A Comprehensive Review of Neuromuscular Manifestations of COVID-19 and Management of Pre-Existing Neuromuscular Disorders in Children
Abstract
:1. Introduction
2. Neuromuscular Manifestations of COVID-19 in Children
3. NMDs as Risk Factor for Severe Disease in Children
4. Telemedicine and Rehabilitation
4.1. Telemedicine
4.2. Rehabilitation
4.3. Educational Needs
5. Management of Pre-Existing NMDs in Children
5.1. Muscular Dystrophies and Myopathies
5.2. Myasthenic Syndromes
5.3. Peripheral Nerve Disorders
5.4. Spinal Muscular Atrophy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mauri, E.; Abati, E.; Musumeci, O.; Rodolico, C.; D’Angelo, M.G.; Mirabella, M.; Lucchini, M.; Bello, L.; Pegoraro, E.; Maggi, L.; et al. Estimating the Impact of COVID-19 Pandemic on Services Provided by Italian Neuromuscular Centers: An Italian Association of Myology Survey of the Acute Phase. Acta Myol. 2020, 39, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Veerapandiyan, A.; Wagner, K.R.; Apkon, S.; McDonald, C.M.; Mathews, K.D.; Parsons, J.A.; Wong, B.L.; Eichinger, K.; Shieh, P.B.; Butterfield, R.J.; et al. The Care of Patients with Duchenne, Becker, and Other Muscular Dystrophies in the COVID-19 Pandemic. Muscle Nerve 2020, 62, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Veerapandiyan, A.; Connolly, A.M.; Finkel, R.S.; Arya, K.; Mathews, K.D.; Smith, E.C.; Castro, D.; Butterfield, R.J.; Parsons, J.A.; Servais, L.; et al. Spinal Muscular Atrophy Care in the COVID-19 Pandemic Era. Muscle Nerve 2020, 62, 46–49. [Google Scholar] [CrossRef]
- James, M.K.; Rose, K.; Alfano, L.N.; Reash, N.F.; Eagle, M.; Lowes, L.P. Remote Delivery of Motor Function Assessment and Training for Clinical Trials in Neuromuscular Disease: A Response to the COVID-19 Global Pandemic. Front. Genet. 2021, 12, 1938. [Google Scholar] [CrossRef] [PubMed]
- Laventhal, N.T.; Graham, R.J.; Rasmussen, S.A.; Urion, D.K.; Kang, P.B. Ethical Decision-Making for Children with Neuromuscular Disorders in the COVID-19 Crisis. Neurology 2020, 95, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Stratton, A.T.; Roberts Iii, R.O.; Kupfer, O.; Carry, T.; Parsons, J.; Apkon, S. Pediatric Neuromuscular Disorders: Care Considerations during the COVID-19 Pandemic. J. Pediatr. Rehabil. Med. 2020, 13, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Handberg, C.; Werlauff, U.; Højberg, A.-L.; Knudsen, L.F. Impact of the COVID-19 Pandemic on Biopsychosocial Health and Quality of Life among Danish Children and Adults with Neuromuscular Diseases (NMD)-Patient Reported Outcomes from a National Survey. PLoS ONE 2021, 16, e0253715. [Google Scholar] [CrossRef]
- Kim, Y.; Walser, S.A.; Asghar, S.J.; Jain, R.; Mainali, G.; Kumar, A. A Comprehensive Review of Neurologic Manifestations of COVID-19 and Management of Pre-Existing Neurologic Disorders in Children. J. Child. Neurol. 2021, 36, 324–330. [Google Scholar] [CrossRef]
- Sandoval, F.; Julio, K.; Méndez, G.; Valderas, C.; Echeverría, A.C.; Perinetti, M.J.; Suarez, N.M.; Barraza, G.; Piñera, C.; Alarcón, M.; et al. Neurologic Features Associated With SARS-CoV-2 Infection in Children: A Case Series Report. J. Child. Neurol. 2021, 36, 853–866. [Google Scholar] [CrossRef]
- Paybast, S.; Gorji, R.; Mavandadi, S. Guillain-Barré Syndrome as a Neurological Complication of Novel COVID-19 Infection: A Case Report and Review of the Literature. Neurologist 2020, 25, 101–103. [Google Scholar] [CrossRef]
- Frank, C.H.M.; Almeida, T.V.R.; Marques, E.A.; de Sousa Monteiro, Q.; Feitoza, P.V.S.; Borba, M.G.S.; Vasconcelos, H.L.; de Souza Bastos, M.; Lacerda, M.V.G. Guillain-Barré Syndrome Associated with SARS-CoV-2 Infection in a Pediatric Patient. J. Trop. Pediatr. 2021, 67, fmaa044. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, M.; Zakaria, F.; Ragab, Y.; Saad, A.; Bamaga, A.; Emad, Y.; Rasker, J.J. Guillain-Barré Syndrome Associated With Severe Acute Respiratory Syndrome Coronavirus 2 Detection and Coronavirus Disease 2019 in a Child. J. Pediatric. Infect. Dis. Soc. 2020, 9, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Mozhdehipanah, H.; Paybast, S.; Gorji, R. Guillain–Barré Syndrome as a Neurological Complication of COVID-19 Infection: A Case Series and Review of the Literature. Int. Clin. Neurosci. J. 2020, 7, 156–161. [Google Scholar] [CrossRef]
- Sánchez-Morales, A.E.; Urrutia-Osorio, M.; Camacho-Mendoza, E.; Rosales-Pedraza, G.; Dávila-Maldonado, L.; González-Duarte, A.; Herrera-Mora, P.; Ruiz-García, M. Neurological Manifestations Temporally Associated with SARS-CoV-2 Infection in Pediatric Patients in Mexico. Child’s Nerv. Syst. 2021, 37, 2305–2312. [Google Scholar] [CrossRef] [PubMed]
- Essajee, F.; Lishman, J.; Solomons, R.; Abraham, D.R.; Goussard, P.; Van Toorn, R. Transient Acetylcholine Receptor-Related Myasthenia Gravis, Post Multisystem Inflammatory Syndrome in Children (MIS-C) Temporally Associated with COVID-19 Infection. BMJ Case Rep. 2021, 14, e244102. [Google Scholar] [CrossRef]
- Sriwastava, S.; Tandon, M.; Kataria, S.; Daimee, M.; Sultan, S. New Onset of Ocular Myasthenia Gravis in a Patient with COVID-19: A Novel Case Report and Literature Review. J. Neurol. 2021, 268, 2690–2696. [Google Scholar] [CrossRef]
- Reddy, Y.M.; Osman, S.; Murthy, J.M. Temporal Association between SARS-CoV-2 and New-Onset Myasthenia Gravis: Is It Causal or Coincidental? BMJ Case Rep. 2021, 14, e244146. [Google Scholar] [CrossRef]
- Lyons-Weiler, J. Pathogenic Priming Likely Contributes to Serious and Critical Illness and Mortality in COVID-19 via Autoimmunity. J. Transl. Autoimmun. 2020, 3, 100051. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, R.; Yang, H.; Yang, H. To Be or Not To Be Vaccinated: That Is a Question in Myasthenia Gravis. Front. Immunol. 2021, 12, 733418. [Google Scholar] [CrossRef]
- Kermond, R.; Cavazzoni, E.; Kilo, T.; Britton, P.N.; Durkan, A. COVID-19-Associated Rhabdomyolysis in a Paediatric Patient with Sickle Cell Trait. J. Paediatr. Child Health 2021. [Google Scholar] [CrossRef]
- Cao, L.L.; Gaffney, L.K.; Marcus, C. Hypokalemia-Induced Rhabdomyolysis in a Child with Autism Affected by the COVID-19 Pandemic. J. Dev. Behav. Pediatr. 2021. [Google Scholar] [CrossRef]
- Fabi, M.; Guida, F.; Pierantoni, L.; Greco, L.; di Luca, D.; Lanari, M. Severe Rhabdomyolysis in a Child With Multisystem Inflammatory Syndrome: An Autoimmune Mechanism? Pediatr. Neurol. 2021, 124, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Cassim, F.; Soni, A.J.; Murphy, S. Severe Acute Inflammatory Myositis and Rhabdomyolysis in Paediatric SARS-CoV-2-Associated MIS-C (Multisystem Inflammatory Syndrome in Children). BMJ Case Rep. 2021, 14, e243112. [Google Scholar] [CrossRef] [PubMed]
- Bach, M.; Lim, P.P.; Azok, J.; Ruda Wessell, K.; Desai, A.P.; Dirajlal-Fargo, S. Anaphylaxis and Rhabdomyolysis: A Presentation of a Pediatric Patient With COVID-19. Clin. Pediatr. 2021, 60, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Zombori, L.; Bacon, M.; Wood, H.; Chatterjee, F.; Venkateswaran, R.; Lampariello, S.; Yoong, M. Severe Cortical Damage Associated with COVID-19 Case Report. Seizure 2021, 84, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, S.; Byers, M.; Byrd, A.; Cull, J.; Peterson, D.; Thomas, B.; Jacobson, P. Rhabdomyolysis as the Initial Presentation of SARS-CoV-2 in an Adolescent. Pediatrics 2021, 147, e2020019273. [Google Scholar] [CrossRef]
- Samies, N.L.; Pinninti, S.; James, S.H. Rhabdomyolysis and Acute Renal Failure in an Adolescent with Coronavirus Disease 2019. J. Pediatric. Infect. Dis. Soc. 2020, 9, 507–509. [Google Scholar] [CrossRef]
- Gefen, A.M.; Palumbo, N.; Nathan, S.K.; Singer, P.S.; Castellanos-Reyes, L.J.; Sethna, C.B. Pediatric COVID-19-Associated Rhabdomyolysis: A Case Report. Pediatr. Nephrol. 2020, 35, 1517–1520. [Google Scholar] [CrossRef]
- Tram, N.; Chiodini, B.; Montesinos, I.; Vicinanza, A.; Beretta-Piccoli, X.; Gubbelmans, N.; Demey, M.; Genis, N.; Tilmanne, A.; Smeesters, P.R.; et al. Rhabdomyolysis and Acute Kidney Injury as Leading COVID-19 Presentation in an Adolescent. Pediatr. Infect. Dis. J. 2020, 39, e314–e315. [Google Scholar] [CrossRef]
- Giordano, S.; Failla, M.C.; Li Cavoli, M.G.; Romano, D.; Vanella, V.; Caruso, C.; Chillura, I.; Maggio, M.C. A 7-Year-Old Boy and a 14-Year-Old Girl Initially Diagnosed with Toxic Shock Syndrome and Tested Positive for SARS-CoV-2 Infection, Supporting a Diagnosis of Multisystem Inflammatory Syndrome in Children (MIS-C). Am. J. Case Rep. 2021, 22, e931570. [Google Scholar] [CrossRef]
- Tekin, E.; Akoğlu, H.A. From Influenza to SARS-CoV-2: Etiological Evaluation of Acute Benign Childhood Myositis. Acta Neurol. Belg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Calderón, M.K.; Bayardo-Gutierrez, B.; Pardo-Díaz, E.; Scheffler-Mendoza, S.C. Juvenile Dermatomyositis Triggered by SARS-CoV-2. Pediatr. Neurol. 2021, 121, 26–27. [Google Scholar] [CrossRef]
- Movahedi, N.; Ziaee, V. COVID-19 and Myositis; True Dermatomyositis or Prolonged Post Viral Myositis? Pediatr. Rheumatol. Online. J. 2021, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Tanboon, J.; Nishino, I. COVID-19-Associated Myositis May Be Dermatomyositis. Muscle Nerve 2021, 63, E9–E10. [Google Scholar] [CrossRef]
- Zhang, H.; Charmchi, Z.; Seidman, R.J.; Anziska, Y.; Velayudhan, V.; Perk, J. COVID-19-Associated Myositis with Severe Proximal and Bulbar Weakness. Muscle Nerve 2020, 62, E57–E60. [Google Scholar] [CrossRef]
- Perk, J.; Anziska, Y.; Seidman, R. Reply. Muscle Nerve 2021, 63, E10. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Chen, T.-H. Care for Patients with Neuromuscular Disorders in the COVID-19 Pandemic Era. Front. Neurol. 2021, 12, 607790. [Google Scholar] [CrossRef]
- Parri, N.; Magistà, A.M.; Marchetti, F.; Cantoni, B.; Arrighini, A.; Romanengo, M.; Felici, E.; Urbino, A.; Da Dalt, L.; Verdoni, L.; et al. Characteristic of COVID-19 Infection in Pediatric Patients: Early Findings from Two Italian Pediatric Research Networks. Eur. J. Pediatr. 2020, 179, 1315–1323. [Google Scholar] [CrossRef]
- Natera-de Benito, D.; Aguilera-Albesa, S.; Costa-Comellas, L.; García-Romero, M.; Miranda-Herrero, M.C.; Rúbies Olives, J.; García-Campos, Ó.; Martínez Del Val, E.; Martinez Garcia, M.J.; Medina Martínez, I.; et al. COVID-19 in Children with Neuromuscular Disorders. J. Neurol. 2021, 268, 3081–3085. [Google Scholar] [CrossRef]
- Levine, H.; Prais, D.; Aharoni, S.; Nevo, Y.; Katz, J.; Rahmani, E.; Goldberg, L.; Scheuerman, O. COVID-19 in Advanced Duchenne/Becker Muscular Dystrophy Patients. Neuromuscul. Disord. 2021, 31, 607–611. [Google Scholar] [CrossRef]
- Antoon, J.W.; Grijalva, C.G.; Thurm, C.; Richardson, T.; Spaulding, A.B.; Teufel, R.J.; Reyes, M.A.; Shah, S.S.; Burns, J.E.; Kenyon, C.C.; et al. Factors Associated With COVID-19 Disease Severity in US Children and Adolescents. J. Hosp. Med. 2021, 16, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Mosalli, R.; Al Matrafi, A.; Ghazi, M.A.; Aboumousatafa, G.A.; Paes, B. COVID-19 Infection in Spinal Muscular Atrophy Associated with Multisystem Inflammatory Syndrome. Case Rep. Pediatrics 2021, 2021, e5862444. [Google Scholar] [CrossRef] [PubMed]
- CARES Act: AMA COVID-19 Pandemic Telehealth Fact Sheet. Available online: https://www.ama-assn.org/delivering-care/public-health/cares-act-ama-covid-19-pandemic-telehealth-fact-sheet (accessed on 31 December 2021).
- Sukhov, R.; Asante, A.; Ilizarov, G. Telemedicine for Pediatric Physiatry: How Social Distancing Can Bring Physicians and Families Closer Together. J. Pediatr. Rehabil. Med. 2020, 13, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Bain, J.M.; Dyer, C.-A.; Galvin, M.; Goldman, S.; Selman, J.; Silver, W.G.; Tom, S.E. How Providers in Child Neurology Transitioned to Telehealth During COVID-19 Pandemic. Child Neurol. Open 2021, 8, 2329048X211022976. [Google Scholar] [CrossRef]
- Appendino, J.P.; Baker, S.K.; Chapman, K.M.; Dykstra, T.; Hussein, T.; Jones, M.-L.; Mezei, M.M.; Mirsattari, S.M.; Ng, M.; Nikkel, J.; et al. Practice Guidelines for Canadian Neurophysiology Laboratories during the COVID-19 Pandemic. Can. J. Neurol. Sci. 2021, 48, 25–30. [Google Scholar] [CrossRef]
- Mandarakas, M.R.; Young, P.; Burns, J. Neuromuscular Rehabilitation-What to Do? Curr. Opin. Neurol. 2021, 34, 697–705. [Google Scholar] [CrossRef]
- Mercuri, E.; Bönnemann, C.G.; Muntoni, F. Muscular Dystrophies. Lancet 2019, 394, 2025–2038. [Google Scholar] [CrossRef]
- Quinlivan, R.; Desikan, M.; Cruces, F.; Pietrusz, A.; Savvatis, K. Clinical Outcome of SARS-CoV-2 Infection in 7 Adults with Duchenne Muscular Dystrophy Attending a Specialist Neuromuscular Centre. Neuromuscul. Disord. 2021, 31, 603–606. [Google Scholar] [CrossRef]
- Hippisley-Cox, J.; Young, D.; Coupland, C.; Channon, K.M.; Tan, P.S.; Harrison, D.A.; Rowan, K.; Aveyard, P.; Pavord, I.D.; Watkinson, P.J. Risk of Severe COVID-19 Disease with ACE Inhibitors and Angiotensin Receptor Blockers: Cohort Study Including 8.3 Million People. Heart 2020, 106, 1503–1511. [Google Scholar] [CrossRef]
- Lopes, R.D.; Macedo, A.V.S.; de Barros E Silva, P.G.M.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; D’Andréa Saba Arruda, G.; de Albuquerque, D.C.; Camiletti, A.S.; et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef]
- Matsumura, T.; Takada, H.; Kobayashi, M.; Nakajima, T.; Ogata, K.; Nakamura, A.; Funato, M.; Kuru, S.; Komai, K.; Futamura, N.; et al. A Web-Based Questionnaire Survey on the Influence of Coronavirus Disease-19 on the Care of Patients with Muscular Dystrophy. Neuromuscul. Disord. 2021, 31, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, H.; Nakamura, A. Changes in Motor Function in Duchenne Muscular Dystrophy Patients after Travel Restrictions Due to COVID-19. Muscle Nerve 2021, 64, 357–361. [Google Scholar] [CrossRef]
- Sobierajska-Rek, A.; Mański, Ł.; Jabłońska-Brudło, J.; Śledzińska, K.; Ucińska, A.; Wierzba, J. Establishing a Telerehabilitation Program for Patients with Duchenne Muscular Dystrophy in the COVID-19 Pandemic. Wien. Klin. Wochenschr. 2021, 133, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sobierajska-Rek, A.; Mański, Ł.; Jabłońska-Brudło, J.; Śledzińska, K.; Wasilewska, E.; Szalewska, D. Respiratory Telerehabilitation of Boys and Young Men with Duchenne Muscular Dystrophy in the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 6179. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, E.; Sobierajska-Rek, A.; Małgorzewicz, S.; Soliński, M.; Szalewska, D.; Jassem, E. Is It Possible to Have Home E-Monitoring of Pulmonary Function in Our Patients with Duchenne Muscular Dystrophy in the COVID-19 Pandemic?-A One Center Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 8967. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Slama, M.C.C.; Kaku, M.; Ong, C.; Cervantes-Arslanian, A.M.; Zhou, L.; David, W.S.; Guidon, A.C. COVID-19 in Patients with Myasthenia Gravis. Muscle Nerve 2020, 62, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Moschella, P.; Roth, P. Isolated COVID-19 Infection Precipitates Myasthenia Gravis Crisis: A Case Report. Clin. Pract. Cases Emerg. Med. 2020, 4, 524–526. [Google Scholar] [CrossRef]
- Muppidi, S.; Guptill, J.T.; Jacob, S.; Li, Y.; Farrugia, M.E.; Guidon, A.C.; Tavee, J.O.; Kaminski, H.; Howard, J.F.; Cutter, G.; et al. COVID-19-Associated Risks and Effects in Myasthenia Gravis (CARE-MG). Lancet Neurol. 2020, 19, 970–971. [Google Scholar] [CrossRef]
- International MG/COVID-19 Working Group; Jacob, S.; Muppidi, S.; Guidon, A.; Guptill, J.; Hehir, M.; Howard, J.F.; Illa, I.; Mantegazza, R.; Murai, H.; et al. Guidance for the Management of Myasthenia Gravis (MG) and Lambert-Eaton Myasthenic Syndrome (LEMS) during the COVID-19 Pandemic. J. Neurol. Sci. 2020, 412, 116803. [Google Scholar] [CrossRef]
- Solé, G.; Salort-Campana, E.; Pereon, Y.; Stojkovic, T.; Wahbi, K.; Cintas, P.; Adams, D.; Laforet, P.; Tiffreau, V.; Desguerre, I.; et al. Guidance for the Care of Neuromuscular Patients during the COVID-19 Pandemic Outbreak from the French Rare Health Care for Neuromuscular Diseases Network. Rev. Neurol. (Paris) 2020, 176, 507–515. [Google Scholar] [CrossRef]
- Guidon, A.C.; Muppidi, S.; Nowak, R.J.; Guptill, J.T.; Hehir, M.K.; Ruzhansky, K.; Burton, L.B.; Post, D.; Cutter, G.; Conwit, R.; et al. Telemedicine Visits in Myasthenia Gravis: Expert Guidance and the Myasthenia Gravis Core Exam (MG-CE). Muscle Nerve 2021, 64, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, D.; Casagrande, S.; Iodice, F.; Orlando, B.; Trojsi, F.; Cirillo, G.; Clerico, M.; Bozzali, M.; Leocani, L.; Abbadessa, G.; et al. Myasthenia Gravis and Telemedicine: A Lesson from COVID-19 Pandemic. Neurol. Sci. 2021, 42, 4889–4892. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Tang, Y.; Li, C.; Sun, C.; Zhu, Y.; Li, Z.; Chang, T. COVID-19 Vaccination in Patients with Myasthenia Gravis: A Single-Center Case Series. Vaccines 2021, 9, 1112. [Google Scholar] [CrossRef] [PubMed]
- Agrati, C.; Di Cosimo, S.; Fenoglio, D.; Apolone, G.; Ciceri, F.; Ciliberto, G.; Baldanti, F.; Costantini, M.; Giannarelli, D.; Ippolito, G.; et al. COVID-19 Vaccination in Fragile Patients: Current Evidence and an Harmonized Transdisease Trial. Front. Immunol. 2021, 12, 704110. [Google Scholar] [CrossRef] [PubMed]
- Prada, V.; Hamedani, M.; Genovese, F.; Zuppa, A.; Benedetti, L.; Bellone, E.; Grandis, M.; Mandich, P.; Schenone, A. People with Charcot-Marie-Tooth Disease and COVID-19: Impaired Physical Conditions Due to the Lockdown. An International Cross-Sectional Survey. Ann. Phys. Rehabil. Med. 2020, 63, 557–559. [Google Scholar] [CrossRef]
- Prada, V.; Bellone, E.; Schenone, A.; Grandis, M. The Suspected SARS-CoV-2 Infection in a Charcot-Marie-Tooth Patient Undergoing Postsurgical Rehabilitation: The Value of Telerehabilitation for Evaluation and Continuing Treatment. Int. J. Rehabil. Res. 2020, 43, 285–286. [Google Scholar] [CrossRef]
- D’Amico, A.; Mercuri, E.; Tiziano, F.D.; Bertini, E. Spinal Muscular Atrophy. Orphanet J. Rare Dis. 2011, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Li, X.; Shen, J.; Tan, H.; Rong, T.; Lin, Y.; Feng, E.; Chen, Z.; Jiao, Y.; Liu, G.; et al. Bioinformatic Analysis of SMN1-ACE/ACE2 Interactions Hinted at a Potential Protective Effect of Spinal Muscular Atrophy against COVID-19-Induced Lung Injury. Brief. Bioinform. 2021, 22, 1291–1296. [Google Scholar] [CrossRef]
- Agosto, C.; Salamon, E.; Giacomelli, L.; Papa, S.; Benedetti, F.; Benini, F. Effect of the COVID-19 Pandemic on Children With SMA Receiving Nusinersen: What Is Missed and What Is Gained? Front. Neurol. 2021, 12, 704928. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Approves Oral Treatment for Spinal Muscular Atrophy. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy (accessed on 31 December 2021).
- Živković, S.A.; Gruener, G.; Narayanaswami, P.; AANEM Quality and Patient Safety Committee. Doctor-Should I Get the COVID-19 Vaccine? Infection and Immunization in Individuals with Neuromuscular Disorders. Muscle Nerve 2021, 63, 294–303. [Google Scholar] [CrossRef]
- Russo, V.; Politano, L. Unmet Needs on the Management of COVID-19 Vaccination in Patients with Neuromuscular Disorders. Acta Myol. 2021, 40, 113–115. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Risk |
---|---|
| Highest risk of acute respiratory failure, intubation, and death |
| Risk of severe respiratory disease |
| Profound respiratory muscle weakening |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goetschius, D.J.; Kim, Y.; Kumar, A.; Paul, D.; Naik, S. A Comprehensive Review of Neuromuscular Manifestations of COVID-19 and Management of Pre-Existing Neuromuscular Disorders in Children. J. Clin. Med. 2022, 11, 934. https://doi.org/10.3390/jcm11040934
Goetschius DJ, Kim Y, Kumar A, Paul D, Naik S. A Comprehensive Review of Neuromuscular Manifestations of COVID-19 and Management of Pre-Existing Neuromuscular Disorders in Children. Journal of Clinical Medicine. 2022; 11(4):934. https://doi.org/10.3390/jcm11040934
Chicago/Turabian StyleGoetschius, Daniel J., Yunsung Kim, Ashutosh Kumar, Dustin Paul, and Sunil Naik. 2022. "A Comprehensive Review of Neuromuscular Manifestations of COVID-19 and Management of Pre-Existing Neuromuscular Disorders in Children" Journal of Clinical Medicine 11, no. 4: 934. https://doi.org/10.3390/jcm11040934
APA StyleGoetschius, D. J., Kim, Y., Kumar, A., Paul, D., & Naik, S. (2022). A Comprehensive Review of Neuromuscular Manifestations of COVID-19 and Management of Pre-Existing Neuromuscular Disorders in Children. Journal of Clinical Medicine, 11(4), 934. https://doi.org/10.3390/jcm11040934