A New System for Periprosthetic Fracture Stabilization—A Biomechanical Comparison
Abstract
:1. Introduction
Purpose
2. Materials and Methods
2.1. Specimen
2.2. Implants
2.3. Surgical Technique
2.4. Fracture Model
2.5. Biomechanical Testing
2.6. Data Collection
2.7. Modes of Failure
3. Results
3.1. Axial Stiffness
3.2. Modes of Failure
4. Discussion
- (1)
- Only synthetic femurs were used. Older adults [56,57] experience periprosthetic femur fractures due to prosthetic loosening, trauma, and less bone quality at higher rates than younger adults [4,5]. We know that screw anchoring in the bone depends mainly on the quality of the bone [34,48,58,59,60]. Using synthetic femurs, however, provided the present study with improved reproducibility, decreased cost (e.g., a smaller number of samples necessary), improved availability and acquisition, and improved efficiency in the study design as cold storage and preparation were not required.
- (2)
- Another limitation is the small sample size of the present study. Ideally, a higher number of specimens and, therefore, a higher power level, would be desirable; however, this would have significantly increased study cost. Nevertheless, a smaller number of samples was utilized and deemed acceptable due to a minor standard deviation reported by previous studies [7,26,28,33,34].
- (3)
- Only the axial load was tested in the present study. However, other loads also act on the osteosynthesis during everyday activities, such as torsional or shear forces. The study does not consider influencing factors, such as muscle tension and soft tissue. Overall, the axial testing in biomechanical studies remains sufficient because studies suggest that the axial load is the main component of loading forces, while other forces are neglectable [32,61].
- (4)
- The present biomechanical study represented an abstract simulation of reality, and the results need to be interpreted in the context of clinical experience. Additionally, reviews highlight that use of heterogeneous testing techniques which make a direct comparison across studies difficult [22].
- (5)
- The present study only investigated two types of implant failure. In clinical practice, complete fracture or loosening of the plate does not always occur. Relevant permanent deformations of the implant are also equivalent to a failure.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Callaghan, J.J.; Albright, J.C.; Goetz, D.D.; Olejniczak, J.P.; Johnston, R.C. Charnley Total Hip Arthroplasty with Cement: Minimum twenty-five-year follow-up. J. Bone Jt. Surg. 2000, 82, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Wengler, A.; Nimptsch, U.; Mansky, T. Hip and knee replacement in Germany and the USA: Analysis of individual inpatient data from German and US hospitals for the years 2005 to 2011. Dtsch. Arztebl. Int. 2014, 111, 407–416. [Google Scholar] [PubMed] [Green Version]
- Stoffel, K.; Sommer, C.; Kalampoki, V.; Blumenthal, A.; Joeris, A. The influence of the operation technique and implant used in the treatment of periprosthetic hip and interprosthetic femur fractures: A systematic literature review of 1571 cases. Arch. Orthop. Trauma. Surg. 2016, 136, 553–561. [Google Scholar] [CrossRef]
- Meek, R.M.D.; Norwood, T.; Smith, R.; Brenkel, I.J.; Howie, C.R. The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement. J. Bone Jt. Surgery. Br. Vol. 2011, 93, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Thien, T.M.; Chatziagorou, G.; Garellick, G.; Furnes, O.; Havelin, L.I.; Mäkelä, K.; Overgaard, S.; Pedersen, A.; Eskelinen, A.; Pulkkinen, P.; et al. Periprosthetic femoral fracture within two years after total hip replacement: Analysis of 437,629 operations in the nordic arthroplasty register association database. J. Bone Jt. Surg. Am. 2014, 96, e167. [Google Scholar] [CrossRef]
- Hoffmann, M.F.; Burgers, T.A.; Mason, J.J.; Williams, B.; Sietsema, D.L.; Jones, C.B. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system. Injury 2014, 45, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Gruner, A.; Hockertz, T.; Reilmann, H. Periprosthetic fractures: Classification, management, therapy. Unfallchirurg 2004, 107, 35–49. [Google Scholar] [CrossRef]
- Kavanagh, B.F. Femoral fractures associated with total hip arthroplasty. Orthop. Clin. N. Am. 1992, 23, 249–257. [Google Scholar] [CrossRef]
- Wick, M.; Muller, E.J.; Kutscha-Lissberg, F.; Hopf, F.; Muhr, G. Periprosthetic supracondylar femoral fractures: LISS or retrograde intramedullary nailing? Problems with the use of minimally invasive technique. Unfallchirurg 2004, 107, 181–188. [Google Scholar] [CrossRef]
- Wähnert, D.; Lenz, M.; Schlegel, U.; Perren, S.; Windolf, M. Cerclage handling for improved fracture treatment. A biomechanical study on the twisting procedure. Acta Chir. Orthop. Traumatol. Cechoslov. 2011, 78, 208–214. [Google Scholar]
- Raschke, M.; Stange, R.; Kösters, C. Versorgung periprothetischer und periimplantärer Frakturen. Unfallchirurg 2012, 115, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Perren, S.M.; Gueorguiev, B.; Höntzsch, D.; Windolf, M. Mechanical behavior of fixation components for periprosthetic fracture surgery. Clin. Biomech. 2013, 28, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Perren, S.M.; Gueorguiev, B.; Richards, R.G.; Hofmann, G.O.; Dell’Oca, A.F.; Höntzsch, D.; Windolf, M. A biomechanical study on proximal plate fixation techniques in periprosthetic femur fractures. Injury 2014, 45, S71–S75. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Perren, S.M.; Richards, R.G.; Mückley, T.; Hofmann, G.O.; Gueorguiev, B.; Windolf, M. Biomechanical performance of different cable and wire cerclage configurations. Int. Orthop. 2012, 37, 125–130. [Google Scholar] [CrossRef]
- Gwinner, C.; Märdian, S.; Dröge, T.; Schulze, M.; Raschke, M.J.; Stange, R. Bicortical screw fixation provides superior biomechanical stability but devastating failure modes in periprosthetic femur fracture care using locking plates. Int. Orthop. 2015, 39, 1749–1755. [Google Scholar] [CrossRef]
- Wähnert, D.; Schliemann, B.; Raschke, M.; Kösters, C. Versorgung periprothetischer Frakturen. Orthopäde 2014, 43, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.C.M.; Miller, F.; Buxton, M.; Friis, E.A. Fracture Toughness and Fatigue Crack Propagation Rate of Short Fiber Reinforced Epoxy Composites for Analogue Cortical Bone. J. Biomech. Eng. 2007, 129, 487–493. [Google Scholar] [CrossRef]
- Chong, A.C.M.; Friis, E.A.; Ballard, G.P.; Czuwala, P.J.; Cooke, F.W. Fatigue Performance of Composite Analogue Femur Constructs under High Activity Loading. Ann. Biomed. Eng. 2007, 35, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Zdero, R.; Olsen, M.; Bougherara, H.; Schemitsch, E.H. Cancellous bone screw purchase: A comparison of synthetic femurs, human femurs, and finite element analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2008, 222, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Vidalain, J.-P. Twenty-year results of the cementless Corail stem. Int. Orthop. 2010, 35, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Kenanidis, E.; Miodownik, M.; Tsiridis, E.; Moazen, M. Periprosthetic fracture fixation of the femur following total hip arthroplasty: A review of biomechanical testing—Part II. Clin. Biomech. 2018, 61, 144–162. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Gardner, T.R.; Yoon, E.; Morrison, T.A.; Macaulay, W.B.; Geller, J.A. The effect of fixation technique on the stiffness of comminuted Vancouver B1 periprosthetic femur fractures. J. Arthroplast. 2010, 25 (Suppl. S6), 124–128. [Google Scholar] [CrossRef]
- Dennis, M.G.; Simon, J.A.; Kummer, F.J.; Koval, K.J.; DiCesare, P.E. Fixation of periprosthetic femoral shaft fractures occurring at the tip of the stem: A biomechanical study of 5 techniques. J. Arthroplast. 2000, 15, 523–528. [Google Scholar] [CrossRef]
- Moazen, M.; Leonidou, A.; Pagkalos, J.; Marghoub, A.; Fagan, M.J.; Tsiridis, E. Application of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study. J. Arthroplast. 2016, 31, 1849–1856. [Google Scholar] [CrossRef]
- Sariyilmaz, K.; Dikici, F.; Dikmen, G.; Bozdag, E.; Sunbuloglu, E.; Bekler, B.; Yazicioglu, O. The Effect of Strut Allograft and Its Position on Vancouver Type B1 Periprosthetic Femoral Fractures: A Biomechanical Study. J. Arthroplast. 2014, 29, 1485–1490. [Google Scholar] [CrossRef]
- Sarıyılmaz, K.; Korkmaz, M.; Özkunt, O.; Gemalmaz, H.C.; Sungur, M.; Baydoğan, M. Comparison of fixation techniques in Vancouver type AG periprosthetic femoral fracture: A biomechanical study. Acta Orthop. Traumatol. Turc. 2015, 50, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Wähnert, D.; Grüneweller, N.; Gehweiler, D.; Brunn, B.; Raschke, M.J.; Stange, R. Double plating in Vancouver type B1 periprosthetic proximal femur fractures: A biomechanical study. J. Orthop. Res. 2016, 35, 234–239. [Google Scholar] [CrossRef] [Green Version]
- Wähnert, D.; Müller, M.; Tiedemann, H.; Märdian, S.; Raschke, M.J.; Kösters, C. Periprosthetic fracture fixation in Vancouver B1 femoral shaft fractures: A biomechanical study comparing two plate systems. J. Orthop. Transl. 2020, 24, 150–154. [Google Scholar] [CrossRef]
- Wähnert, D.; Schröder, R.; Schulze, M.; Westerhoff, P.; Raschke, M.; Stange, R. Biomechanical comparison of two angular stable plate constructions for periprosthetic femur fracture fixation. Int. Orthop. 2013, 38, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Märdian, S.; Schmölz, W.; Schaser, K.-D.; Duda, G.N.; Heyland, M. Interfragmentary lag screw fixation in locking plate constructs increases stiffness in simple fracture patterns. Clin. Biomech. 2015, 30, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Duda, G.N.; Schneider, E.; Chao, E.Y. Internal forces and moments in the femur during walking. J. Biomech. 1997, 30, 933–941. [Google Scholar] [CrossRef]
- Moazen, M.; Jones, A.C.; Jin, Z.; Wilcox, R.K.; Tsiridis, E. Periprosthetic fracture fixation of the femur following total hip arthroplasty: A review of biomechanical testing. Clin. Biomech. 2011, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Cristofolini, L.; Viceconti, M.; Cappello, A.; Toni, A. Mechanical validation of whole bone composite femur models. J. Biomech. 1996, 29, 525–535. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chang, D.; Meigs, J.B.; Estok, D.M., 2nd; Malchau, H. Mortality after periprosthetic fracture of the femur. J. Bone Jt. Surg. Am. 2007, 89, 2658–2662. [Google Scholar] [CrossRef] [PubMed]
- Drew, J.M.; Griffin, W.L.; Odum, S.M.; Van Doren, B.; Weston, B.T.; Stryker, L.S. Survivorship after Periprosthetic Femur Fracture: Factors Affecting Outcome. J. Arthroplast. 2015, 31, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Matharu, G.S.; Pynsent, P.B.; Dunlop, D.J.; Revell, M.P. Clinical Outcome following Surgical Intervention for Periprosthetic Hip Fractures at a Tertiary Referral Centre. HIP Int. 2012, 22, 494–499. [Google Scholar] [CrossRef]
- Streubel, P. Mortality after Periprosthetic Femur Fractures. J. Knee Surg. 2013, 26, 027–030. [Google Scholar] [CrossRef]
- Rupprecht, M.; Sellenschloh, K.; Grossterlinden, L.; Püschel, K.; Morlock, M.; Amling, M.; Rueger, J.M.; Lehmann, W. Biomechanical Evaluation for Mechanisms of Periprosthetic Femoral Fractures. J. Trauma Inj. Infect. Crit. Care 2011, 70, E62–E66. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.E.; Balogh, Z.J. Indications and limitations of locked plating. Injury 2009, 40, 683–691. [Google Scholar] [CrossRef]
- Ricci, W.M. Periprosthetic femur fractures. J. Orthop. Trauma 2015, 29, 130–137. [Google Scholar] [CrossRef]
- Konstantinidis, L.; Hauschild, O.; Beckmann, N.; Hirschmüller, A.; Südkamp, N.; Helwig, P. Treatment of periprosthetic femoral fractures with two different minimal invasive angle-stable plates: Biomechanical comparison studies on cadaveric bones. Injury 2010, 41, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Märdian, S.; Schaser, K.-D.; Duda, G.N.; Heyland, M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin. Biomech. 2015, 30, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, K.; Dieter, U.; Stachowiak, G.; Gächter, A.; Kuster, M.S. Biomechanical testing of the LCP—How can stability in locked internal fixators be controlled? Injury 2003, 34 (Suppl. S2), B11-9. [Google Scholar] [CrossRef] [PubMed]
- Lever, J.P.; Zdero, R.; Nousiainen, M.T.; Waddell, J.P.; Schemitsch, E.H. The biomechanical analysis of three plating fixation systems for periprosthetic femoral fracture near the tip of a total hip arthroplasty. J. Orthop. Surg. Res. 2010, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, K.; Winkler, M.; Hofstädter, T.; Dorn, U.; Augat, P. Managing Vancouver B1 fractures by cerclage system compared to locking plate fixation—A biomechanical study. Injury 2016, 47 (Suppl. S2), S51–S57. [Google Scholar] [CrossRef]
- Siddiqui, F.S.; Shah, S.; Nicayenzi, B.; Schemitsch, E.H.; Zdero, R.; Bougherara, H. Biomechanical analysis using infrared thermography of a traditional metal plate versus a carbon fibre/epoxy plate for Vancouver B1 femur fractures. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 228, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Demos, H.A.; Briones, M.S.; White, P.H.; Hogan, K.A.; Barfield, W.R. A Biomechanical Comparison of Periprosthetic Femoral Fracture Fixation in Normal and Osteoporotic Cadaveric Bone. J. Arthroplast. 2012, 27, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.G.; Simon, J.A.; Kummer, F.J.; Koval, K.J.; Di Cesare, P.E. Fixation of Periprosthetic Femoral Shaft Fractures: A Biomechanical Comparison of Two Techniques. J. Orthop. Trauma 2001, 15, 177–180. [Google Scholar] [CrossRef]
- Pletka, J.D.; Marsland, D.; Belkoff, S.M.; Mears, S.C.; Kates, S.L. Biomechanical Comparison of 2 Different Locking Plate Fixation Methods in Vancouver B1 Periprosthetic Femur Fractures. Geriatr. Orthop. Surg. Rehabil. 2011, 2, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.M.; Mak, J.H.; Moazen, M.; Leonidou, A.; Jones, A.C.; Wilcox, R.; Tsiridis, E. Periprosthetic femoral fracture fixation: A biomechanical comparison between proximal locking screws and cables. J. Orthop. Sci. 2015, 20, 875–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdero, R.; Walker, R.; Waddell, J.P.; Schemitsch, E.H. Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation. J. Bone Jt. Surg. 2008, 90, 1068–1077. [Google Scholar] [CrossRef]
- Fulkerson, E.; Koval, K.; Preston, C.F.; Iesaka, K.; Kummer, F.J.; Egol, K.A. Fixation of periprosthetic femoral shaft fractures associated with cemented femoral stems: A biomechanical comparison of locked plating and conventional cable plates. J. Orthop. Trauma 2006, 20, 89–93. [Google Scholar] [CrossRef]
- Wilson, D.; Frei, H.; Masri, B.A.; Oxland, T.R.; Duncan, C.P. A biomechanical study comparing cortical onlay allograft struts and plates in the treatment of periprosthetic femoral fractures. Clin. Biomech. 2005, 20, 70–76. [Google Scholar] [CrossRef]
- Lenz, M.; Windolf, M.; Mückley, T.; Hofmann, G.O.; Wagner, M.; Richards, R.G.; Schwieger, K.; Gueorguiev, B. The locking attachment plate for proximal fixation of periprosthetic femur fractures—A biomechanical comparison of two techniques. Int. Orthop. 2012, 36, 1915–1921. [Google Scholar] [CrossRef] [Green Version]
- Moreta, J.; Aguirre, U.; de Ugarte, O.S.; Jáuregui, I.; Mozos, J.L.M.-D.L. Functional and radiological outcome of periprosthetic femoral fractures after hip arthroplasty. Injury 2015, 46, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Masri, B.A.; Meek, R.M.D.; Duncan, C.P. Periprosthetic Fractures Evaluation and Treatment. Clin. Orthop. Relat. Res. 2004, 420, 80–95. [Google Scholar] [CrossRef]
- Wähnert, D.; Hoffmeier, K.L.; Klos, K.; Stolarczyk, Y.; Fröber, R.; Hofmann, G.O.; Mückley, T. Biomechanical Characterization of an Osteoporotic Artificial Bone Model for the Distal Femur. J. Biomater. Appl. 2010, 26, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Heiner, A.D.; Brown, T.D. Structural properties of a new design of composite replicate femurs and tibias. J. Biomech. 2001, 34, 773–781. [Google Scholar] [CrossRef]
- Papini, M.; Zdero, R.; Schemitsch, E.H.; Zalzal, P. The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs. J. Biomech. Eng. 2006, 129, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.E.; Tanner, K.E.; Freeman, M.A.; Yettram, A.L. Stress and strain distribution within the intact femur: Compression or bending? Med. Eng. Phys. 1996, 18, 122–131. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rau, D.; Rußow, G.; Heyland, M.; Wulsten, D.; Kösters, C.; Schmölz, W.; Märdian, S. A New System for Periprosthetic Fracture Stabilization—A Biomechanical Comparison. J. Clin. Med. 2022, 11, 892. https://doi.org/10.3390/jcm11030892
Rau D, Rußow G, Heyland M, Wulsten D, Kösters C, Schmölz W, Märdian S. A New System for Periprosthetic Fracture Stabilization—A Biomechanical Comparison. Journal of Clinical Medicine. 2022; 11(3):892. https://doi.org/10.3390/jcm11030892
Chicago/Turabian StyleRau, Daniel, Gabriele Rußow, Mark Heyland, Dag Wulsten, Clemens Kösters, Werner Schmölz, and Sven Märdian. 2022. "A New System for Periprosthetic Fracture Stabilization—A Biomechanical Comparison" Journal of Clinical Medicine 11, no. 3: 892. https://doi.org/10.3390/jcm11030892
APA StyleRau, D., Rußow, G., Heyland, M., Wulsten, D., Kösters, C., Schmölz, W., & Märdian, S. (2022). A New System for Periprosthetic Fracture Stabilization—A Biomechanical Comparison. Journal of Clinical Medicine, 11(3), 892. https://doi.org/10.3390/jcm11030892