Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects
Abstract
:1. Introduction
2. Materials and Methods
3. Physiochemical Properties of Ayahuasca Main Components and Methods of Analysis
3.1. Plants Used to Prepare Ayahuasca Decoction
3.2. Structure and Physico-Chemical Properties of Ayahuasca Components
4. Pharmacology of Ayahuasca Main Components
4.1. Pharmacokinetics Parameters of Ayahuasca
4.1.1. Pharmacokinetics of Ayahuasca Metabolites
4.1.2. Amount of Ayahuasca Alkaloids and Their Metabolites in the Urine
4.2. Common Psychological and Physiological Effect of Ayahuasca in Human
4.2.1. Acute Effects after Ayahuasca Administration
4.2.2. Late Effects after Ayahuasca Administration
5. Ayahuasca Toxicity and Toxicological Risks and Hazards to Human Health
5.1. Common Side Effects of Ayahuasca
5.2. Toxic Clinical Manifestations Linked to Ayahuasca (Surviving Patients)
5.3. Post-Mortem Diagnosis
6. Potential Benefits of Ayahuasca
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-García, J.A.; De La Fuente Revenga, M.; Alonso-Gil, S.; Rodríguez-Franco, M.I.; Feilding, A.; Perez-Castillo, A.; Riba, J. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro. Sci. Rep. 2017, 7, 5309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, D.; Cantillo, J.; Pérez, I.; Farré, M.; Feilding, A.; Obiols, J.E.; Bouso, J.C. Therapeutic potential of ayahuasca in grief: A prospective, observational study. Psychopharmacology 2020, 237, 1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barceloux, D.G. Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. Acad. Forensic Pathol. 2012, 2, 1041. [Google Scholar] [CrossRef]
- McKenna, D.J. Clinical investigations of the therapeutic potential of ayahuasca: Rationale and regulatory challenges. Pharmacol. Ther. 2004, 102, 111–129. [Google Scholar] [CrossRef]
- Wolff, T.J.; Passie, T. Motivational structure of ayahuasca drinkers in social networks. J. Psychedelic Stud. 2018, 2, 89–96. [Google Scholar] [CrossRef]
- dos Santos, R.G.; Osório, F.L.; Crippa, J.A.S.; Hallak, J.E.C. Antidepressive and anxiolytic effects of ayahuasca: A systematic literature review of animal and human studies. Braz. J. Psychiatry 2016, 38, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Estrella-Parra, E.A.; Almanza-Pérez, J.C.; Alarcón-Aguilar, F.J. Ayahuasca: Uses, Phytochemical and Biological Activities. Nat. Prod. Bioprospect. 2019, 9, 251–265. [Google Scholar] [CrossRef] [Green Version]
- European Drug Report 2021: Trends and Developments. 2021. Available online: https://www.emcdda.europa.eu/system/files/publications/13838/TDAT21001ENN.pdf (accessed on 17 January 2022).
- Barbosa, P.C.R.; Mizumoto, S.; Bogenschutz, M.P.; Strassman, R.J. Health status of ayahuasca users. Drug Test. Anal. 2012, 4, 601–609. [Google Scholar] [CrossRef]
- Santos, B.W.L.; de Oliveira, R.C.; Sonsin-Oliveira, J.; Fagg, C.W.; Barbosa, J.B.F.; Caldas, E.D. Biodiversity of β-carboline profile of banisteriopsis caapi and ayahuasca, a plant and a brew with neuropharmacological potential. Plants 2020, 9, 870. [Google Scholar] [CrossRef]
- Durante, Ĺ.; Dos Santos, R.G.; Bouso, J.C.; Hallak, J.E. Risk assessment of ayahuasca use in a religious context: Self-reported risk factors and adverse effects. Braz. J. Psychiatry 2020, 43, 362–369. [Google Scholar] [CrossRef]
- Ujváry, I. Psychoactive natural products: Overview of recent developments. Ann. Ist. Super. Sanita 2014, 50, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, S.S.; Alshoaibi, D.; Alamari, H.; Albogami, S.; Khan, E.; Alshanbari, A.; Darwish, H.; Alshanqiti, B.; Alghamdi, H.; Almalki, W. Potential significance of medicinal plants in forensic analysis: A review. Saudi J. Biol. Sci. 2021, 28, 3929–3935. [Google Scholar] [CrossRef] [PubMed]
- Lo Faro, A.F.; Di Trana, A.; La Maida, N.; Tagliabracci, A.; Giorgetti, R.; Busardò, F.P. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J. Pharm. Biomed. Anal. 2020, 179, 112945. [Google Scholar] [CrossRef] [PubMed]
- Mckenna, D.; Riba, J. New World Tryptamine Hallucinogens and the Neuroscience of Ayahuasca. Curr. Top. Behav. Neurosci. 2018, 36, 283–311. [Google Scholar] [CrossRef] [PubMed]
- Grifell, M.; Ventura, M.; Carbón, X.; Quintana, P.; Galindo, L.; Palma, Á.; Fornis, I.; Gil, C.; Farre, M.; Torrens, M. Patterns of use and toxicity of new para-halogenated substituted cathinones: 4-CMC (clephedrone), 4-CEC (4-chloroethcatinone) and 4-BMC (brephedrone). Hum. Psychopharmacol. 2017, 32, e2621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palma-Álvarez, R.F.; Grau-López, L.; Ros-Cucurull, E.; Abad, A.C.; Dualde, J.; Robles-Martínez, M.; Roncero, C. Psychosis induced by abuse of ayahuasca: A case report. Rev. Colomb. Psiquiatr. 2021, 50, 43–46. [Google Scholar] [CrossRef]
- Simão, A.Y.; Gonçalves, J.; Gradillas, A.; García, A.; Restolho, J.; Fernández, N.; Rodilla, J.M.; Barroso, M.; Duarte, A.P.; Cristóvão, A.C.; et al. Evaluation of the cytotoxicity of ayahuasca beverages. Molecules 2020, 25, 5594. [Google Scholar] [CrossRef]
- Brito-da-costa, A.M.; Dias-da-silva, D.; Gomes, N.G.M.; Dinis-oliveira, R.J.; Madureira-carvalho, Á. Toxicokinetics and toxicodynamics of ayahuasca alkaloids N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine: Clinical and forensic impact. Pharmaceuticals 2020, 13, 334. [Google Scholar] [CrossRef]
- McIlhenny, E.H.; Riba, J.; Barbanoj, M.J.; Strassman, R.; Barker, S.A. Methodology for determining major constituents of ayahuasca and their metabolites in blood. Biomed. Chromatogr. 2011, 26, 301–313. [Google Scholar] [CrossRef]
- Riba, J.; McIlhenny, E.H.; Valle, M.; Bouso, J.C.; Barker, S.A. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca. Drug Test. Anal. 2012, 4, 610–616. [Google Scholar] [CrossRef]
- Mcilhenny, E.H.; Riba, J.; Barbanoj, M.J.; Strassman, R.; Barker, S.A. Methodology for and the determination of the major constituents and metabolites of the Amazonian botanical medicine ayahuasca in human urine. Biomed. Chromatogr. 2010, 25, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F. Recreational use, analysis and toxicity of tryptamines. Curr. Neuropharmacol. 2015, 13, 26–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frison, G.; Favretto, D.; Zancanaro, F.; Fazzin, G.; Davide, S. A case of b -carboline alkaloid intoxication following ingestion of Peganum harmala seed extract. Forensic Sci. Int. 2008, 179, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Foley, C.A.; Al-Issa, Y.A.; Hiller, K.P.; Mulcahy, S.P. Synthesis and Structure-Activity Relationships of 1-Aryl-β-carbolines as Affinity Probes for the 5-Hydroxytryptamine Receptor. ACS Omega 2019, 4, 9807–9812. [Google Scholar] [CrossRef] [Green Version]
- Frecska, E.; Bokor, P.; Winkelman, M. The therapeutic potentials of ayahuasca: Possible effects against various diseases of civilization. Front. Pharmacol. 2016, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Strassman, R. DMT: The Spirit Molecule: A Doctor’s Revolutionary Research into the Biology of Near-Death and Mystical Experiences; Simon and Schuster: New York, NY, USA, 2000; p. 358. [Google Scholar]
- Barbosa, P.C.R.; Strassman, R.J.; da Silveira, D.X.; Areco, K.; Hoy, R.; Pommy, J.; Thoma, R.; Bogenschutz, M. Psychological and neuropsychological assessment of regular hoasca users. Compr. Psychiatry 2016, 71, 95–105. [Google Scholar] [CrossRef]
- Simão, A.Y.; Gonçalves, J.; Duarte, A.P.; Barroso, M.; Cristóvão, A.C.; Gallardo, E. Toxicological Aspects and Determination of the Main Components of Ayahuasca: A Critical Review. Medicines 2019, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Simão, A.Y.; Gonçalves, J.; Caramelo, D.; Rosado, T.; Barroso, M.; Restolho, J.; Fernández, N.; Rodilla, J.; Duarte, A.P.; Cristóvão, A.C.; et al. Determination of N,N-dimethyltryptamine and beta-carbolines in plants used to prepare ayahuasca beverages by means of solid-phase extraction and gas-chromatography–mass spectrometry. SN Appl. Sci. 2020, 2, 463. [Google Scholar] [CrossRef] [Green Version]
- Hamill, J.; Hallak, J.; Dursun, S.M.; Baker, G. Ayahuasca: Psychological and Physiologic Effects, Pharmacology and Potential Uses in Addiction and Mental Illness. Curr. Neuropharmacol. 2018, 17, 108–128. [Google Scholar] [CrossRef]
- Gable, R.S. Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction 2007, 102, 24–34. [Google Scholar] [CrossRef]
- Kaasik, H.; Souza, R.C.Z.; Zandonadi, F.S.; Tófoli, L.F.; Sussulini, A. Chemical Composition of Traditional and Analog Ayahuasca. J. Psychoact. Drugs 2021, 53, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Lu, Â.; Gradillas, A.; Garc, A.; Restolho, J.; Domingues, F.; Gallardo, E.; Duarte, A.P. Ayahuasca Beverages: Phytochemical Analysis and Biological Properties. Antibiotics 2020, 9, 731. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, I.C.; Tófoli, L.F.; Sussulini, A. Determination of the Elemental Composition of Ayahuasca and Assessments Concerning Consumer Safety. Biol. Trace Elem. Res. 2020, 199, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Tolerable upper Intake Levels for Vitamins and Minerals. 2006. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 27 December 2021).
- de Oliveira Silveira, G.; Lourenço, F.R.; Fonseca Pego, A.M.; Guimarães dos Santos, R.; Rossi, G.N.; Hallak, J.E.C.; Yonamine, M. Essential oil-based dispersive liquid-liquid microextraction for the determination of N,N-dimethyltryptamine and β-carbolines in human plasma: A novel solvent-free alternative. Talanta 2021, 225, 121976. [Google Scholar] [CrossRef]
- Oliveira, C.D.R.; Okai, G.G.; Da Costa, J.L.; De Almeida, R.M.; Oliveira-Silva, D.; Yonamine, M. Determination of dimethyltryptamine and β-carbolines (ayahuasca alkaloids) in plasma samples by LC-MS/MS. Bioanalysis 2012, 4, 1731–1738. [Google Scholar] [CrossRef]
- Schenberg, E.E.; Alexandre, M.; Filev, R.; Cravo, M.; Muthukumaraswamy, S.D. Acute Biphasic Effects of Ayahuasca. PLoS ONE 2015, 10, e0137202. [Google Scholar] [CrossRef]
- Lanaro, R.; Mello, S.M.; da Cunha, K.F.; Silveira, G.; Corrêa-Neto, N.F.; Hyslop, S.; Cabrices, O.G.; Costa, J.L.; Linardi, A. Kinetic profile of N,N-dimethyltryptamine and β-carbolines in saliva and serum after oral administration of ayahuasca in a religious context. Drug Test. Anal. 2021, 13, 664–678. [Google Scholar] [CrossRef]
- de Morais, D.R.; Lanaro, R.; Barbosa, I.L.; Santos, J.M.; Cunha, K.F.; Hernandes, V.V.; Tessaro, E.P.; Gomes, C.S.; Eberlin, M.N.; Costa, J.L. Ayahuasca and Kambo intoxication after alternative natural therapy for depression, confirmed by mass spectrometry. Forensic Toxicol. 2017, 36, 212–221. [Google Scholar] [CrossRef]
- Pichini, S.; Marchei, E.; García-Algar, O.; Gomez, A.; Di Giovannandrea, R.; Pacifici, R. Ultra-high-pressure liquid chromatography tandem mass spectrometry determination of hallucinogenic drugs in hair of psychedelic plants and mushrooms consumers. J. Pharm. Biomed. Anal. 2014, 100, 284–289. [Google Scholar] [CrossRef]
- Liu, M.; Yang, H.; Hu, J.; Shen, B.; Xiang, P.; Qiang, H.; Deng, H.; Yu, Z.; Shi, Y. Analysis of 28 hair samples from users of the hallucinogenic beverage ayahuasca. Forensic Sci. Int. 2021, 323, 110790. [Google Scholar] [CrossRef]
- Tavares, L.; Monedeiro, F.; Bordin, D.M.; de Martinis, B.S. Investigation of Ayahuasca β-Carboline Alkaloids and Tryptamine in Sweat Samples from Religious Community Participants by GC-MS. J. Anal. Toxicol. 2021, 44, 601–609. [Google Scholar] [CrossRef]
- de Campos, E.G.; da Costa, B.R.B.; dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2021, 1–18. [Google Scholar] [CrossRef]
- De Giovanni, N.; Fucci, N. The current status of sweat testing for drugs of abuse: A review. Curr. Med. Chem. 2013, 20, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Naseer, A.; Baig, Y.; Jamshaid, T.; Shahwar, M.; Khurshuid, S. Forensic toxicological analysis of hair: A review. Egypt. J. Forensic Sci. 2019, 9, 17. [Google Scholar] [CrossRef]
- Tsanaclis, L.; Andraus, M.; Wicks, J. Hair analysis when external contamination is in question: A review of practical approach for the interpretation of results. Forensic Sci. Int. 2018, 285, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C.; Raymon, L.P.; Hearn, W.L.; McKenna, D.J.; Grob, C.S.; Brito, G.S.; Mash, D.C. Quantitation of N,N-dimethyltryptamine and harmala alkaloids in human plasma after oral dosing with ayahuasca. J. Anal. Toxicol. 1996, 20, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.C.; McKenna, D.J.; Grob, C.S.; Brito, G.S.; Raymon, L.P.; Poland, R.E.; Andrade, E.N.; Andrade, E.O.; Mash, D.C. Pharmacokinetics of Hoasca alkaloids in healthy humans. J. Ethnopharmacol. 1999, 65, 243–256. [Google Scholar] [CrossRef]
- Riba, J.; Valle, M.; Urbano, G.; Yritia, M.; Morte, A.; Barbanoj, M.J. Human pharmacology of ayahuasca: Subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J. Pharmacol. Exp. Ther. 2003, 306, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Riba, J.; Rodríguez-Fornells, A.; Urbano, G.; Morte, A.; Antonijoan, R.; Montero, M.; Callaway, J.C.; Barbanoj, M.J. Subjective effects and tolerability of the South American psychoactive beverage Ayahuasca in healthy volunteers. Psychopharmacology 2001, 154, 85–95. [Google Scholar] [CrossRef]
- Sanches, R.F.; De Lima Osório, F.; Santos, R.G.D.; Macedo, L.R.H.; Maia-De-Oliveira, J.P.; Wichert-Ana, L.; De Araujo, D.B.; Riba, J.; Crippa, J.A.S.; Hallak, J.E.C. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression a SPECT study. J. Clin. Psychopharmacol. 2016, 36, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Metzner, R. The Ayahuasca Experience: A Sourcebook on the Sacred Vine of Spirits; Simon and Schuster: New York, NY, USA, 2014; 272p. [Google Scholar]
- Domínguez-Clavé, E.; Soler, J.; Elices, M.; Pascual, J.C.; Álvarez, E.; de la Fuente Revenga, M.; Friedlander, P.; Feilding, A.; Riba, J. Ayahuasca: Pharmacology, neuroscience and therapeutic potential. Brain Res. Bull. 2016, 126, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, T.; Lee, J.W.; Hibino, A.; Asai, M.; Hojo, H.; Cha, B.Y.; Teruya, T.; Nagai, K.; Chung, U., II; Yagasaki, K.; et al. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling. Biochem. Biophys. Res. Commun. 2011, 409, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Hara, E.S.; Ono, M.; Kubota, S.; Sonoyama, W.; Oida, Y.; Hattori, T.; Nishida, T.; Furumatsu, T.; Ozaki, T.; Takigawa, M.; et al. Novel chondrogenic and chondroprotective effects of the natural compound harmine. Biochimie 2013, 95, 374–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aassila, H.; Bourguet-Kondracki, M.L.; Rifai, S.; Fassouane, A.; Guyot, M. Identification of harman as the antibiotic compound produced by a tunicate-associated bacterium. Mar. Biotechnol. 2003, 5, 163–166. [Google Scholar] [CrossRef]
- Di Giorgio, C.; Delmas, F.; Ollivier, E.; Elias, R.; Balansard, G.; Timon-David, P. In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp. Parasitol. 2004, 106, 67–74. [Google Scholar] [CrossRef]
- Carlini, E.A. Plants and the central nervous system. Pharmacol. Biochem. Behav. 2003, 75, 501–512. [Google Scholar] [CrossRef]
- Palhano-Fontes, F.; Barreto, D.; Onias, H.; Andrade, K.C.; Novaes, M.M.; Pessoa, J.A.; Mota-Rolim, S.A.; Osório, F.L.; Sanches, R.; Dos Santos, R.G.; et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: A randomized placebo-controlled trial. Psychol. Med. 2019, 49, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Glennon, R.A.; Dukat, M.; Grella, B.; Hong, S.S.; Costantino, L.; Teitler, M.; Smith, C.; Egan, C.; Davis, K.; Mattson, M.V. Binding of β-carbolines and related agents at serotonin (5-HT2 and 5- HT(1A)), dopamine (D2) and benzodiazepine receptors. Drug Alcohol. Depend. 2000, 60, 121–132. [Google Scholar] [CrossRef]
- Pierce, P.A.; Peroutka, S.J. Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacology 1989, 97, 118–122. [Google Scholar] [CrossRef]
- Smith, R.L.; Canton, H.; Barrett, R.J.; Sanders-Bush, E. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors. Pharmacol. Biochem. Behav. 1998, 61, 323–330. [Google Scholar] [CrossRef]
- Liester, M.B.; Prickett, J.I. Hypotheses regarding the mechanisms of ayahuasca in the treatment of addictions. J. Psychoactive Drugs 2012, 44, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.G.; Grasa, E.; Valle, M.; Ballester, M.R.; Bouso, J.C.; Nomdedéu, J.F.; Homs, R.; Barbanoj, M.J.; Riba, J. Pharmacology of ayahuasca administered in two repeated doses. Psychopharmacology 2012, 219, 1039–1053. [Google Scholar] [CrossRef]
- Guimarães dos Santos, R. Safety and Side Effects of Ayahuasca in Humans-An Overview Focusing on Developmental Toxicology. J. Psychoactive Drugs 2013, 45, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Garrido, D.F.; Gómez-Sousa, M.; Ona, G.; Dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.A.; Bouso, J.C. Effects of ayahuasca on mental health and quality of life in naïve users: A longitudinal and cross-sectional study combination. Sci. Rep. 2020, 10, 4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruffell, S.G.D.; Netzband, N.; Tsang, W.; Davies, M.; Butler, M.; Rucker, J.J.H.; Tófoli, L.F.; Dempster, E.L.; Young, A.H.; Morgan, C.J.A. Ceremonial Ayahuasca in Amazonian Retreats—Mental Health and Epigenetic Outcomes From a Six-Month Naturalistic Study. Front. Psychiatry 2021, 12, 687615. [Google Scholar] [CrossRef] [PubMed]
- Uthaug, M.V.; van Oorsouw, K.; Kuypers, K.P.C.; van Boxtel, M.; Broers, N.J.; Mason, N.L.; Toennes, S.W.; Riba, J.; Ramaekers, J.G. Sub-acute and long-term effects of ayahuasca on affect and cognitive thinking style and their association with ego dissolution. Psychopharmacology 2018, 235, 2979–2989. [Google Scholar] [CrossRef] [PubMed]
- Moloudizargari, M.; Mikaili, P.; Aghajanshakeri, S.; Asghari, M.; Shayegh, J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn. Rev. 2013, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J.C.; Grob, C.S. Ayahuasca Preparations and Serotonin Reuptake Inhibitors: A Potential Combination for Severe Adverse Interactions J. Psychoact. Drugs 1998, 30, 367–369. [Google Scholar] [CrossRef]
- Bilhimer, M.H.; Schult, R.F.; Higgs, K.V.; Wiegand, T.J.; Gorodetsky, R.M.; Acquisto, N.M. Case Report Acute Intoxication following Dimethyltryptamine Ingestion. Case Rep. Emerg. Med. 2018, 2018, 3–5. [Google Scholar] [CrossRef]
- Kulshreshtha, D.; Ganguly, J.; Jog, M. Manganese and Movement Disorders: A Review. J. Mov. Disord. 2021, 14, 93–102. [Google Scholar] [CrossRef]
- Proudfoot, O. Manganese in manganism, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Batten disease: A narrative review. Neurol. India 2017, 65, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Ruella Oliveira, S.; Barbosa, F.; Tinkov, A.A.; Skalny, A.V.; Santamaría, A.; Lee, E.; Bowman, A.B.; Aschner, M. Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: Review of the current literature. Expert Opin. Drug Metab. Toxicol. 2021, 17, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, W.M.; Egger, J.I.; Kuijpers, H.J. Manganese and acute paranoid psychosis: A case report. J. Med. Case Rep. 2011, 5, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labate, B.C. Consumption of Ayahuasca by Children and Pregnant Women: Medical Controversies and Religious Perspectives. J. Psychoact. Drugs 2011, 43, 27–35. [Google Scholar] [CrossRef]
- Macrae, E. The Internationalization of Ayahuasca. J. Contemp. Relig. 2012, 27, 524–526. [Google Scholar] [CrossRef]
- Brush, D.E.; Bird, S.B.; Boyer, E.W.; Ph, D. Monoamine Oxidase Inhibitor Poisoning Resulting from Internet Misinformation on Illicit Substances. J. Toxicol. Clin. Toxicol. 2004, 42, 191–195. [Google Scholar] [CrossRef]
- Szmulewicz, A.G.; Valerio, M.P.; Smith, J.M. Switch to mania after ayahuasca consumption in a man with bipolar disorder: A case report. Int. J. Bipolar Disord. 2015, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, R.G.; Osório, F.L.; Crippa, J.A.S.; Riba, J.; Zuardi, A.W.; Hallak, J.E.C. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): A systematic review of clinical trials published in the last 25 years. Ther. Adv. Psychopharmacol. 2016, 6, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Riga, M.S.; Soria, G.; Tudela, R.; Artigas, F. The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: Reversal by antipsychotic drugs. Int. J. Neuropsychopharmacol. 2014, 17, 1269–1282. [Google Scholar] [CrossRef] [Green Version]
- Sklerov, J.; Levine, B.; Moore, K.A.; King, T.; Fowler, D. A fatal intoxication following the ingestion of 5-methoxy-N,N- dimethyltryptamine in an ayahuasca preparation. J. Anal. Toxicol. 2005, 29, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Sastre, C.; Bartoli, C.; Baillif-Couniou, V.; Leonetti, G.; Pelissier-Alicot, A.-L. Post Mortem Redistribution of Drugs: Current State of Knowledge. Curr. Pharm. Des. 2018, 23, 5530–5541. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C.; Grob, C.S.; McKenna, D.J.; Nichols, D.E.; Shulgin, A.; Tupper, K.W. A demand for clarity regarding a case report on the ingestion of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) in an Ayahuasca preparation. J. Anal. Toxicol. 2006, 30, 406–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.-W.; Jiang, X.-L.; Winter, J.C.; Yu, A.-M. Psychedelic 5-Methoxy-N,N-dimethyltryptamine: Metabolism, Pharmacokinetics, Drug Interactions, and Pharmacological Actions. Curr. Drug Metab. 2010, 11, 659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, R.G.; Balthazar, F.M.; Bouso, J.C.; Hallak, J.E.C. The current state of research on ayahuasca: A systematic review of human studies assessing psychiatric symptoms, neuropsychological functioning, and neuroimaging. J. Psychopharmacol. 2016, 30, 1230–1247. [Google Scholar] [CrossRef] [PubMed]
- de Menezes Galvão, A.C.; de Almeida, R.N.; Erick, A.; dos Santos Silva, E.A.; Freire, F.A.M.; Palhano-Fontes, F.; Onias, H.; Arcoverde, E.; Maia-de-Oliveira, J.P.; de Araújo, D.B.; et al. Cortisol modulation by ayahuasca in patients with treatment resistant depression and healthy controls. Front. Psychiatry 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, R.G.; Hallak, J.E.C. Effects of the Natural β-Carboline Alkaloid Harmine, a Main Constituent of Ayahuasca, in Memory and in the Hippocampus: A Systematic Literature Review of Preclinical Studies. J. Psychoact. Drugs 2017, 49, 1–10. [Google Scholar] [CrossRef]
- Galvão-Coelho, N.L.; de Menezes Galvão, A.C.; de Almeida, R.N.; Palhano-Fontes, F.; Campos Braga, I.; Lobão Soares, B.; Maia-de-Oliveira, J.P.; Perkins, D.; Sarris, J.; de Araujo, D.B. Changes in inflammatory biomarkers are related to the antidepressant effects of Ayahuasca. J. Psychopharmacol. 2020, 34, 1125–1133. [Google Scholar] [CrossRef]
- Barbanoj, M.J.; Riba, J.; Clos, S.; Giménez, S. Daytime Ayahuasca administration modulates REM and slow-wave sleep in healthy volunteers. Psychopharmacology 2007, 196, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Fábregas, J.M.; González, D.; Fondevila, S.; Cutchet, M.; Fernández, X.; Barbosa, P.C.R.; Alcázar-Córcoles, M.Á.; Barbanoj, M.J.; Riba, J.; Bouso, J.C. Assessment of addiction severity among ritual users of ayahuasca. Drug Alcohol. Depend. 2010, 111, 257–261. [Google Scholar] [CrossRef]
- Ona, G.; Kohek, M.; Massaguer, T.; Gomariz, A.; Jiménez, D.F.; Dos Santos, R.G.; Hallak, J.E.C.; Alcázar-Córcoles, M.Á.; Bouso, J.C. Ayahuasca and Public Health: Health Status, Psychosocial Well-Being, Lifestyle, and Coping Strategies in a Large Sample of Ritual Ayahuasca Users. J. Psychoact. Drugs 2019, 51, 135–145. [Google Scholar] [CrossRef]
- De Almeida, R.N.; Galvão, A.C.D.M.; Da Silva, F.S.; Silva, E.A.; Palhano-Fontes, F.; Maia-De-Oliveira, J.P.; De Araújo, L.-S.B.; Lobão-Soares, B.; Galvão-Coelho, N.L. Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Front. Psychol. 2019, 10, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Summary Formula | Mw (g/mol) | Concentration in Decoction (mg/mL) | Percentual Concentration in Decoction (%) | Derivates Found in Human Body |
---|---|---|---|---|---|
Harmine | C13H12N2O | 212.25 | 0.11–7.11 | 40 (15–75) | harmol |
Harmaline | C13H14N2O | 214.26 | 0.004–0.945 | 2 (0.3–16.8) | harmalol |
Tetrahydroharmine | C13H16N2O | 216.28 | 0.032–3.88 | 30 (1.4–55.4) | tetrahydroharmol |
N,N-dimethyltryptamine | C12H16N2 | 188.27 | 0.088–3.12 | 25 (9.2–63,7) | DMT-NO, NMT, 2-MTHBC, IAA |
Element | Concentration Range (mg/L) in Ayahuasca Decoctions | Recommended Dose (mg/day) | Maximum Concentration in 150 mL Decoction (mg/day) | Daily Values (%) |
---|---|---|---|---|
Ca | 102–664 | 1300 | 100 | 8 |
Mg | 313–1542 | 420 | 231 | 50 |
P | 47–616 | 1250 | 92 | 7 |
K | 2017–7263 | 4700 | 1089 | 23 |
Li | 0.0045–0.076 | 1 | 0.011 | 1 |
Al | <LOQ-9.7 | 10 | 1.5 | 15 |
Mn | 4.8–94 | 2.3 | 14.1 | 613 |
Fe | 1.75–6.9 | 18 | 1.04 | 6 |
Cu | <LOQ-0.17 | 0.9 | 0.026 | 3 |
Co | <LOQ-0.17 | 0.05 | 0.026 | 52 |
Zn | 0.62–19.3 | 11 | 2.9 | 26 |
As and Hg | <LOQ | - | 0 | - |
Cd | 0.0038–0.027 | - | 0.004 | - |
Pb | <LOQ-0.35 | - | 0.053 | - |
Analytical Method | Matrix | Analyte and Concentration [ng/mL] | Calibration Range (ng/mL) | Year | Reference |
---|---|---|---|---|---|
LC-MS/MS | plasma | DMT [ND-15.1] DMT-NO [0.25–45.2] THH [25.9–55.4] THHOH [0.96–2.9] Harmine [0.54–5.2] Harmol [0.32–5.55] Harmaline [2.2–4.5] Harmalol [1.7–3.3] 2-MTHBC [ND-0.48] IAA [4.3–207.8] | 1–50 1–50 1–50 1–50 1–50 1–50 1–50 1–50 1–50 10–500 | 2012 | [20] |
UHPLC-MS/MS | plasma | DMT [ND-4.3] THH [13.4–117.9] Harmaline [<LOQ-2.1] Harmine [<LOQ-40.6] | 1–150 2–150 1–150 1–150 | 2021 | [37] |
LC-MS/MS | plasma | DMT [1.2–19.8] Harmine [1–15.6] Harmaline [2.7–15.7] THH [27.1–71.4] | 0.5–100 | 2012 | [38] |
LC-MS/MS | plasma | DMT [2.5–65.9] NMT [0.57–7.6] DMT-NO [1.6–40.6] Harmine [5.9–511.5] Harmol [0–318.8] Harmaline [1.56–44.4] Harmalol [3.1–48.6] THH [22.6–895.7] THHOH [0–111] IAA [61.35–1674.6] | 1–50 1–50 1–50 1–50 1–50 1–50 | 2015 | [39] |
1–50 1–50 1–50 10–500 | |||||
LC-MS/MS | serum | DMT [0.03–17.8] Harmine [0.1–61] Harmaline [0.1–5.4] THH [0.5–93.3] | 0.3–200 | 2021 | [40] |
LC-MS/MS | serum | DMT [3.2] Harmine [12.3] Harmaline [0.3] THH [182] | 0.3–200 | 2017 | [41] |
LC-MS/MS | urine | DMT [488] Harmine [60.6] Harmaline [49.4] THH [567] | 5–200 | 2017 | [41] |
HPLC-MS/MS | urine | DMT [0.26–154.5] IAA [1152–5724] DMT-NO [155.2–2366] 2-MTHBC [8.08–19.4] NMT [0.52–6.12] Harmine [3.65–8.66] Harmaline [31.86–113.75] THH [307.7–1372.3] Harmol [56.2–146.1] Harmalol [121.9–193.4] THHOH [241.4–327.2] | 5–200 | 2012 | [21] |
HPLC-MS/MS | urine | DMT [30–450] DMT-NO [1270–11,060] 2-MTHBC [10–130] 5-OH-DMT [140–160] Harmine [10–160] Harmaline [20–510] Harmol [40–3090] Harmalol [1250–4040] THH [10–6270] | 5–200 | 2011 | [25] |
UHPLC-MS/MS | hair | DMT [5600] | 30–10,000 | 2014 | [42] |
LC-MS/MS | Hair | DMT [3–1109] | 3–500 | 2021 | [43] |
GC-MS | sweat | DMT [53–186.8 ng/patch] Harmine [319.8–1461.5 ng/patch] Harmaline [87.6–201.9 ng/patch] | 20–1500 ng/patch * | 2021 | [44] |
LC-MS/MS | saliva | DMT [0.07–327.2] Harmine [0.01–95.2] Harmaline [0.08–131.3] THH [0.14–623.6] | 0.3–100 | 2021 | [40] |
Hoasca Alkaloids (µg/mL) | Oral Dose (mg) | Volunteers (kg) | Average of Oral Dose (mg/kg) | Cmax (ng/mL) | Tmax (h) | T1/2 (h) | Ref. |
---|---|---|---|---|---|---|---|
DMT (240) | 35.5 ± 5.3 | 15 male members of UDV. Used hoasca at least 10 years. Weight 74 ± 11.3 kg (chronic administration) | 0.48 | 15.8 ± 4.4 | 1.8 ± 0.54 | 4.32 ± 3.45 | [50] |
harmine (1700) | 252.3 ± 38.4 | 3.41 | 114.6 ± 61.7 | 1.7 ± 0.97 | 1.9 ± 1 | ||
harmaline (200) | 29.7 ± 4.5 | 0.40 | 6.3 ± 3.1 | 2.4 ± 1.1 | - | ||
THH (1070) | 158.8 ±24.2 | 2.15 | 91.0 ± 22 | 2.9 ± 0.66 | 8.9 ± 4.8 | ||
DMT (530) | 39.8 (30.4–47.9) 57.4 (43.7–67.7) | 15 males and 3 females without psychedelic-related disorders. Weight 66.47 (50.7–79.5) (except two, without experience with ayahuasca) | 0.60 0.86 | 12.4 (9.09) 17.44 (10.49) | 1.5 (1–2.5) 1.5 (1–4) | 1.07 (0.58) 1.06 (0.77) | [51] |
harmine (900) | 67.4 (51.6–81.2) 95.8 (74.2–114.8) | 1.01 1.44 | 0 0 | 0 0 | 0 0 | ||
harmaline (60) | 4.6 (3.5–5.5) 6.5 (5.0–7.8) | 0.07 0.1 | 2.48 (1.28) 4.32 (2.43) | 1.5 (1–3) 2 (1–4) | 2.01 (0.56) 1.95 (0.81) | ||
THH (720) | 54.2 (41.5–65.3) 77.0 (59.6–92.3) | 0.82 1.16 | 23.06 (11.45) 39.4 (20.63) | 2.5 (1.5–3) 3 (1.5–6) | 4.78 (3.95) 4.68 (1.52) | ||
harmol (NA) | - | 10.9 (6.04) 17.57 (7.72) | 1.5 (1–2.5) 2 (1–3) | 1.64 (0.29) 1.49 (0.28) | |||
harmalol (NA) | - | 6.74 (3.52) 9.59 (4.17) | 2.5 (1–4) 2.75 (1.5–4) | 30.33 (20.53) 48.64 (77.09) | |||
DMT (328) | 91.13 (64.67–114.73) | 12 males and 8 females, with previous experience drinking ayahuasca. Weight 74.9 ± 7.7. Partially chronic | 1.21 | 25.39 ± 16.78 | 2.21 ± 0.83 | - | |
harmine (1080) | 300.06 (221.93–377.78) | 4.01 | 110.26 ± 137.85 | 2.5 ± 0.87 | - | ||
harmaline (176) | 48.9 (34.70–61.56) | 0.65 | 14.68 ± 13.93 | 2.68 ± 0.78 | - | ||
THH (1280) | 355.63 (252.36–447.74) | 4.75 | 328.76 ± 324.86 | 3.18 ± 0.71 | - | [39] | |
NMT (17) | 4.72 (3.35–5.95) | 0.06 | 3.10 ± 2.12 | 2.03 ± 0.79 | - | ||
5-OH-DMT (2) | 0.56 (0.39–0.70) | 0.007 | - | - | - | ||
Harmol (528) | 146.70 (104.10–184.69) | 1.96 | 84.99 ± 93.57 | 2.47 ± 0.92 | - | ||
Harmalol (12) | 3.33 (2.37–4.20) | 0.04 | 17.22 ± 13.64 | 2.08 ± 0.65 | - | ||
THH-OH (104) | 28.90 (20.50–36.38) | 0.39 | 22.58 ± 26.76 | 1.99 ± 0.90 | - | ||
DMT-NO (ND) | - | 14.42 ± 12.50 | 1.85 ± 0.63 | - | |||
IAA (ND) | - | 717.72 ± 454.50 | 2.92 ± 0.66 | - | |||
DMT (2070) | 155.25–310.5 | 14 participants (LDV), gender was not mentioned. Used Hoasca at least 1 year. Weight 50–100 (kg), chronic | 3.11 | 7.69 * 98.36 + | 1.3 * 0.5 + | 3.51 * 0.85 + | [40] |
Harmine (2894) | 217.25–434.1 | 4.34 | 16.05 * 43.06 + | 1.0 * 0.5 + | 2.12 * 2.4 + | ||
Harmaline (147.5) | 11.05–22.1 | 0.22 | 1.21 * 33.12 + | 1.0 * 0.5 + | 3.29 * 3.7 + | ||
THH (1843) | 142–284 | 2.84 | 44.31 * 337.4 + | 2.0 * 0.5 + | 5.54 * 4.8 + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nižnanský, Ľ.; Nižnanská, Ž.; Kuruc, R.; Szórádová, A.; Šikuta, J.; Zummerová, A. Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects. J. Clin. Med. 2022, 11, 1147. https://doi.org/10.3390/jcm11041147
Nižnanský Ľ, Nižnanská Ž, Kuruc R, Szórádová A, Šikuta J, Zummerová A. Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects. Journal of Clinical Medicine. 2022; 11(4):1147. https://doi.org/10.3390/jcm11041147
Chicago/Turabian StyleNižnanský, Ľuboš, Žofia Nižnanská, Roman Kuruc, Andrea Szórádová, Ján Šikuta, and Anežka Zummerová. 2022. "Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects" Journal of Clinical Medicine 11, no. 4: 1147. https://doi.org/10.3390/jcm11041147
APA StyleNižnanský, Ľ., Nižnanská, Ž., Kuruc, R., Szórádová, A., Šikuta, J., & Zummerová, A. (2022). Ayahuasca as a Decoction Applied to Human: Analytical Methods, Pharmacology and Potential Toxic Effects. Journal of Clinical Medicine, 11(4), 1147. https://doi.org/10.3390/jcm11041147