.L. Paclitaxel Drug-eluting Tracheal Stent Could Reduce Granulation Tissue Formation in a Canine Model. Chin. Med. J. 2016, 129, 2708–2713. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guan, C.; Zhang, R.; Yang, Y.; Ma, C.; Li, H.; Chen, S.; Han, Y.; Xu, B.; Gao, R. Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent for the treatment of de novo coronary lesions: Final five-year results of the patient-level pooled analysis from the TARGET I and TARGET II trials. Catheter. Cardiovasc. Interv. 2019, 93, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.M.; Abdul Kader, M.; Wan Ahmad, W.A.; Ong, T.K.; Liew, H.B.; Omar, A.F.; Mahmood Zuhdi, A.S.; Nuruddin, A.A.; Schnorr, B.; Scheller, B. Treatment of Coronary Drug-Eluting Stent Restenosis by a Sirolimus- or Paclitaxel-Coated Balloon. JACC Cardiovasc. Interv. 2019, 12, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Gutierrez, S.; Lopez, G.V.; Edgell, R.C.; Mendez, A.A.; Dandapat, S.; Roa, J.A.; Zevallos, C.B.; Holcombe, A.L.; Hasan, D.; Derdeyn, C.P.; et al. Second Generation Drug-Eluting Stents for Endovascular Treatment of Ostial Vertebral Artery Stenosis: A Single Center Experience. Front. Neurol. 2019, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Shlomi, D.; Peled, N.; Shitrit, D.; Bendayan, D.; Amital, A.; Kramer, M.R. Protective effect of immunosuppression on granulation tissue formation in metallic airway stents. Laryngoscope 2008, 118, 1383–1388. [Google Scholar] [CrossRef]
- Sigler, M.; Klötzer, J.; Quentin, T.; Paul, T.; Möller, O. Stent implantation into the tracheo-bronchial system in rabbits: Histopathologic sequelae in bare metal vs. drug-eluting stents. Mol. Cell. Pediatrics 2015, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Dalar, L.; Önür, S.T.; Özdemir, C.; Sökücü, S.N.; Karasulu, A.L.; Altin, S. Is silicone stent insertion a clinically useful option for tracheobronchomalacia? Turk. J. Med. Sci. 2016, 46, 437–442. [Google Scholar] [CrossRef]
- Verma, A.; Phua, C.K.; Wu, Q.M.; Sim, W.Y.; Rui, A.W.; Goh, S.K.; Ho, B.; Kor, A.C.; Wong, A.S.; Lim, A.Y.; et al. Our Clinical Experience of Self-Expanding Metal Stent for Malignant Central Airway Obstruction. J. Clin. Med. Res. 2017, 9, 58–63. [Google Scholar] [CrossRef] [Green Version]
Concentration (mol/L) | Paclitaxel | Mitomycin C | Rapamycin | ||||||
---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
10−11 | 2.62 ± 0 * | 6.31 ± 1.05 * | 8.63 ± 1.42 * | 3.85 ± 1.29 * | 5.15 ± 0.57 * | 6.23 ± 1.92 * | 1.08 ± 0.38 * | 3.87 ± 0.47 * | 7.94 ± 0.88 * |
10−10 | 4.18 ± 0.17 * | 11.70 ± 1.46 * | 13.64 ± 1.05 * | 16.26 ± 1.08 * | 13.08 ± 1.20 * | 16.42 ± 1.42 * | 5.29 ± 0.85 * | 6.90 ± 0.58 * | 13.38 ± 0.71 * |
10−9 | 10.24 ± 0.87 * | 17.26 ± 1.32 * | 18.81 ± 0.63 * | 18.06 ± 1.34 * | 17.93 ± 1.47 * | 19.61 ± 1.45 * | 12.09 ± 1.05 * | 21.81 ± 2.66 * | 26.37 ± 1.87 * |
10−8 | 13.88 ± 1.67 * | 34.25 ± 1.66 * | 36.27 ± 1.25 * | 20.75 ± 1.07 * | 19.59 ± 1.24 * | 21.46 ± 2.33 * | 17.10 ± 1.03 * | 33.32 ± 1.82 * | 35.92 ± 1.10 * |
10−7 | 46.15 ± 1.78 * | 57.76 ± 0.54 * | 57.91 ± 1.60 * | 23.30 ± 0.80 * | 25.85 ± 1.02 * | 30.81 ± 1.56 * | 19.87 ± 0.89 * | 39.59 ± 0.45 * | 42.87 ± 3.41 * |
10−6 | 50.78 ± 1.77 * | 62.06 ± 0.64 * | 62.05 ± 1.77 * | 38.87 ± 1.04 * | 42.39 ± 0.73 * | 51.31 ± 1.73 * | 21.61 ± 0.99 * | 40.27 ± 0.40 * | 46.82 ± 1.00 * |
10−5 | 55.75 ± 1.77 * | 64.40 ± 1.05 * | 65.99 ± 1.04 * | 64.82 ± 1.16 * | 78.02 ± 1.47 * | 91.34 ± 1.18 * | 27.76 ± 1.03 * | 49.17 ± 0.94 * | 69.00 ± 0.97 * |
10−4 | 92.92 ± 0.55 * | 96.06 ± 0.26 * | 96.36 ± 0.24 * | 94.37 ± 0.43 * | 98.23 ± 0.16 * | 98.18 ± 0.37 * | 92.37 ± 0.56 * | 96.30 ± 0.26 * | 97.36 ± 0.22 * |
Concentration (mol/L) | Paclitaxel | Mitomycin C | Rapamycin | ||||||
---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | |
10−11 | 7.59 ± 1.29 * | 11.09 ± 0.52 * | 13.99 ± 1.32 * | 2.15 ± 0.12 * | 2.49 ± 0.10 * | 4.62 ± 0.82 * | 1.75 ± 0.38 * | 2.02 ± 0.48 * | 4.07 ± 0.89 * |
10−10 | 11.89 ± 1.29 * | 14.56 ± 1.19 * | 18.04 ± 1.28 * | 4.87 ± 0.68 * | 5.10 ± 0.56 * | 9.65 ± 1.30 * | 2.26 ± 0.96 * | 3.25 ± 0.56 * | 4.97 ± 1.57 * |
10−9 | 14.48 ± 1.54 * | 22.86 ± 1.31 * | 25.51 ± 1.24 * | 6.02 ± 1.11 * | 6.33 ± 1.12 * | 10.69 ± 1.22 * | 3.47 ± 0.45 * | 3.99 ± 1.24 * | 6.03 ± 0.64 * |
10−8 | 25.40 ± 0.57 * | 27.76 ± 1.82 * | 28.68 ± 1.63 * | 6.91 ± 0.58 * | 7.56 ± 1.41 * | 16.92 ± 0.06 * | 3.89 ± 0.76 * | 5.54 ± 0.71 * | 6.49 ± 0.77 * |
10−7 | 33.82 ± 0.54 * | 32.04 ± 2.11 * | 43.03 ± 1.12 * | 10.32 ± 0.49 * | 15.54 ± 0.65 * | 52.91 ± 1.08 * | 3.95 ± 0.98 * | 5.88 ± 0.91 * | 9.22 ± 0.33 * |
10−6 | 34.21 ± 0.91 * | 41.24 ± 1.14 * | 49.49 ± 0.86 * | 45.59 ± 1.25 * | 62.15 ± 1.05 * | 88.11 ± 0.69 * | 5.37 ± 1.02 * | 6.17 ± 1.35 * | 9.40 ± 0.60 * |
10−5 | 35.96 ± 1.30 * | 49.75 ± 1.74 * | 55.22 ± 1.43 * | 78.41 ± 0.75 * | 89.25 ± 0.37 * | 93.82 ± 0.96 * | 7.25 ± 1.54 * | 8.28 ± 0.47 * | 10.19 ± 0.35 * |
10−4 | 88.96 ± 0.49 * | 91.05 ± 0.45 * | 93.19 ± 0.45 * | 92.01 ± 0.30 * | 93.89 ± 0.68 * | 94.94 ± 0.54 * | 81.29 ± 1.06 * | 94.41 ± 0.87 * | 94.55 ± 0.71 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, J.; Long, J.; Qiu, X.; Wang, T.; Wang, J. The Effects of Rapamycin on the Proliferation, Migration, and Apoptosis of Human Tracheal Fibroblasts (HTrF) and Human Tracheal Epithelial Cells (HTEpiC). J. Clin. Med. 2022, 11, 608. https://doi.org/10.3390/jcm11030608
Liu Y, Zhang J, Long J, Qiu X, Wang T, Wang J. The Effects of Rapamycin on the Proliferation, Migration, and Apoptosis of Human Tracheal Fibroblasts (HTrF) and Human Tracheal Epithelial Cells (HTEpiC). Journal of Clinical Medicine. 2022; 11(3):608. https://doi.org/10.3390/jcm11030608
Chicago/Turabian StyleLiu, Yan, Jie Zhang, Jianhai Long, Xiaojian Qiu, Ting Wang, and Juan Wang. 2022. "The Effects of Rapamycin on the Proliferation, Migration, and Apoptosis of Human Tracheal Fibroblasts (HTrF) and Human Tracheal Epithelial Cells (HTEpiC)" Journal of Clinical Medicine 11, no. 3: 608. https://doi.org/10.3390/jcm11030608
APA StyleLiu, Y., Zhang, J., Long, J., Qiu, X., Wang, T., & Wang, J. (2022). The Effects of Rapamycin on the Proliferation, Migration, and Apoptosis of Human Tracheal Fibroblasts (HTrF) and Human Tracheal Epithelial Cells (HTEpiC). Journal of Clinical Medicine, 11(3), 608. https://doi.org/10.3390/jcm11030608