Optic Disc Hemorrhage Is Not Associated with Global Choroidal Vessel Loss, but Is Associated with Localized Choroidal Vessel Loss in Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Pairing of the ODH+ and ODH− OAG Groups and Hemiretinal ODH Locations
2.3. OCTA and Parapapillary Choroidal Vessel Density Measurements
2.4. Circumpapillary Vessel Density Measurements
2.5. SD-OCT Assessments
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Y.; Wei, E.; Wang, X.; Zhang, X.; Morrison, J.C.; Parikh, M.; Lombardi, L.H.; Gattey, D.M.; Armour, R.L.; Edmunds, B.; et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014, 121, 1322–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, M.H.; Zangwill, L.M.; Manalastas, P.I.; Belghith, A.; Yarmohammadi, A.; Medeiros, F.A.; Diniz-Filho, A.; Saunders, L.J.; Weinreb, R.N. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 2016, 123, 2509–2518. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Shin, D.Y.; Jeon, S.J.; Park, C.K. Association between parapapillary choroidal vessel density measured with optical coherence tomography angiography and future visual field progression in patients with glaucoma. JAMA Ophthalmol. 2019, 137, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Zangwill, L.M.; Penteado, R.C.; Hasenstab, K.; Ghahari, E.; Hou, H.; Christopher, M.; Yarmohammadi, A.; Manalastas, P.I.C.; Shoji, T.; et al. Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 2018, 125, 1720–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, S.J.; Shin, D.Y.; Park, H.L.; Park, C.K. Association of retinal blood flow with progression of visual field in glaucoma. Sci. Rep. 2019, 9, 16813. [Google Scholar] [CrossRef]
- Lee, J.Y.; Shin, J.W.; Song, M.K.; Hong, J.W.; Kook, M.S. An increased choroidal microvasculature dropout size is associated with progressive visual field loss in open-angle glaucoma. Am. J. Ophthalmol. 2021, 223, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Braverman, S. Reevaluation of the optic disk vasculature. Am. J. Ophthalmol. 1976, 82, 165–174. [Google Scholar] [CrossRef]
- Onda, E.; Cioffi, G.A.; Bacon, D.R.; Van Buskirk, E.M. Microvasculature of the human optic nerve. Am. J. Ophthalmol. 1995, 120, 92–102. [Google Scholar] [CrossRef]
- Yin, Z.Q.; Vaegan, M.; Millar, T.J.; Beaumont, P.; Sarks, S. Widespread choroidal insufficiency in primary open-angle glaucoma. J. Glaucoma 1997, 6, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Shin, J.W.; Song, M.K.; Won, H.J.; Kook, M.S. Choroidal microvasculature dropout is associated with generalized choroidal vessel loss within the beta-parapapillary atrophy in glaucoma. Am. J. Ophthalmol. 2020, 215, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Budenz, D.L.; Anderson, D.R.; Feuer, W.J.; Beiser, J.A.; Schiffman, J.; Parrish, R.K., 2nd; Piltz-Seymour, J.R.; Gordon, M.O.; Kass, M.A.; Ocular Hypertension Treatment Study Group. Detection and prognostic significance of optic disc hemorrhages during the ocular hypertension treatment study. Ophthalmology 2006, 113, 2137–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, B.; Leske, M.C.; Yang, Z.; Heijl, A.; EMGT Group. Disc hemorrhages and treatment in the early manifest glaucoma trial. Ophthalmology 2008, 115, 2044–2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, D.R.; Normal Tension Glaucoma Study. Collaborative normal tension glaucoma study. Curr. Opin. Ophthalmol. 2003, 14, 86–90. [Google Scholar] [CrossRef]
- Akagi, T.; Zangwill, L.M.; Saunders, L.J.; Yarmohammadi, A.; Manalastas, P.I.C.; Suh, M.H.; Girkin, C.A.; Liebmann, J.M.; Weinreb, R.N. Rates of local retinal nerve fiber layer thinning before and after disc hemorrhage in glaucoma. Ophthalmology 2017, 124, 1403–1411. [Google Scholar] [CrossRef]
- Akagi, T.; Saunders, L.J.; Shoji, T.; De Moraes, C.G.; Skaat, A.; Manalastas, P.I.C.; Girkin, C.A.; Liebmann, J.M.; Zangwill, L.M.; Weinreb, R.N. Association between rates of retinal nerve fiber layer thinning and previous disc hemorrhage in glaucoma. Ophthalmol. Glaucoma 2018, 1, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Sugiyama, K.; Tomita, G.; Kawase, K.; Onda, E.; Shinohara, H.; Tsuji, A.; Kitazawa, Y. Correlation of the peripapillary atrophy area with optic disc cupping and disc hemorrhage. J. Glaucoma 1998, 7, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Park, K.H. Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage. Acta Ophthalmol. 2016, 94, e468–e473. [Google Scholar] [CrossRef] [PubMed]
- Nitta, K.; Sugiyama, K.; Higashide, T.; Ohkubo, S.; Tanahashi, T.; Kitazawa, Y. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J. Glaucoma 2011, 20, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber, M.C.; Terhorst, T.; Flammer, J. The pathogenesis of optic disc splinter haemorrhages: A new hypothesis. Acta Ophthalmol. Scand. 2006, 84, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Lee, J.; Choi, J.; Jeong, D.; Kook, M.S. Association between nocturnal blood pressure dips and optic disc hemorrhage in patients with normal-tension glaucoma. Am. J. Ophthalmol. 2017, 176, 87–101. [Google Scholar] [CrossRef]
- Rao, H.L.; Sreenivasaiah, S.; Dixit, S.; Riyazuddin, M.; Dasari, S.; Venugopal, J.P.; Pradhan, Z.S.; Puttaiah, N.K.; Devi, S.; Mansouri, K.; et al. Choroidal microvascular dropout in primary open-angle glaucoma eyes with disc hemorrhage. J. Glaucoma 2019, 28, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Park, H.L.; Kim, J.W.; Park, C.K. Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 2018, 125, 1003–1013. [Google Scholar] [CrossRef] [Green Version]
- Healey, P.R.; Mitchell, P.; Smith, W.; Wang, J.J. Optic disc hemorrhages in a population with and without signs of glaucoma. Ophthalmology 1998, 105, 216–223. [Google Scholar] [CrossRef]
- Lee, E.J.; Han, J.C.; Kee, C. A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage. Prog. Retin. Eye Res. 2017, 60, 20–43. [Google Scholar] [CrossRef] [PubMed]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The lens opacities classification system III. The longitudinal study of cataract study group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Drance, S.M. Disc hemorrhages in the glaucomas. Surv. Ophthalmol. 1989, 33, 331–337. [Google Scholar] [CrossRef]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garway-Heath, D.F.; Poinoosawmy, D.; Fitzke, F.W.; Hitchings, R.A. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 2000, 107, 1809–1815. [Google Scholar] [CrossRef]
- Kamalipour, A.; Moghimi, S.; Hou, H.; Penteado, R.C.; Oh, W.H.; Proudfoot, J.A.; El-Nimri, N.; Ekici, E.; Rezapour, J.; Zangwill, L.M.; et al. OCT angiography artifacts in glaucoma. Ophthalmology 2021, 128, 1426–1437. [Google Scholar] [CrossRef]
- Sugiyama, K.; Tomita, G.; Kitazawa, Y.; Onda, E.; Shinohara, H.; Park, K.H. The associations of optic disc hemorrhage with retinal nerve fiber layer defect and peripapillary atrophy in normal-tension glaucoma. Ophthalmology 1997, 104, 1926–1933. [Google Scholar] [CrossRef]
- Suh, M.H.; Park, K.H.; Kim, H.; Kim, T.W.; Kim, S.W.; Kim, S.Y.; Kim, D.M. Glaucoma progression after the first-detected optic disc hemorrhage by optical coherence tomography. J. Glaucoma 2012, 21, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Nitta, K.; Sugiyama, K.; Wajima, R.; Tachibana, G.; Yamada, Y. Associations between changes in radial peripapillary capillaries and occurrence of disc hemorrhage in normal-tension glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1963–1970. [Google Scholar] [CrossRef]
- Jo, Y.H.; Kwon, J.; Shon, K.; Jeong, D.; Kook, M.S. Greater severity of glaucomatous damage in eyes with than without choroidal microvasculature dropout in open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2019, 60, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Okabe, S.; Matsuo, N.; Okamoto, S.; Kataoka, H. Electron microscopic studies on retinochoroidal atrophy in the human eye. Acta Med. Okayama 1982, 36, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Alshareef, R.A.; Khuthaila, M.K.; Januwada, M.; Goud, A.; Ferrara, D.; Chhablani, J. Choroidal vascular analysis in myopic eyes: Evidence of foveal medium vessel layer thinning. Int. J. Retina Vitreous 2017, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Wang, M.; Shen, M.; Huang, S.; Xue, A.; Lin, J.; Fan, Y.; Wang, J.; Lu, F.; Shao, Y. Deep retinal capillary plexus decreasing correlated with the outer retinal layer alteration and visual acuity impairment in pathological myopia. Investig. Ophthalmol. Vis. Sci. 2020, 61, 45. [Google Scholar] [CrossRef]
- Park, H.Y.; Jeong, H.J.; Kim, Y.H.; Park, C.K. Optic disc hemorrhage is related to various hemodynamic findings by disc angiography. PLoS ONE 2015, 10, e0120000. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iwase, A.; Kawase, K.; Sawada, A.; Ishida, K. Optic disc hemorrhages detected in a large-scale eye disease screening project. J. Glaucoma 2004, 13, 356–360. [Google Scholar] [CrossRef]
- Soares, A.S.; Artes, P.H.; Andreou, P.; Leblanc, R.P.; Chauhan, B.C.; Nicolela, M.T. Factors associated with optic disc hemorrhages in glaucoma. Ophthalmology 2004, 111, 1653–1657. [Google Scholar] [CrossRef]
- Shihab, Z.M.; Lee, P.F.; Hay, P. The significance of disc hemorrhage in open-angle glaucoma. Ophthalmology 1982, 89, 211–213. [Google Scholar] [CrossRef]
- Lee, E.J.; Lee, S.H.; Kim, J.A.; Kim, T.W. Parapapillary deep-layer microvasculature dropout in glaucoma: Topographic association with glaucomatous damage. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3004–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.J.; Kim, T.W.; Lee, S.H.; Kim, J.A. Underlying microstructure of parapapillary deep-layer capillary dropout identified by optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1621–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | A. OAG Eyes with ODH (n = 50) | B. OAG Eyes without ODH (n = 50) | C. Healthy Eyes (n = 50) | p Values (Post Hoc A vs. B, A vs. C, B vs. C) |
---|---|---|---|---|
Age, year | 59.40 ± 13.42 | 59.02 ± 9.62 | 56.48 ± 10.29 | 0.371 |
Male: female ratio | 18:32 | 21:19 | 17:33 | 0.593 * |
IOP, mmHg | 14.24 ± 2.72 | 15.18 ± 3.11 | 14.46 ± 2.98 | 0.251 |
CCT, μm | 535.61 ± 39.93 | 534.30 ± 27.49 | 541.23 ± 40.84 | 0.614 |
SE, diopter | −1.43 ± 2.30 | −1.19 ± 2.17 | −0.89 ± 1.79 | 0.499 |
AL, mm | 24.36 ± 1.15 | 24.05 ± 1.08 | 24.22 ± 0.98 | 0.416 |
Hypertension, n (%) | 9 (18%) | 8 (16%) | 10 (20%) | 0.873 * |
Diabetic mellitus, n (%) | 5 (10%) | 8 (16%) | 3 (6%) | 0.265 * |
SBP, mmHg | 123.03 ± 10.40 | 121.00 ± 18.16 | 122.87 ± 9.51 | 0.778 |
DBP, mmHg | 72.73 ± 9.28 | 74.72 ± 9.28 | 72.01 ± 8.02 | 0.308 |
MOPP, mmHg | 45.32 ± 5.64 | 45.10 ± 7.59 | 44.58 ± 4.72 | 0.885 |
Eye drops, n | 1.02 ± 0.73 | 1.04 ± 1.08 | 0.00 ± 0.00 | <0.001 † (0.991, <0.001, <0.001) |
Visual field MD, dB | −3.08 ± 1.59 | −3.05 ± 1.51 | 0.10 ± 1.30 | <0.001 † (0.955, <0.001, <0.001) |
Affected VF hemifield, S:I | 31:19 | 31:19 | - | 1.000 * |
ODH sites, S:I | 13:37 | - | - | |
CMvD, n (%) | 19 (38%) | 9 (18%) | 0 (0%) | <0.001 ‡ (<0.001, 0.881, <0.001) |
Follow-up period for the review of medical history, year | 0.51 ± 1.21 | 4.19 ± 4.36 |
A. OAG Eyes with ODH (n = 50) | B. OAG Eyes without ODH (n = 50) | C. Healthy Eyes (n = 50) | p Values (Post Hoc A vs. B, A vs. C, B vs. C) | |
---|---|---|---|---|
Global cpRNFLT | 80.14 ± 8.73 | 82.94 ± 8.78 | 100.38 ± 8.48 | <0.001 (0.242, <0.001, <0.001) |
cpRNLFT at ODH-affected clock-hour | 65.86 ± 12.95 | 76.48 ± 20.15 | 111.34 ± 26.97 | <0.001 (0.030, <0.001, <0.001) |
cpRNFLT at ODH-unaffected clock-hour | 89.62 ± 26.71 | 90.23 ± 26.81 | 114.02 ± 24.18 | <0.001 (0.993, <0.001, <0.001) |
cpRNFLT at ODH-affected quadrant | 84.30 ± 14.80 | 86.90 ± 15.59 | 100.88 ± 9.70 | <0.001 (0.607, <0.001, <0.001) |
cpRNFLT at ODH-unaffected quadrant | 91.94 ± 21.58 | 91.54 ± 18.05 | 101.00 ± 9.26 | 0.009 (0.992, 0.024, 0.018) |
Global cpVD | 46.06 ± 4.24 | 46.30 ± 3.80 | 51.85 ± 2.66 | <0.001 (0.943, <0.001, <0.001) |
cpVD at ODH-affected sector | 37.67 ± 10.39 | 43.79 ± 11.32 | 54.53 ± 4.36 | <0.001 (0.004, <0.001, <0.001) |
cpVD at ODH-unaffected sector | 46.32 ± 10.52 | 46.47 ± 8.41 | 54.74 ± 2.95 | <0.001 (0.995, <0.001, <0.001) |
cpVD at ODH-affected hemiretinae | 44.11 ± 5.77 | 46.31 ± 4.47 | 52.29 ± 2.39 | <0.001 (0.039, <0.001, <0.001) |
cpVD at ODH-unaffected hemiretinae | 47.35 ± 4.49 | 47.67 ± 3.84 | 51.40 ± 3.67 | <0.001 (0.916, <0.001, <0.001) |
Global pCVD | 41.14 ± 1.63 | 41.78 ± 2.26 | 44.30 ± 2.03 | <0.001 (0.240, <0.001, <0.001) |
pCVD at ODH-affected hemiretinae | 39.96 ± 2.30 | 41.70 ± 2.30 | 44.29 ± 2.10 | <0.001 (0.001, <0.001, <0.001) |
pCVD at ODH-unaffected hemiretinae | 42.05 ± 1.50 | 42.31 ± 2.34 | 44.33 ± 2.10 | <0.001 (0.799, <0.001, <0.001) |
Univariate Analysis | Multivariate Model 1 With Global cpVD, CMvD, AL | Multivariate Model 2 With Global RNFLT, CMvD, AL | |||||||
---|---|---|---|---|---|---|---|---|---|
β-Coefficient | 95% CI | p Value | β-Coefficient | 95% CI | p Value | β-Coefficient | 95% CI | p Value | |
Age | 0.001 | −0.033 to 0.035 | 0.953 | ||||||
IOP | 0.084 | −0.051 to 0.218 | 0.219 | ||||||
CCT | −0.003 | −0.015 to 0.009 | 0.610 | ||||||
ODH presence | −0.647 | −1.431 to 0.137 | 0.105 | ||||||
CMvD presence | −2.048 | −2.832 to −1.264 | <0.001 | −1.940 | −2.820 to −1.060 | <0.001 | −2.082 | −2.943 to −1.220 | <0.001 |
AL | −0.362 | −0.653 to −0.075 | 0.014 | −0.260 | −0.514 to −0.007 | 0.044 | |||
SBP | 0.019 | −0.011 to 0.050 | 0.210 | ||||||
DBP | 0.034 | −0.017 to 0.086 | 0.191 | ||||||
MOPP | 0.035 | −0.036 to 0.103 | 0.337 | ||||||
VF MD | 0.071 | −0.187 to 0.328 | 0.587 | ||||||
Global cpRNFLT | 0.051 | 0.007 to 0.095 | 0.023 |
Univariate Analysis | Multivariate Model 1 With Global cpVD, ODH, CMvD, AL | Multivariate Model 2 With Global cpRNFLT, ODH, CMvD, AL | |||||||
β-Coefficient | 95% CI | p | β-Coefficient | 95% CI | p | β-Coefficient | 95% CI | p | |
Inferior hemiretinae | |||||||||
Age | 0.007 | −0.033 to 0.048 | 0.718 | ||||||
IOP | 0.113 | −0.044 to 0.271 | 0.156 | ||||||
CCT | −0.004 | −0.019 to 0.010 | 0537 | ||||||
ODH presence | −1.689 | −2.559 to −0.820 | <0.001 | −1.085 | −1.912 to −0.258 | 0.011 | −1.085 | −1.912 to −0.258 | 0.011 |
CMvD presence | −2.696 | −3.584 to −1.809 | <0.001 | −2.517 | −3.476 to −1.559 | <0.001 | −2.517 | −3.476 to −1.559 | <0.001 |
AL | −0.502 | −0.840 to −0.164 | 0.004 | −0.324 | −0.606 to 0.043 | 0.025 | −0.342 | −0.606 to −0.043 | 0.025 |
SBP | 0.015 | −0.021 to 0.052 | 0.404 | ||||||
DBP | 0.019 | −0.042 to 0.081 | 0.535 | ||||||
MOPP | 0.008 | −0.075 to 0.090 | 0.852 | ||||||
VF MD | 0.084 | −0.218 to 0.387 | 0.581 | ||||||
Global cpRNFLT | 0.063 | 0.011 to 0.114 | 0.018 | ||||||
Global cpVD | 0.146 | 0.032 to 0.259 | 0.012 | ||||||
Univariate Analysis | Multivariate Model 1 With Global cpVD, CMvD, AL | Multivariate Model 2 With Global cpRNFLT, CMvD, AL | |||||||
β-Coefficient | 95% CI | p | β-Coefficient | 95% CI | p | β-Coefficient | |||
Superior hemiretinae | |||||||||
Age | 0.007 | −0.029 to 0.043 | 0.710 | ||||||
IOP | 0.068 | −0.075 to 0.210 | 0.048 | ||||||
CCT | −0.004 | −0.016 to 0.009 | 0.557 | ||||||
ODH presence | −0.105 | −0.940 to 0.731 | 0.804 | ||||||
CMvD presence | −1.828 | −2.679 to −0.976 | <0.001 | −1.526 | −2.528 to −0.525 | 0.003 | −1.975 | −2.972 to −0.979 | <0.001 |
AL | −0.353 | −0.673 to −0.033 | 0.031 | ||||||
SBP | 0.016 | −0.017 to 0.049 | 0.330 | ||||||
DBP | 0.027 | −0.028 to 0.082 | 0.338 | ||||||
MOPP | 0.024 | −0.050 to 0.098 | 0.515 | ||||||
VF MD | −0.010 | −0.281 to 0.260 | 0.939 | ||||||
Global cpRNFLT | 0.054 | 0.002 to 0.095 | 0.040 | ||||||
Global cpVD | 0.210 | 0.112 to 0.307 | <0.001 | 0.167 | 0.052 to 0.282 | 0.005 |
Univariate Analysis | Multivariate Model 1 With pCVD-Affected Hemiretinae and CMvD | Multivariate Model 2 With cpVD-Affected Sector, cpVD-Affected Hemiretinae and CMvD | Multivariate Model 3 With cpRNFLT-Affected Clock-Hour and CMvD | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Age | 1.003 | 0.969 to 1.038 | 0.862 | |||||||||
IOP | 0.906 | 0.788 to 1.041 | 0.165 | |||||||||
CMvD presence | 2.792 | 1.113 to 7.007 | 0.029 | |||||||||
AL | 1.105 | 0.836 to 1.462 | 0.483 | |||||||||
SBP | 1.007 | 0.976 to 1.040 | 0.648 | |||||||||
DBP | 0.965 | 0.914 to 1.018 | 0.189 | |||||||||
MOPP | 0,999 | 0.932 to 1.070 | 0.972 | |||||||||
VF MD | 0.992 | 0.783 to 1.258 | 0.950 | |||||||||
Global pCVD | 0.845 | 0.689 to 1.037 | 0.107 | |||||||||
pCVD at affected hemiretinae | 0.713 | 0.586 to 0.868 | 0.001 | 0.713 | 0.586 to 0.868 | 0.001 | ||||||
pCVD at unaffected hemiretinae | 0.935 | 0.764 to 1.144 | 0.512 | |||||||||
Global cpRNFLT | 0.964 | 0.920 to 1.009 | 0.115 | |||||||||
cpRNFLT at affected clock hour | 0.962 | 0.937 to 0.988 | 0.004 | 0.965 | 0.939 to 0.991 | 0.009 | ||||||
cpRNFLT at unaffected clock hour | 0.999 | 0.984 to 1.014 | 0.911 | |||||||||
cpRNFLT at affected quadrant | 0.982 | 0.950 to 1.015 | 0.287 | |||||||||
cpRNFLT at unaffected quadrant | 0.984 | 0.951 to 1.019 | 0.373 | |||||||||
Global cpVD | 0.985 | 0.893 to 1.087 | 0.767 | |||||||||
cpVD at affected sector | 0.949 | 0.913 to 0.987 | 0.008 | 0.955 | 0.918 to 0.994 | 0.024 | ||||||
cpVD at unaffected sector | 0.998 | 0.956 to 1.042 | 0.937 | |||||||||
cpVD at affected hemiretinae | 0.914 | 0.837 to 0.998 | 0.044 | |||||||||
cpVD at unaffected hemiretinae | 0.982 | 0.891 to 1.081 | 0.705 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.; Shin, J.W.; Lee, J.Y.; Baek, M.S.; Kook, M.S. Optic Disc Hemorrhage Is Not Associated with Global Choroidal Vessel Loss, but Is Associated with Localized Choroidal Vessel Loss in Glaucoma. J. Clin. Med. 2022, 11, 1080. https://doi.org/10.3390/jcm11041080
Lee A, Shin JW, Lee JY, Baek MS, Kook MS. Optic Disc Hemorrhage Is Not Associated with Global Choroidal Vessel Loss, but Is Associated with Localized Choroidal Vessel Loss in Glaucoma. Journal of Clinical Medicine. 2022; 11(4):1080. https://doi.org/10.3390/jcm11041080
Chicago/Turabian StyleLee, Anna, Joong Won Shin, Jin Yeoung Lee, Min Su Baek, and Michael S. Kook. 2022. "Optic Disc Hemorrhage Is Not Associated with Global Choroidal Vessel Loss, but Is Associated with Localized Choroidal Vessel Loss in Glaucoma" Journal of Clinical Medicine 11, no. 4: 1080. https://doi.org/10.3390/jcm11041080
APA StyleLee, A., Shin, J. W., Lee, J. Y., Baek, M. S., & Kook, M. S. (2022). Optic Disc Hemorrhage Is Not Associated with Global Choroidal Vessel Loss, but Is Associated with Localized Choroidal Vessel Loss in Glaucoma. Journal of Clinical Medicine, 11(4), 1080. https://doi.org/10.3390/jcm11041080