The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC
Abstract
:1. Introduction
2. Experimental Section
2.1. Subjects
2.2. Tissue and Serum Collection
2.3. Assessment of the Relative Level of Genes and miRNAs Expression (RQ)
2.4. Statistical Analysis
3. Results
3.1. Relative Expression Levels of the Studied mRNA in Tumor Tissue (NSCLC) vs. Control Lung Tissue
3.2. Relative Expression Levels of CCR7 and CCL19 mRNA in Tumor Tissue (NSCLC) According to Biological Features and Smoking History of Study Patients
3.3. Relative Expression Levels of CCR7 and CCL19 mRNA in Tumor Tissue (NSCLC) According to Histopathological Assessment and the TNM/AJCC Staging System
3.4. Relative Expression Levels of the Study miRNAs in Tumor Tissue vs. Serum Patients with NSCLC
3.5. Relative Expression Levels of miR-335 and miR let-7a in Tumor Tissue (NSCLC) According to Biological Features and Smoking History
3.6. Relative Expression Levels miR-335 and miR let-7a in Tumor Tissue (NSCLC) Classified According to Histopathological Classification and the TNM/AJCC Staging System
3.7. miRNA Expression Levels in Serum from Patients with NSCLC vs. Control
3.8. miR-335 and miR let-7a Expression Levels in Serum of Patients with NSCLC According to Biological Features and Smoking History
3.9. miR-335 and miR let-7a Expression Levels in the Serum of Patients with NSCLC According to Histopathological Classification and the TNM/AJCC Staging System
3.10. Correlation between the Expression Levels of the Studied Genes and miRNAs in NSCLC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 25 August 2021).
- Takanami, I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: Correlation with lymph node metastasis. Int. J. Cancer 2003, 105, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, X.; An, H.; Wang, J.; Ma, Y.; Qian, Y.H. Inhibition of CCR7 promotes NF-κB-dependent apoptosis and suppresses epithelial-mesenchymal transition in non-small cell lung cancer. Oncol. Rep. 2017, 37, 2913–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Zhang, Q.; Li, Y.; Tang, N.; Qiu, X. CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells. Int. J. Clin. Exp. Pathol. 2015, 8, 15729–15738. [Google Scholar]
- Xu, Y.; Liu, L.; Qiu, X.; Liu, Z.; Li, H.; Li, Z.; Luo, W.; Wang, E. CCL21/CCR7 prevents apoptosis via the ERK pathway in human non-small cell lung cancer cells. PLoS ONE 2012, 7, e33262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Liu, L.; Qiu, X.; Jiang, L.; Huang, B.; Li, H.; Li, Z.; Luo, W.; Wang, E. CCL21/CCR7 Promotes G2/M Phase Progression via the ERK Pathway in Human Non-Small Cell Lung Cancer Cells. PLoS ONE 2011, 6, e21119. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.; Tang, X.; Zhuang, X.; Hu, Z.; He, K.; Wu, Y.; Dai, T. Matrine induces apoptosis via targeting CCR7 and enhances the effect of anticancer drugs in non-small cell lung cancer in vitro. Innate Immun. 2018, 24, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Cardell, M.; Arni, S.; Yang, S.C.; Korom, S.; Opitz, I.; Lardinois, D.; Sharma, S.; Dubinett, S.M.; Weder, W.; Hillinger, S. Combined CCL19/IL-7 treatment eradicates tumors in murine models of lung cancer. Cancer Res. 2006, 66, 1306. [Google Scholar]
- Cheng, H.W.; Onder, L.; Cupovic, J.; Boesch, M.; Novkovic, M.; Pikor, N.; Tarantino, I.; Rodriguez, R.; Schneider, T.; Jochum, W.; et al. CCL19-producing fibroblastic stromal cells restrain lung carcinoma growth by promoting local antitumor T-cell responses. J. Allergy Clin. Immunol. 2018, 142, 1257–1271.e4. [Google Scholar] [CrossRef] [Green Version]
- Itakura, M.; Terashima, Y.; Shingyoji, M.E.; Yokoi, S.; Ohira, M.; Kageyama, H.; Matui, Y.; Yoshida, Y.; Ashinuma, H.; Moriya, Y.; et al. High CC chemokine receptor 7 expression improves postoperative prognosis of lung adenocarcinoma patients. Br. J. Cancer 2013, 109, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Luan, X.R. miR-147a suppresses the metastasis of non-small-cell lung cancer by targeting CCL5. J. Int. Med. Res. 2020, 48, 300060519883098. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tang, Z.; Wang, H.; Wu, W.; Zhou, F.; Ke, H.; Lu, W.; Zhang, S.; Zhang, Y.; Yang, S.; et al. CXCL6 promotes non-small cell lung cancer cell survival and metastasis via down-regulation of miR-515-5p. Biomed. Pharmacother. 2018, 97, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Ranjbar, A.; Saleh, S.H.; Bagherian, M.; omid Sharifzadeh, S.; Hushmandi, K.; et al. Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett. 2021, 509, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Zhou, Y.; Lu, J.; Bai, Y.; Xie, X.; Lu, Z. miRNA in Plasma Exosome is Stable under Different Storage Conditions. Molecules 2014, 19, 1568–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [Green Version]
- Baran, K.; Kiszałkiewicz, J.; Migdalska-Sęk, M.; Jabłoński, S.; Kordiak, J.; Antczak, A.; Góralska, K.; Brzeziańska-Lasota, E. An assessment of the relationship between the expression of CCR7/CCL19 axis and selected regulatory miRNAs in non-small cell lung cancer. Mol. Biol. Rep. 2019, 46, 5389–5396. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/pack-year (accessed on 20 August 2021).
- Mirsadraee, S.; Oswal, D.; Alizadeh, Y.; Caulo, A.; van Beek, E.J. The 7th lung cancer TNM classification and staging system: Review of the changes and implications. World J. Radiol. 2012, 4, 128–134. [Google Scholar] [CrossRef]
- Comerford, I.; Harata-Lee, Y.; Bunting, M.D.; Gregor, C.; Kara, E.E.; McColl, S.R. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev. 2013, 24, 269–283. [Google Scholar] [CrossRef]
- Mao, L.; Clark, D. Molecular margin of surgical resections—Where do we go from here? Cancer 2015, 121, 1914–1916. [Google Scholar] [CrossRef]
- Kalinowska-Herok, M.; Roś, M.; Widłak, P. Tumor molecular margins. Nowotw. J. Oncol. 2013, 63, 28–34. [Google Scholar]
- Liu, Y.; Wu, B.Q.; Geng, H.; Xu, M.L.; Zhong, H.H. Association of chemokine and chemokine receptor expression with the invasion and metastasis of lung carcinoma. Oncol. Lett. 2015, 10, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Carretta, A. Clinical value of nodal micrometastases in patients with non-small cell lung cancer: Time for reconsideration? J. Thorac. Dis. 2016, 8, E1755–E1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Hillinger, S.; Yang, S.C.; Batra, R.K.; Strieter, R.M.; Weder, W.; Dubinett, S.M.; Sharma, S. CCL19 reduces tumour burden in a model of advanced lung cancer. Br. J. Cancer 2006, 94, 1029–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, S.X.; Ding, T.; Rao, X.M.; Sun, D.S.; Sun, P.P.; Wang, Y.J.; Fu, D.D.; Liu, X.L.; Ou-Yang, Y. Cigarette smoke affects dendritic cell maturation in the small airways of patients with chronic obstructive pulmonary disease. Mol. Med. Rep. 2015, 11, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Demoor, T.; Bracke, K.R.; Vermaelen, K.Y.; Dupont, L.; Joos, G.F.; Brusselle, G.G. CCR7 modulates pulmonary and lymph node inflammatory responses in cigarette smoke-exposed mice. J. Immunol. 2009, 183, 8186–8194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassallo, R.; Walters, P.R.; Lamont, J.; Kottom, T.J.; Eunhee, S.Y.; Limper, A.H. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir. Res. 2010, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.F.; Li, Y.; Zhang, A.Z.; He, Q.Q.; Du, Y.C.; Cao, W. Expression and pathological significance of CC chemokine receptor 7 and its ligands in the airway of asthmatic rats exposed to cigarette smoke. J. Thorac. Dis. 2018, 10, 5459. [Google Scholar] [CrossRef]
- Meuronen, A.; Majuri, M.L.; Alenius, H.; Mäntylä, T.; Wolff, H.; Piirilä, P.; Laitinen, A. Decreased cytokine and chemokine mRNA expression in bronchoalveolar lavage in asymptomatic smoking subjects. Respiration 2008, 75, 450–458. [Google Scholar] [CrossRef]
- Kawase, A.; Yoshida, J.; Ishii, G.; Nakao, M.; Aokage, K.; Hishida, T.; Nishimura, M.; Nagai, K. Differences between squamous cell carcinoma and adenocarcinoma of the lung: Are adenocarcinoma and squamous cell carcinoma prognostically equal? Jpn. J. Clin. Oncol. 2012, 42, 189–195. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Ding, H.; Wang, Y.; Li, P.; Wang, K. Emerging Function and Clinical Values of Exosomal MicroRNAs in Cancer. Mol. Ther. Nucleic Acids 2019, 16, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.A.; Arora, S.; Prakasam, G.; Calin, G.A.; Syed, M.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol. Aspects Med. 2019, 70, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Momi, N.; Kaur, S.; Rachagani, S.; Ganti, A.K.; Batra, S.K. Smoking and microRNA dysregulation: A cancerous combination. Trends Mol. Med. 2014, 20, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorio, M.V.; Croce, C.M. MicroRNAs in cancer: Small molecules with a huge impact. J. Clin. Oncol. 2009, 27, 5848–5856. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2019/php/search.php?org=hsa&opt=mirna_id&kw=mir-335 (accessed on 20 August 2021).
- Available online: https://mirtarbase.cuhk.edu.cn/~miRTarBase/miRTarBase_2019/php/search.php?org=hsa&opt=mirna_id&kw=hsa-let-7a (accessed on 20 August 2021).
- Zhao, W.; Hu, J.X.; Hao, R.M.; Zhang, Q.; Guo, J.Q.; Li, Y.J.; Xie, N.; Liu, L.Y.; Wang, P.Y.; Zhang, C.; et al. Induction of microRNA-let-7a inhibits lung adenocarcinoma cell growth by regulating cyclin D1. Oncol. Rep. 2018, 40, 1843–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.C.; Kim, E.K.; Lee, J.H.; Yoo, H.N.; Kim, J.K. Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol. Med. Rep. 2011, 4, 383–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Y.; Ren, T.; Cai, Y.Y.; He, X.Y. MicroRNA let-7a inhibits the proliferation and invasion of nonsmall cell lung cancer cell line 95D by regulating K-Ras and HMGA2 gene expression. Cancer Biother. Radiopharm. 2013, 28, 131–137. [Google Scholar] [CrossRef]
- Duan, S.; Yu, S.; Yuan, T.; Yao, S.; Zhang, L. Exogenous Let-7a-5p Induces A549 Lung Cancer Cell Death Through BCL2L1-Mediated PI3Kγ Signaling Pathway. Front. Oncol. 2019, 9, 808. [Google Scholar] [CrossRef]
- Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stähler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. Nucleic Acids Res. 2016, 44, 3865–3877. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, L.; Li, M.; Guo, C.; Yao, J.; Mi, S. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genom. Proteom. Bioinform. 2015, 13, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Guduric-Fuchs, J.; O’Connor, A.; Camp, B.; O’Neill, C.L.; Medina, R.J.; Simpson, D.A. Simpson, Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 2012, 13, 357. [Google Scholar] [CrossRef] [Green Version]
- Pop-Bica, C.; Pintea, S.; Magdo, L.; Cojocneanu, R.; Gulei, D.; Ferracin, M.; Berindan-Neagoe, I. The Clinical Utility of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 2210. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Du, L.; Zou, R.; Shi, L.; Zhang, N.; Jin, J.; Xu, C.; Zhang, F.; Zhu, C.; Wu, J.; et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc. Natl. Acad. Sci. USA 2020, 117, 25036–25042. [Google Scholar] [CrossRef] [PubMed]
- Mathis, C.; Poussin, C.; Weisensee, D.; Gebel, S.; Hengstermann, A.; Sewer, A.; Belcastro, V.; Xiang, Y.; Ansari, S.; Wagner, S.; et al. Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 304, L489–L503. [Google Scholar] [CrossRef]
- Huang, W.; Li, M.D. Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol. Psychiatry 2009, 65, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Tang, H.; Lei, Z.; Zhu, J.; Zeng, Y.; Liu, Z.; Huang, J.A. miR-335-5p inhibits TGF-β1-induced epithelial–mesenchymal transition in non-small cell lung cancer via ROCK1. Respir. Res. 2019, 20, 225. [Google Scholar] [CrossRef] [Green Version]
- Huo, W.; Zhang, M.; Li, C.; Wang, X.; Zhang, X.; Yang, X.; Fei, H. Correlation of microRNA-335 expression level with clinical significance and prognosis in non-small cell lung cancer. Medicine 2020, 99, e21369. [Google Scholar] [CrossRef]
- Liu, J.; Bian, T.; Feng, J.; Qian, L.; Zhang, J.; Jiang, D.; Zhang, Q.; Li, X.; Liu, Y.; Shi, J. miR-335 inhibited cell proliferation of lung cancer cells by target Tra2β. Cancer Sci. 2018, 109, 289–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarola, M.; Schoeftner, S.; Schneider, C.; Benetti, R. miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 2010, 70, 6925–6933. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Zhu, J.; Du, W.; Liu, S.; Zeng, Y.; Ding, Z.; Zhang, Y.; Wang, X.; Liu, Z.; Huang, J. CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J. Exp. Clin. Cancer Res. 2018, 37, 131. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.; van den Berg, A.; Faiz, A.; Boudewijn, I.M.; Timens, W.; Vermeulen, C.J.; Oliver, B.G.; Kok, K.; Terpstra, M.M.; van den Berge, M.; et al. Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. Int. J. Mol. Sci. 2019, 20, 5176. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Hu, Y.; Bai, B.; Zhang, S. Serum miR-335 Level is Associated with the Treatment Response to Trans-Arterial Chemoembolization and Prognosis in Patients with Hepatocellular Carcinoma. Cell Physiol. Biochem. 2015, 37, 276–283. [Google Scholar] [CrossRef]
- Sandoval-Bórquez, A.; Polakovicova, I.; Carrasco-Véliz, N.; Lobos-González, L.; Riquelme, I.; Carrasco-Avino, G.; Bizama, C.; Norero, E.; Owen, G.I.; Roa, J.C.; et al. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin. Epigenet. 2017, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.; Li, Y.; Huang, C.; Li, X. Serum levels and significances of miR-335 and miR-155 in primary gallbladder cancer. J. Int. Oncol. 2019, 46, 267–271. [Google Scholar]
- Sun, X.; Lin, F.; Sun, W.; Zhu, W.; Fang, D.; Luo, L.; Li, S.; Zhang, W.; Jiang, L. Exosome-transmitted miRNA-335-5p promotes colorectal cancer invasion and metastasis by facilitating EMT via targeting RASA1. Mol. Ther.-Nucleic Acids 2021, 24, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Shin, J.Y.; Lee, K.D.; Bae, Y.K.; Sung, K.W.; Nam, S.J.; Chun, K.H. MicroRNA let-7a suppresses breast cancer cell migration and invasion through downregulation of C-C chemokine receptor type 7. Breast Cancer Res. 2012, 14, R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | Number of Patients (%) |
---|---|
Sex | |
Female | 25 (41.67%) |
Male | 35 (58.33%) |
Age | |
≤65 | 28 (46.67%) |
>65 | 32 (53.33%) |
Smoking status and smoking history | |
<40 PYs a | 26 (43.33%) |
≥40 PYs | 26 (43.33%) |
Non-smoking | 7 (11.67%) |
Tumor Characteristics | Number of Cases (%) |
Histopathological type of NSCLC | |
SSC | 28 (46.67%) |
AC | 32 (53.33%) |
AJCC b staging system | |
Stage I | 30 (50%) |
Stage II | 21 (35%) |
Stage III | 9 (15%) |
Metastasis to lymph nodes spread according to the pTNM c staging system | |
N0 | 39 (65%) |
N1 + N2 | 21 (35%) |
Tumor size according to the pTNM staging system | |
T1a + T1b | 21 (35%) |
T2a + T2b | 29 (48.33%) |
T3 | 10 (16.67%) |
Clinical and Pathological Features | CCR7 (Median RQ) | p Value | CCL19 (Median RQ) | p Value | miR let-7a (Median RQ) | p Value | miR-335 (Median RQ) | p Value |
---|---|---|---|---|---|---|---|---|
Female | 13.548 | >0.05 | 0.853 | >0.05 | 0.328 | >0.05 | 3.053 | >0.05 |
Male | 10.796 | 1.076 | 0.295 | 3.554 | ||||
≤65 | 12.954 | >0.05 | 1.086 | >0.05 | 0.410 | >0.05 | 2.455 | >0.05 |
>65 | 10.634 | 1.052 | 0.299 | 3.423 | ||||
<40 PYs | 8.510 | >0.05 | 0.712 | >0.05 | 0.305 | >0.05 | 3.366 | >0.05 |
≥40 PYs | 11.299 | 1.210 | 0.344 | 2.906 | ||||
Non-smoking | 13.548 | 7.425 | 0.198 | 5.059 | ||||
SCC | 9.351 | >0.05 | 1.028 | >0.05 | 0.304 | >0.05 | 3.292 | >0.05 |
AC | 13.001 | 1.227 | 0.315 | 3.108 | ||||
AJCC | >0.05 | >0.05 | >0.05 | >0.05 | ||||
Stage I | 11.040 | 1.610 | 0.250 | 4.009 | ||||
Stage II | 10.504 | 0.601 | 0.375 | 2.668 | ||||
Stage III | 11.315 | 1.663 | 0.260 | 3.848 | ||||
pTNM (N) | >0.05 | >0.05 | >0.05 | >0.05 | ||||
N0 | 12.907 | 1.227 | 0.301 | 3.319 | ||||
N1 + N2 | 10.504 | 1.028 | 0.352 | 2.844 | ||||
pTNM (T) | >0.05 | >0.05 | >0.05 | >0.05 | ||||
T1 | 17.897 | 2.0410 | 0.198 | 5.059 | ||||
T2 | 9.351 | 0.677 | 0.352 | 2.844 | ||||
T3 | 12.246 | 0.899 | 0.333 | 3.124 |
Clinical and Pathological Features | miR let-7a (Median RQ) | p-Value | miR-335 (Median RQ) | p-Value |
---|---|---|---|---|
Female | 1.292 | >0.05 | 0.774 | >0.05 |
Male | 1.053 | 0.950 | ||
≤65 | 0.910 | >0.05 | 1.090 | >0.05 |
>65 | 1.249 | 0.800 | ||
<40 PYs | 1.303 | >0.05 | 0.768 | >0.05 |
≥40 PYs | 0.937 | 1.067 | ||
Non-smoking | 1.292 | 0.774 | ||
SCC | 1.007 | 0.040 | 0.993 | 0.044 |
AC | 1.292 | 0.774 | ||
AJCC | >0.05 | >0.05 | ||
Stage I | 1.169 | 0.858 | ||
Stage II | 1.085 | 0.922 | ||
Stage III | 0.969 | 1.032 | ||
pTNM (N) | 0.026 | 0.021 | ||
N0 | 1.230 | 0.813 | ||
N1 + N2 | 0.813 | 1.230 | ||
pTNM (T) | >0.05 | >0.05 | ||
T1 | 1.107 | 0.903 | ||
T2 | 1.085 | 0.922 | ||
T3 | 1.030 | 0.972 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran, K.; Kordiak, J.; Jabłoński, S.; Antczak, A.; Brzeziańska-Lasota, E. The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC. J. Clin. Med. 2022, 11, 655. https://doi.org/10.3390/jcm11030655
Baran K, Kordiak J, Jabłoński S, Antczak A, Brzeziańska-Lasota E. The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC. Journal of Clinical Medicine. 2022; 11(3):655. https://doi.org/10.3390/jcm11030655
Chicago/Turabian StyleBaran, Kamila, Jacek Kordiak, Sławomir Jabłoński, Adam Antczak, and Ewa Brzeziańska-Lasota. 2022. "The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC" Journal of Clinical Medicine 11, no. 3: 655. https://doi.org/10.3390/jcm11030655
APA StyleBaran, K., Kordiak, J., Jabłoński, S., Antczak, A., & Brzeziańska-Lasota, E. (2022). The Significance of the Alter miR let-7a and miR-335 Expression Level Regulating the CCR7/CCL19 Axis as Potential Biomarkers of Tumor Progression in NSCLC. Journal of Clinical Medicine, 11(3), 655. https://doi.org/10.3390/jcm11030655