Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review
Abstract
:1. Epidemiology, Definition, and Utilization of VETs in ENT
1.1. Inadequacy of Common Coagulation Tests Specific to ENT
1.2. Principles of TEG and ROTEM
1.2.1. TEG
1.2.2. ROTEM
1.2.3. Analysis of ROTEM/TEG
1.3. Adoption of VETs in Otolaryngology
2. VET in ENT: Current Literature
2.1. Head and Neck Surgery
2.2. Head and Neck Oncology
Microvascular Free Flaps
2.3. Obstructive Sleep Apnea
2.4. Adenotonsillectomy
2.5. Facial Trauma
2.6. Epistaxis
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Thiele, T.; Kaftan, H.; Hosemann, W.; Greinacher, A. Hemostatic management of patients undergoing ear-nose-throat surgery. GMS Curr. Top Otorhinolaryngol. Head Neck Surg. 2015, 14, 7. [Google Scholar]
- Ortel, T.L. Perioperative management of patients on chronic antithrombotic therapy. Blood 2012, 120, 4699–4705. [Google Scholar] [CrossRef]
- Kang, Y.G.; Martin, D.J.; Marquez, J.; Lewis, J.H.; Bontempo, F.A.; Shaw, B.W., Jr.; Starzl, T.E.; Winter, P.M. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth. Analg. 1985, 64, 888–896. [Google Scholar] [CrossRef] [Green Version]
- Shore-Lesserson, L.; Manspeizer, H.E.; DePerio, M.; Francis, S.; Vela-Cantos, F.; Ergin, M.A. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth. Analg. 1999, 88, 312–319. [Google Scholar] [CrossRef]
- Hartmann, J.; Walsh, M.; Grisoli, A.; Thomas, A.V.; Shariff, F.; McCauley, R.; Lune, S.V.; Zackariya, N.; Patel, S.; Farrell, M.S.; et al. Diagnosis and Treatment of Trauma-Induced Coagulopathy by Viscoelastography. Semin. Thromb. Hemost. 2020, 46, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.S.; Moore, E.E.; Thomas, A.V.; Coleman, J.R.; Thomas, S.; Vande Lune, S.; Marconi, T., Jr.; Cohen, M.J.; Chapman, M.P.; Moore, H.B.; et al. “Death Diamond” Tracing on Thromboelastography as a Marker of Poor Survival After Trauma. Am. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Simurda, T.; Asselta, R.; Zolkova, J.; Brunclikova, M.; Dobrotova, M.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Congenital Afibrinogenemia and Hypofibrinogenemia: Laboratory and Genetic Testing in Rare Bleeding Disorders with Life-Threatening Clinical Manifestations and Challenging Management. Diagnostics 2021, 11, 2140. [Google Scholar] [CrossRef] [PubMed]
- Myssiorek, D.; Alvi, A. Post-tonsillectomy hemorrhage: An assessment of risk factors. Int. J. Pediatr. Otorhinolaryngol. 1996, 37, 35–43. [Google Scholar] [CrossRef]
- Scheckenbach, K.; Bier, H.; Hoffmann, T.K.; Windfuhr, J.P.; Bas, M.; Laws, H.J.; Plettenberg, C.; Wagenmann, M. Risk of hemorrhage after adenoidectomy and tonsillectomy. Value of the preoperative determination of partial thromboplastin time, prothrombin time and platelet count. HNO 2008, 56, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Schwaab, M.; Hansen, S.; Gurr, A.; Dazert, S. Significance of blood tests prior to adenoidectomy. Laryngorhinootologie 2008, 87, 100–106. [Google Scholar] [CrossRef]
- Eberl, W.; Wendt, I.; Schroeder, H.G. Preoperative coagulation screening prior to adenoidectomy and tonsillectomy. Klinische Padiatrie 2005, 217, 20–24. [Google Scholar] [CrossRef]
- Asaf, T.; Reuveni, H.; Yermiahu, T.; Leiberman, A.; Gurman, G.; Porat, A.; Schlaeffer, P.; Shifra, S.; Kapelushnik, J. The need for routine pre-operative coagulation screening tests (prothrombin time PT/partial thromboplastin time PTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy. Int. J. Pediatr. Otorhinolaryngol. 2001, 61, 217–222. [Google Scholar] [CrossRef]
- Walsh, M.; Grisoli, A.; Zackariya, N.; Thomas, A.V.; Sualeh, A. Randomized controlled trials and Cochrane analyses versus precision-based medicine for tranexamic acid and viscoelastic testing in trauma. ANZ J. Surg. 2020, 90, 415–416. [Google Scholar] [CrossRef]
- MacDonald, S.G.; Luddington, R.J. Critical factors contributing to the thromboelastography trace. Semin. Thromb. Hemost. 2010, 36, 712–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers 2021, 7, 30. [Google Scholar] [CrossRef]
- Gorlinger, K.; Bhardwaj, V.; Kapoor, P.M. Simulation in coagulation testing using rotational thromboelastometry: A fast emerging, reliable point of care technique. Ann. Card. Anaesth. 2016, 19, 516–520. [Google Scholar]
- Görlinger, K.; Dirkmann, D.; Hanke, A.A. Rotational Thromboelastometry (ROTEM®). In Trauma Induced Coagulopathy, 2nd ed.; Moore, H.B., Moore, E.E., Neal, M.D., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 279–312. [Google Scholar]
- Simurda, T.; Casini, A.; Stasko, J.; Hudecek, J.; Skornova, I.; Vilar, R.; Neerman-Arbez, M.; Kubisz, P. Perioperative management of a severe congenital hypofibrinogenemia with thrombotic phenotype. Thromb. Res. 2020, 188, 1–4. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R.; Pavord, S.; Mallett, S.V.; Kitchen, D.; Klein, A.A.; Maybury, H.; Collins, P.W.; Laffan, M. The use of viscoelastic haemostatic assays in the management of major bleeding: A British Society for Haematology Guideline. Br. J. Haematol. 2018, 182, 789–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, M.; Moore, E.E.; Moore, H.B.; Thomas, S.; Kwaan, H.C.; Speybroeck, J.; Marsee, M.; Bunch, C.M.; Stillson, J.; Thomas, A.V.; et al. Whole Blood, Fixed Ratio, or Goal-Directed Blood Component Therapy for the Initial Resuscitation of Severely Hemorrhaging Trauma Patients: A Narrative Review. J. Clin. Med. 2021, 10, 320. [Google Scholar] [CrossRef]
- Harahsheh, Y.; Ho, K. Thromboelastometry and thromboelastography failed to detect hypercoagulability in thrombotic microangiopathy. Anaesth. Intensive Care 2016, 44, 520. [Google Scholar] [CrossRef] [Green Version]
- Bugaev, N.; Como, J.J.; Golani, G.; Freeman, J.J.; Sawhney, J.S.; Vatsaas, C.J.; Yorkgitis, B.K.; Kreiner, L.A.; Garcia, N.M.; Aziz, H.A. Thromboelastography and Rotational Thromboelastometry in Bleeding Patients with Coagulopathy: Practice Management Guideline from the Eastern Association for the Surgery of Trauma. J. Trauma Acute Care Surg. 2020, 89, 999–1017. [Google Scholar] [CrossRef]
- Bareille, M.; Hardy, M.; Douxfils, J.; Roullet, S.; Lasne, D.; Levy, J.H.; Stépanian, A.; Susen, S.; Frère, C.; Lecompte, T. Viscoelastometric Testing to Assess Hemostasis of COVID-19: A Systematic Review. J. Clin. Med. 2021, 10, 1740. [Google Scholar] [CrossRef] [PubMed]
- Bolliger, D.; Seeberger, M.D.; Tanaka, K.A. Principles and practice of thromboelastography in clinical coagulation management and transfusion practice. Transfus. Med. Rev. 2012, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sahli, S.D.; Rössler, J.; Tscholl, D.W.; Studt, J.-D.; Spahn, D.R.; Kaserer, A. Point-of-care diagnostics in coagulation management. Sensors 2020, 20, 4254. [Google Scholar] [CrossRef]
- Schöchl, H.; Maegele, M.; Voelckel, W. Fixed ratio versus goal-directed therapy in trauma. Curr. Opin. Anaesthesiol. 2016, 29, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Sarode, R.; Milling, T.J., Jr.; Refaai, M.A.; Mangione, A.; Schneider, A.; Durn, B.L.; Goldstein, J.N. Efficacy and safety of a 4-factor prothrombin complex concentrate in patients on vitamin K antagonists presenting with major bleeding: A randomized, plasma-controlled, phase IIIb study. Circulation 2013, 128, 1234–1243. [Google Scholar] [CrossRef] [Green Version]
- Knopf, A.; Freudelsperger, L.; Stark, T.; Scherer, E. ENT surgery in patients with anticoagulants and platelet aggregation inhibitors. HNO 2014, 62, 350–357. [Google Scholar] [CrossRef]
- Albaladejo, P.; Charbonneau, H.; Samama, C.M.; Collet, J.P.; Marret, E.; Piriou, V.; Genty, C.; Bosson, J.L. Bleeding complications in patients with coronary stents during non-cardiac surgery. Thromb. Res. 2014, 134, 268–272. [Google Scholar] [CrossRef]
- Savage, J.R.; Parmar, A.; Robinson, P.J. Antiplatelet drugs in elective ENT surgery. J. Laryngol. Otol. 2012, 126, 886–892. [Google Scholar] [CrossRef]
- Hartmann, J.; Sikorski, R.A. Thromboelastography (TEG® 5000 and TEG® 6s Hemostasis Analyzers with TEG Manager® Software). In Trauma Induced Coagulopathy, 2nd ed.; Moore, H.B., Moore, E.E., Neal, M.D., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 313–331. [Google Scholar]
- Brill, J.B.; Cotton, B.A.; Lawless, R.A. Plasma Transfusion. In Trauma Induced Coagulopathy, 2nd ed.; Moore, H.B., Moore, E.E., Neal, M.D., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 353–371. [Google Scholar]
- Dias, J.D.; Lopez-Espina, C.G.; Ippolito, J.; Hsiao, L.H.; Zaman, F.; Muresan, A.A.; Thomas, S.G.; Walsh, M.; Jones, A.J.; Grisoli, A.; et al. Rapid point-of-care detection and classification of direct-acting oral anticoagulants with the TEG 6s: Implications for trauma and acute care surgery. J. Trauma Acute Care Surg. 2019, 87, 364–370. [Google Scholar] [CrossRef]
- Gilbert, B.W.; Bissell, B.D.; Santiago, R.D.; Rech, M.A. Tracing the Lines: A Review of Viscoelastography for Emergency Medicine Clinicians. J. Emerg. Med. 2020, 59, 201–215. [Google Scholar] [CrossRef]
- Kozek-Langenecker, S.A. Perioperative coagulation monitoring. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.; Moore, E.E.; Moore, H.; Thomas, S.; Lune, S.V.; Zimmer, D.; Dynako, J.; Hake, D.; Crowell, Z.; McCauley, R.; et al. Use of Viscoelastography in Malignancy-Associated Coagulopathy and Thrombosis: A Review. Semin. Thromb. Hemost. 2019, 45, 354–372. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, V.G.; Garol, B.D.; Zelman, E.A.; Guerrero, M.A. Hemeoxygenase-1 mediated hypercoagulability in a patient with thyroid cancer. Blood Coagul. Fibrinolysis 2013, 24, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Kang, R.; Wang, Y.; Zhu, M.; Zhao, L.; Xu, Q.; Song, Y.; Liu, C. Altered TEG Parameters Identify Hypercoagulablilty and are of Diagnosis Value for Papillary Thyroid Carcinoma Patients. Exp. Clin. Endocrinol. Diabetes 2020, 128, 297–302. [Google Scholar] [CrossRef]
- Law, N.L.; Ng, K.F.; Irwin, M.G.; Man, J.S. Comparison of coagulation and blood loss during anaesthesia with inhaled isoflurane or intravenous propofol. Br. J. Anaesth. 2001, 86, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Durila, M.; Lukas, P.; Astraverkhava, M.; Berousek, J.; Zabrodsky, M.; Vymazal, T. Tracheostomy in intensive care unit patients can be performed without bleeding complications in case of normal thromboelastometry results (EXTEM CT) despite increased PT-INR: A prospective pilot study. BMC Anesthesiol. 2015, 15, 89. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Hill, S.; Austin, T.M.; Whitney, G.M.; Wellons, J.C., 3rd; Lam, H.V. Use of blood-sparing surgical techniques and transfusion algorithms: Association with decreased blood administration in children undergoing primary open craniosynostosis repair. J. Neurosurg. Pediatr. 2015, 16, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Klein Nulent, C.G.; de Graaff, H.J.; Ketelaars, R.; Sewnaik, A.; Maissan, I.M. Anesthetic Management During Emergency Surgical Ligation for Carotid Blowout Syndrome. A&A Case Rep. 2016, 7, 85–88. [Google Scholar]
- Mao, Q.X.; Guo, W.; Huang, B.Q.; Yan, H. Impact of artificial capnothorax on coagulation in patients during video-assisted thoracoscopic esophagectomy for squamous cell carcinoma. Surg. Endosc. 2016, 30, 2766–2772. [Google Scholar] [CrossRef]
- Mogensen, S.; Lubenow, N.; Nilsson, P.; Engquist, H.; Knutsson, F.; Enblad, P.; Nowinski, D.; Frykholm, P. An evaluation of the mixed pediatric unit for blood loss replacement in pediatric craniofacial surgery. Paediatr. Anaesth. 2017, 27, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.A.; Gorton, H. Thromboelastographic study of the effect of manipulation of central veins on coagulability of venous blood. Br. J. Oral Maxillofac. Surg. 2005, 43, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.J.; Eley, K.A.; Von Kier, S.; Pearson, O.; Watt-Smith, S.R. Functional fibrinogen to platelet ratio using thromboelastography as a predictive parameter for thrombotic complications following free tissue transfer surgery: A preliminary study. Microsurgery 2012, 32, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.D.; Williamson, P.A.; Vesely, M. Reconstruction of an extensive peri-orbital defect secondary to mucormycosis in a patient with myelodysplasia. J. Plast. Reconstr. Aesthet. Surg. 2013, 66, e69–e71. [Google Scholar] [CrossRef]
- Kolbenschlag, J.; Daigeler, A.; Lauer, S.; Wittenberg, G.; Fischer, S.; Kapalschinski, N.; Lehnhardt, M.; Goertz, O. Can rotational thromboelastometry predict thrombotic complications in reconstructive microsurgery? Microsurgery 2014, 34, 253–260. [Google Scholar] [CrossRef]
- Fuller, S.C.; Donald, P.J. Evaluating risk factors and predicting complications in head and neck reconstructive surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 2015, 23, 415–419. [Google Scholar] [CrossRef]
- Wikner, J.; Beck-Broichsitter, B.E.; Schlesinger, S.; Schön, G.; Heiland, M.; Assaf, A.T.; Rashad, A.; Riecke, B.; Heckel, K. Thromboelastometry: A contribution to perioperative free-flap management. J. Craniomaxillofac. Surg. 2015, 43, 1065–1071. [Google Scholar] [CrossRef]
- Ekin, Y.; Günüşen, İ.; Özdemir, Ö.Y.; Tiftikçioğlu, Y. Effect of Coagulation Status and Co-Morbidity on Flap Success and Complications in Patients with Reconstructed Free Flap. Turk. J. Anaesthesiol. Reanim. 2019, 47, 98–106. [Google Scholar] [CrossRef]
- Vanags, I.; Stepanovs, J.; Ozolina, A.; Mukans, M.; Bjertnaes, L.J.; Mamaja, B. Thromboelastometry for Assessing Risks of Free Flap Thrombosis in Patients Undergoing Microvascular Surgery. Front. Med. 2020, 7, 289. [Google Scholar] [CrossRef]
- Othman, M.; Gordon, S.P.; Iscoe, S. Repeated inspiratory occlusions in anesthetized rats acutely increase blood coagulability as assessed by thromboelastography. Respir. Physiol. Neurobiol. 2010, 171, 61–66. [Google Scholar] [CrossRef]
- Toukh, M.; Pereira, E.J.; Falcon, B.J.; Liak, C.; Lerner, M.; Hopman, W.M.; Iscoe, S.; Fitzpatrick, M.F.; Othman, M. CPAP reduces hypercoagulability, as assessed by thromboelastography, in severe obstructive sleep apnoea. Respir. Physiol. Neurobiol. 2012, 183, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Wang, X.; Fan, J.; Nie, S.; Wei, Y. Impact of Obstructive Sleep Apnea on Platelet Function Profiles in Patients with Acute Coronary Syndrome Taking Dual Antiplatelet Therapy. J. Am. Heart Assoc. 2018, 7, e008808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Bello, I.; Monzón Manzano, E.; García Río, F.; Justo Sanz, R.; Cubillos-Zapata, C.; Casitas, R.; Sánchez, B.; Jaureguizar, A.; Acuña, P.; Alonso-Fernández, A.; et al. Procoagulant State of Sleep Apnea Depends on Systemic Inflammation and Endothelial Damage. Arch. Bronconeumol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Heaney, M.; Looney, Y.; McKinstry, C.; O’Hare, B. Sequential clot strength analyses following diclofenac in pediatric adenotonsillectomy. Paediatr. Anaesth. 2007, 17, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Raffan-Sanabria, F.; Amaya, W.; Manrique-Peñuela, F. Thromboelastography to guide the decision making in transfusion therapy in post-tonsillectomy bleeding secondary to pseudoaneurysm. Revista Mexicana de Anestesiología 2009, 32, 67–71. [Google Scholar]
- Alesci, S.; Stein, M.; Scholz, K.; Llugaliu, B.; Asmelash, G.; Miesbach, W. Patients with isolated prolonged in vitro bleeding time. Clinical symptoms. Hamostaseologie 2011, 31, S64–S68. [Google Scholar] [PubMed]
- Grassetto, A.; Saggioro, D.; Paulo, C.; Penzo, D.; Bossi, A.; Tedesco, M.; Maggiolo, C. Rotational thromboelastometry analysis and management of life-threatening haemorrhage in isolated craniofacial injury. Blood Coagul. Fibrinolysis 2012, 23, 551–555. [Google Scholar] [CrossRef]
- Abraham, S.V.; Hakkeem, B.; Mathew, D.; Rafi, A.M.; Poomali, A.; Thomas, J.; Kassyap, C.K. Hematotoxic Snakebite Victim with Trauma: The Role of Guided Transfusion, Rotational Thromboelastometry, and Tranexamic Acid. Wilderness Environ. Med. 2020, 31, 470–481. [Google Scholar] [CrossRef]
- Ganter, M.T.; Hofer, C.K. Coagulation monitoring: Current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth. Analg. 2008, 106, 1366–1375. [Google Scholar] [CrossRef] [Green Version]
- Vries, M.J.; van der Meijden, P.E.; Kuiper, G.J.; Nelemans, P.J.; Wetzels, R.J.; van Oerle, R.G.; Lancé, M.D.; ten Cate, H.; Henskens, Y.M. Preoperative screening for bleeding disorders: A comprehensive laboratory assessment of clinical practice. Res. Pract. Thromb. Haemost. 2018, 2, 767–777. [Google Scholar] [CrossRef]
- Chee, Y.L.; Crawford, J.C.; Watson, H.G.; Greaves, M. Guidelines on the assessment of bleeding risk prior to surgery or invasive procedures. Br. J. Haematol. 2008, 140, 496–504. [Google Scholar] [CrossRef]
- Segal, J.B.; Dzik, W.H.; Network, T.M.H.C.T. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: An evidence-based review. Transfusion 2005, 45, 1413–1425. [Google Scholar] [CrossRef]
- Chen, A.Y.; Jemal, A.; Ward, E.M. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 2009, 115, 3801–3807. [Google Scholar] [CrossRef] [PubMed]
- Thromboembolic Risk Factors (THRIFT) Consensus Group. Risk of and prophylaxis for venous thromboembolism in hospital patients. Br. Med. J. 1992, 305, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayburgh, D.R.; Stott, W.; Cordiero, T.; Park, R.; Detwiller, K.; Buniel, M.; Flint, P.; Schindler, J.; Andersen, P.; Wax, M.K.; et al. Prospective study of venous thromboembolism in patients with head and neck cancer after surgery. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 1143–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunwald, E.M.D.; Zipes, D.P.; Libby, P.; Bonow, R.O. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine; Morrow: New York, NY, USA, 2015. [Google Scholar]
- Hong, S.N.; Yun, H.C.; Yoo, J.H.; Lee, S.H. Association between hypercoagulability and severe obstructive sleep apnea. JAMA Otolaryngol. Head Neck Surg. 2017, 143, 996–1002. [Google Scholar] [CrossRef]
- Prim, M.P.; De Diego, J.I.; Jimenez-Yuste, V.; Sastre, N.; Rabanal, I.; Gavilan, J. Analysis of the causes of immediate unanticipated bleeding after pediatric adenotonsillectomy. Int. J. Pediatr. Otorhinolaryngol. 2003, 67, 341–344. [Google Scholar] [CrossRef]
- Choi, J.L.H.; Spain, D.A. Review of facial trauma management. J. Trauma Acute Care Surg. 2020, 88, e124–e130. [Google Scholar] [CrossRef] [PubMed]
- Colbenson, K. An Algorithmic Approach to Triaging Facial Trauma on the Sidelines. Clin. Sports Med. 2017, 36, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Toulon, P.; Ozier, Y.; Ankri, A.; Fleron, M.H.; Leroux, G.; Samama, C.M. Point-of-care versus central laboratory coagulation testing during haemorrhagic surgery. A multicenter study. Thromb. Haemost. 2009, 101, 394–401. [Google Scholar]
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs. a 1:1:2 ratio and mortality in patients with severe trauma: The PROPPR randomized clinical trial. JAMA 2015, 313, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, L.M.; Kurek, S.; Luchette, F.A.; Corwin, H.L.; Barie, P.S.; Tisherman, S.A.; Hebert, P.C.; Anderson, G.L.; Bard, M.R.; Bromberg, W.; et al. Clinical Practice Guideline: Red Blood Cell Transfusion in Adult Trauma and Critical Care. J. Trauma Injury Crit. Care 2009, 67, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Dean, N.R.; Ledgard, J.P.; Katsaros, J. Massive hemorrhage in facial fracture patients: Definition, incidence, and management. Plast. Reconstr. Surg. 2009, 123, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Siritongtaworn, P. Management of life threatening hemorrhage from facial fracture. J. Med. Assoc. Thail. 2005, 88, 382–385. [Google Scholar]
- Pande, N.M.; Jain, S.K.T.; Mahore, D.M.; Nitnaware, A.Z.; Bokare, B.D.; Sakhare, P.T. Role of routine coagulation studies in idiopathic epistaxis. Indian J. Otolaryngol. Head Neck Surg. 2006, 58, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Görlinger, K.; Pérez-Ferrer, A.; Dirkmann, D.; Saner, F.; Maegele, M.; Calatayud, Á.A.P.; Kim, T.-Y. The role of evidence-based algorithms for rotational thromboelastometry-guided bleeding management. Korean J. Anesthesiol. 2019, 72, 297–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuhara, K.; Kondo, T.; Miyoshi, H.; Hamada, H.; Kawamoto, M. Rotational thromboelastometry-guided perioperative management of coagulation in a patient with Heyde’s syndrome undergoing transcatheter aortic valve implantation. JA Clin. Rep. 2019, 5, 3. [Google Scholar] [CrossRef] [Green Version]
Discipline | Paper | Description |
---|---|---|
Head and Neck Surgery | Law 2001 | Prospective randomized study: TEG was used to compare coagulation and blood loss associated with intravenous propofol infusion or inhaled isoflurane during anesthetic maintenance for head and neck surgery. Significant differences in either blood loss or coagulation were not observed between the two treatments [39]. |
Durila 2015 | Observational study: Tracheostomy was performed on 119 patients. INR showed that 55 patients had prolonged PT, but all TEG results were normal except one. Tracheostomy was safely performed on patients with normal TEG results without bleeding complications [40]. | |
Nguyen 2015 | Retrospective study: Tested a transfusion algorithm/protocol for craniofacial reconstruction surgery by comparing pre-protocol and post-protocol cohorts. The protocol reduced intraoperative administration of blood products. The protocol utilized TEG to guide fresh frozen plasma transfusion due to the long turnaround time of INR [41]. | |
Klein 2016 | Case study: Surgical intervention to stop massive arterial hemorrhage. Head and neck surgeon ligated common carotid using specific anesthetic strategy combined with ROTEM-guided massive transfusion protocol [42]. | |
Mao 2016 | Prospective cohort study: Evaluated the impact of an artificial capnothorax on coagulation and fibrinolysis in patients undergoing thoracoscopic esophagectomy. Used TEG parameters to prove that these patients showed significant impairments in coagulation not observed in patients without artificial capnothorax [43]. | |
Mogensen 2017 | Prospective study: Used TEG and common coagulation tests to evaluate a transfusion strategy in 40 infants [44]. | |
Head and Neck Cancer | Mitchell 2005 | Prospective pilot study: Studied 10 patients who underwent selective neck dissections to treat malignant disease of the head and neck. Measured coagulopathy using TEG. Found an insignificant increase in R [45] |
Nielsen 2013 | Case report: TEG was used to determine that a patient undergoing removal of a malignant thyroid tumor was found to have abnormally increased hypercoagulable clot strength caused by tumor-induced upregulation of hemeoxygenase-1 [37]. | |
Lu 2020 | Experimental non-randomized study: This study aimed to modify the TEG parameters for papillary thyroid carcinoma and nodular goiters. Using 62 nodular goiter patients, 53 papillary thyroid carcinoma patients, and 61 healthy patients, correlation analysis demonstrated hypercoagulable TEG parameters for papillary thyroid carcinoma patients [38]. | |
Free Flaps | Parker 2012 | Preliminary study: Used TEG to measure fibrinogen:platelet ratio to probe for post-surgical thrombotic complications. A functional fibrinogen to platelet ratio above 42% as measured by TEG may be useful in identifying those patients likely to develop thrombotic complication [46]. |
Murphy 2013 | Case report: Patient diagnosed with rhino-orbital mucormycosis underwent orbital exenteration, extensive cheek and sinus debridement, and reconstruction using a free myocutaneous anterolateral thigh flap. Preoperative TEG measured functional fibrinogen:platelet ratio. Intraoperative platelet administration was guided by TEG [47]. | |
Kolbenschlag 2014 | Retrospective review: Reviews diagnostic value of ROTEM for screening patient vulnerability to thrombotic complications with specific regards to reconstructive microsurgery [48]. | |
Fuller 2015 | Review: Description of risk factors in microvascular tissue transfer following ablative surgeries for head and neck malignancy. Patients with extrinsic coagulation pathway thrombus formation or intrinsic coagulation thrombus formation mean clot formation >72 mm or functional fibrinogen:platelet ratio >43 are at a significantly higher risk of thrombotic flap loss [49] | |
Wikner 2015 | Prospective, exploratory cohort study: Both standard testing and ROTEM/INTEM were incapable of predicting perioperative bleeding, thrombosis, or flap loss. Intraoperative use may prevent blood loss provided standardization can be achieved [50]. | |
Ekin 2019 | Retrospective study: 77 patients had flap surgery and no relationship was found between preoperative or postoperative TEG results and flap complications. There was no correlation with flap loss and pre- or postoperative TEG results [51]. | |
Vanags 2020 | Prospective observational study: 103 adults trauma patients who received flap surgery either <30 days post-trauma (ES group) or >30 days post-trauma (LS group). Postoperative hypercoagulability on ROTEM predicted free flap loss in the LS group but not the ES group [52]. | |
OSA | Othman 2010 | Animal model study: TEG performed on rats concluded that intermittent inspiratory occlusions cause transient hypercoagulability [53]. |
Toukh 2012 | Prospective crossover study: Used TEG to test the hypothesis that patients with severe OSA are hypercoagulable and that two weeks of continuous positive airway pressure reduces this hypercoagulability. Concluded that TEG can detect hypercoagulability in patients with OSA [54]. | |
Gong 2018 | Cross sectional observational study: Tested whether OSA has effects on platelet function profiles in acute coronary syndrome patients on dual antiplatelet therapy. TEG platelet mapping assay was used to detect effects of antiplatelet therapy with arachidonic acid and adenosine diphosphate activators, which demonstrated that OSA-induced platelet hyperactivity persists despite antiplatelet therapy [55]. | |
Fernandez-Bello 2020 | Observational study: ROTEM showed hypercoagulable state in patients with OSA due to increased platelet/leukocyte aggregation and endothelial damage [56]. | |
Tonsils and Adenoids | Heaney 2007 | Prospective observational study: Utilized TEG to monitor clot strength following the preoperative administration of diclofenac for pediatric patients undergoing tonsillectomy. Found to have a significant reduction in R and a significant increase in MA [57]. |
Raffan-Sanabria 2009 | Case report: Female patient suffered severe oral bleeding three weeks post-tonsillectomy. Adequate hemostasis and control of bleed were achieved through use of TEG-guided decision making [58]. | |
Facial Trauma and Hemorrhage | Alesci 2011 | Retrospective study: Analyzed 75 patients visiting a hemophilia center for bleeding tendency including dental bleeding, gum bleeding, and epistaxis. No ROTEM parameters were significantly out of normal range [59]. |
Grassetto 2012 | Case report: Cyclist suffered serious craniofacial trauma and massive hemorrhage status post motor vehicle collision. ROTEM-guided administration of prothrombin complex concentrate and fibrinogen concentrate was effective in correcting coagulopathy [60]. | |
Abraham 2020 | Case report: Patient was bitten by hematotoxic snake, lost consciousness, and suffered facial trauma after fall. Discovered to have ongoing oromaxillofacial bleeding upon arrival at the emergency department. Underwent ROTEM-guided transfusion to correct coagulopathy along with mandibular repair [61]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsee, M.K.; Shariff, F.S.; Wiarda, G.; Watson, P.J.; Sualeh, A.H.; Brenner, T.J.; McCoy, M.L.; Al-Fadhl, H.D.; Jones, A.J.; Davis, P.K.; et al. Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review. J. Clin. Med. 2022, 11, 1119. https://doi.org/10.3390/jcm11041119
Marsee MK, Shariff FS, Wiarda G, Watson PJ, Sualeh AH, Brenner TJ, McCoy ML, Al-Fadhl HD, Jones AJ, Davis PK, et al. Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review. Journal of Clinical Medicine. 2022; 11(4):1119. https://doi.org/10.3390/jcm11041119
Chicago/Turabian StyleMarsee, Mathew K., Faisal S. Shariff, Grant Wiarda, Patrick J. Watson, Ali H. Sualeh, Toby J. Brenner, Max L. McCoy, Hamid D. Al-Fadhl, Alexander J. Jones, Patrick K. Davis, and et al. 2022. "Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review" Journal of Clinical Medicine 11, no. 4: 1119. https://doi.org/10.3390/jcm11041119
APA StyleMarsee, M. K., Shariff, F. S., Wiarda, G., Watson, P. J., Sualeh, A. H., Brenner, T. J., McCoy, M. L., Al-Fadhl, H. D., Jones, A. J., Davis, P. K., Zimmer, D., & Folsom, C. (2022). Use of Thromboelastography and Rotational Thromboelastometry in Otolaryngology: A Narrative Review. Journal of Clinical Medicine, 11(4), 1119. https://doi.org/10.3390/jcm11041119