Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Variables
2.3. Blood Samples and Biomarker Assays
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Sample Description
3.2. Analysis of the Association between RBM3 and FGF21 with Temperature and Body Weight
3.3. Influence of Serum RBM3 and FGF21 on Functional Outcome
3.4. Influence of RBM3 and FGF21 on Weight and Inflammation-Related Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.C.; Kochanek, P.M. A New Vision for Therapeutic Hypothermia in the Era of Targeted Temperature Management: A Speculative Synthesis. Ther. Hypothermia Temp. Manag. 2019, 9, 13–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, F.; Blanco, M.; Barral, D.; Agulla, J.; Ramos-Cabrer, P.; Castillo, J. Influence of temperature on ischemic brain: Basic and clinical principles. Neurochem. Int. 2012, 60, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Vieites-Prado, A.; Iglesias-Rey, R.; Fernandez-Susavila, H.; da Silva-Candal, A.; Rodriguez-Castro, E.; Grohn, O.H.; Wellmann, S.; Sobrino, T.; Castillo, J.; Campos, F. Protective Effects and Magnetic Resonance Imaging Temperature Mapping of Systemic and Focal Hypothermia in Cerebral Ischemia. Stroke 2016, 47, 2386–2396. [Google Scholar] [CrossRef] [PubMed]
- Yenari, M.A.; Han, H.S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat. Rev. Neurosci. 2012, 13, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Geurts, M.; Petersson, J.; Brizzi, M.; Olsson-Hau, S.; Luijckx, G.J.; Algra, A.; Dippel, D.W.; Kappelle, L.J.; van der Worp, H.B. COOLIST (Cooling for Ischemic Stroke Trial): A Multicenter, Open, Randomized, Phase II, Clinical Trial. Stroke 2017, 48, 219–221. [Google Scholar] [CrossRef]
- Andresen, M.; Gazmuri, J.T.; Marin, A.; Regueira, T.; Rovegno, M. Therapeutic hypothermia for acute brain injuries. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Buhrer, C.; Wellmann, S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell. Mol. Life Sci. 2016, 73, 3839–3859. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.C.; Janesko-Feldman, K.; Carlson, S.W.; Kotermanski, S.E.; Kochanek, P.M. Robust RBM3 and beta-klotho expression in developing neurons in the human brain. J. Cereb. Blood Flow Metab. 2019, 39, 2355–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Pelt, D.W.; Confides, A.L.; Judge, A.R.; Vanderklish, P.W.; Dupont-Versteegden, E.E. Cold shock protein RBM3 attenuates atrophy and induces hypertrophy in skeletal muscle. J. Muscle Res. Cell Motil. 2018, 39, 35–40. [Google Scholar] [CrossRef]
- Larrayoz, I.M.; Rey-Funes, M.; Contartese, D.S.; Rolon, F.; Sarotto, A.; Dorfman, V.B.; Loidl, C.F.; Martinez, A. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures. PLoS ONE 2016, 11, e0161458. [Google Scholar] [CrossRef] [PubMed]
- Hettinger, Z.R.; Confides, A.L.; Vanderklish, P.W.; Sidhom, S.; Masternak, M.M.; Dupont-Versteegden, E.E. Skeletal muscle RBM3 expression is associated with extended lifespan in Ames Dwarf and calorie restricted mice. Exp. Gerontol. 2021, 146, 111214. [Google Scholar] [CrossRef]
- Avila-Gomez, P.; Vieites-Prado, A.; Dopico-Lopez, A.; Bashir, S.; Fernandez-Susavila, H.; Gubern, C.; Perez-Mato, M.; Correa-Paz, C.; Iglesias-Rey, R.; Sobrino, T.; et al. Cold stress protein RBM3 responds to hypothermia and is associated with good stroke outcome. Brain Commun. 2020, 2, fcaa078. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.C.; Manole, M.D.; Kotermanski, S.E.; Jackson, E.K.; Clark, R.S.; Kochanek, P.M. Cold stress protein RBM3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 2015, 305, 268–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, F.M.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsuchou, H.; Pan, W.; Kastin, A.J. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007, 28, 2382–2386. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liu, N.; Wang, Q.; Yu, Z.; Lin, L.; Yuan, J.; Guo, S.; Ahn, B.J.; Wang, X.J.; Li, X.; et al. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke 2018, 49, 3039–3049. [Google Scholar] [CrossRef]
- Chen, J.; Hu, J.; Liu, H.; Xiong, Y.; Zou, Y.; Huang, W.; Shao, M.; Wu, J.; Yu, L.; Wang, X.; et al. FGF21 Protects the Blood-Brain Barrier by Upregulating PPARgamma via FGFR1/beta-klotho after Traumatic Brain Injury. J. Neurotrauma 2018, 35, 2091–2103. [Google Scholar] [CrossRef]
- Ameka, M.; Markan, K.R.; Morgan, D.A.; BonDurant, L.D.; Idiga, S.O.; Naber, M.C.; Zhu, Z.; Zingman, L.V.; Grobe, J.L.; Rahmouni, K.; et al. Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Sci. Rep. 2019, 9, 630. [Google Scholar] [CrossRef]
- Inagaki, T.; Dutchak, P.; Zhao, G.; Ding, X.; Gautron, L.; Parameswara, V.; Li, Y.; Goetz, R.; Mohammadi, M.; Esser, V.; et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.; Davalos, A.; Marrugat, J.; Noya, M. Timing for fever-related brain damage in acute ischemic stroke. Stroke 1998, 29, 2455–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretti, D.; Smith, H.L.; Verity, N.; Humoud, I.; de Weerd, L.; Swinden, D.P.; Hayes, J.; Mallucci, G.R. TrkB signaling regulates the cold-shock protein RBM3-mediated neuroprotection. Life Sci. Alliance 2021, 4. [Google Scholar] [CrossRef] [PubMed]
- Dordoe, C.; Chen, K.; Huang, W.; Chen, J.; Hu, J.; Wang, X.; Lin, L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front. Pharmacol. 2021, 12, 671131. [Google Scholar] [CrossRef]
- Wang, D.; Liu, F.; Zhu, L.; Lin, P.; Han, F.; Wang, X.; Tan, X.; Lin, L.; Xiong, Y. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J. Neuroinflamm. 2020, 17, 257. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Lin, L.; Jiang, Y.; Chin, I.; Wang, X.; Li, X.; Lo, E.H.; Wang, X. Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice. Mol. Neurobiol. 2019, 56, 2314–2327. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Matei, N.; Pang, J.; Luo, X.; Song, Z.; Tang, J.; Zhang, J.H. Delayed recanalization at 3 days after permanent MCAO attenuates neuronal apoptosis through FGF21/FGFR1/PI3K/Caspase-3 pathway in rats. Exp. Neurol. 2019, 320, 113007. [Google Scholar] [CrossRef]
- Ye, L.; Wang, X.; Cai, C.; Zeng, S.; Bai, J.; Guo, K.; Fang, M.; Hu, J.; Liu, H.; Zhu, L.; et al. FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/beta-klotho. Exp. Neurol. 2019, 317, 34–50. [Google Scholar] [CrossRef]
- Cuevas-Ramos, D.; Mehta, R.; Aguilar-Salinas, C.A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Front. Physiol. 2019, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Muise, E.S.; Azzolina, B.; Kuo, D.W.; El-Sherbeini, M.; Tan, Y.; Yuan, X.; Mu, J.; Thompson, J.R.; Berger, J.P.; Wong, K.K. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol. Pharmacol. 2008, 74, 403–412. [Google Scholar] [CrossRef]
- Badman, M.K.; Kennedy, A.R.; Adams, A.C.; Pissios, P.; Maratos-Flier, E. A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1197–E1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crujeiras, A.B.; Gomez-Arbelaez, D.; Zulet, M.A.; Carreira, M.C.; Sajoux, I.; de Luis, D.; Castro, A.I.; Baltar, J.; Baamonde, I.; Sueiro, A.; et al. Plasma FGF21 levels in obese patients undergoing energy-restricted diets or bariatric surgery: A marker of metabolic stress? Int. J. Obes. 2017, 41, 1570–1578. [Google Scholar] [CrossRef]
- Dostalova, I.; Kavalkova, P.; Haluzikova, D.; Lacinova, Z.; Mraz, M.; Papezova, H.; Haluzik, M. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 2008, 93, 3627–3632. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Castro, E.; Rodriguez-Yanez, M.; Arias-Rivas, S.; Santamaria-Cadavid, M.; Lopez-Dequidt, I.; Hervella, P.; Lopez, M.; Campos, F.; Sobrino, T.; Castillo, J. Obesity Paradox in Ischemic Stroke: Clinical and Molecular Insights. Transl. Stroke Res. 2019, 10, 639–649. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Oikonomou, E.K.; Antoniades, C.; Tousoulis, D. From the BMI paradox to the obesity paradox: The obesity-mortality association in coronary heart disease. Obes. Rev. An. Off. J. Int. Assoc. Study Obes. 2016, 17, 989–1000. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Lam, K.S.L.; Xu, A. The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nat. Rev. Endocrinol. 2020, 16, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Huang, L.; Cheng, M.; Jin, X.; Zhao, Y.; Yi, M. Serial measurement of serum basic fibroblast growth factor in patients with acute cerebral infarction. Neurosci. Lett. 2006, 393, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Golab-Janowska, M.; Paczkowska, E.; Machalinski, B.; Kotlega, D.; Meller, A.; Safranow, K.; Wankowicz, P.; Nowacki, P. Elevated Inflammatory Parameter Levels Negatively Impact Populations of Circulating Stem Cells (CD133+), Early Endothelial Progenitor Cells (CD133+/VEGFR2+), and Fibroblast Growth Factor in Stroke Patients. Curr. Neurovasc. Res. 2019, 16, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Veyrat-Durebex, C.; Poher, A.L.; Lyautey, J.; Rohner-Jeanrenaud, F.; Jornayvaz, F.R. Leptin as a Potential Regulator of FGF21. Cell Physiol. Biochem. 2016, 38, 1218–1225. [Google Scholar] [CrossRef]
- Greco, S.J.; Hamzelou, A.; Johnston, J.M.; Smith, M.A.; Ashford, J.W.; Tezapsidis, N. Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and beta-amyloid in neurons. Biochem. Biophys. Res. Commun. 2011, 414, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, H.J.; Schirmer, S.H.; Jost, M.; van Stijn, S.; Peters, S.L.; Piek, J.J.; Bode, C.; Buschmann, I.R.; Mies, G. Leptin augments cerebral hemodynamic reserve after three-vessel occlusion: Distinct effects on cerebrovascular tone and proliferation in a nonlethal model of hypoperfused rat brain. J. Cereb. Blood Flow Metab. 2011, 31, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Berti, L.; Irmler, M.; Zdichavsky, M.; Meile, T.; Bohm, A.; Stefan, N.; Fritsche, A.; Beckers, J.; Konigsrainer, A.; Haring, H.U.; et al. Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes. Mol. Metab. 2015, 4, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.M.; Stillings, S.A.; Leclerc, J.L.; Phillips, H.; Edwards, N.J.; Robicsek, S.A.; Hoh, B.L.; Blackburn, S.; Dore, S. Role of Interleukin-10 in Acute Brain Injuries. Front. Neurol. 2017, 8, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, T.C.; Kotermanski, S.E.; Kochanek, P.M. Infants Uniquely Express High Levels of RBM3 and Other Cold-Adaptive Neuroprotectant Proteins in the Human Brain. Dev. Neurosci. 2018, 40, 325–336. [Google Scholar] [CrossRef] [PubMed]
Variable | |
---|---|
Age (years) | 67.6 ± 14.6 |
Female gender (%) | 45.5 |
Arterial hypertension (%) | 47.0 |
Diabetes (%) | 28.0 |
Dyslipemia (%) | 37.9 |
Smoking (%) | 22.7 |
Alcohol consumption (%) | 15.2 |
Atrial fibrillation (%) | 33.3 |
Weight: -Normal (BMI < 25 kg/m2) (%) | 19.7 |
-Overweight (BMI 25–30 kg/m2) (%) | 30.3 |
-Obesity grade I (BMI 30–35 kg/m2) (%) | 31.8 |
-Obesity grade II (BMI 35–40 kg/m2) (%) | 18.2 |
Axillary temperature on admission (°C) | 35.7 ± 0.6 |
Maximum temperature in the first 24 h (°C) | 36.9 ± 0.6 |
Maximum temperature in the first 24 h (°C) categorized (%): | |
-<36.5 °C | 31.8 |
-36.5–37.5 °C | 48.5 |
->37.5 °C | 19.7 |
TOAST (%): | |
-Atherothrombotic | 10.6 |
-Cardioembolic | 37.9 |
-Lacunar | 6.1 |
-Indeterminate | 45.4 |
Reperfusion treatment (%) | 42.0 |
NIHSS on admission | 9 [3,4,5,6,7,8,9,10,11,12,13,14,15] |
mRS at 3 months | 2 [1,2,3,4] |
Outcome at 3 months (%): | |
-Good | 51.6 |
-Poor | 48.4 |
pg/mL | pg/mL | Pearson’ Coefficient | p | ||
---|---|---|---|---|---|
RBM3 on admission | 361.8 ± 161.1 | FGF21 admission | 526.7 ± 215.3 | 0.409 | 0.001 |
FGF21 72 h | 310.3 ± 282.4 | −0.015 | 0.906 | ||
RBM3 at 72 h | 356.5 ± 139.3 | FGF21 admission | 526.7 ± 215.3 | 0.799 | <0.0001 |
FGF21 72 h | 310.3 ± 282.4 | 0.040 | 0.747 |
Good Outcomen n = 34 | Poor Outcomen n = 32 | p | |
---|---|---|---|
Age (years) | 59.3 ± 13.0 | 76.4 ± 10.5 | <0.0001 |
Female gender (%) | 41.2 | 50.0 | 0.319 |
Arterial hypertension (%) | 38.2 | 56.3 | 0.111 |
Diabetes (%) | 15.6 | 41.2 | 0.021 |
Dyslipemia (%) | 38.2 | 37.5 | 0.576 |
Smoking (%) | 35.3 | 9.4 | 0.012 |
Alcohol consumption (%) | 17.6 | 12.5 | 0.407 |
Atrial fibrillation (%) | 20.6 | 46.9 | 0.022 |
Body mass index (kg/m2) | 30.2 ± 5.6 | 29.1 ± 5.1 | 0.358 |
Weight: -Normal (BMI < 25 kg/m2) (%) | 17.6 | 21.9 | 0.941 |
-Overweight (BMI 25–30 kg/m2) (%) | 29.3 | 31.3 | |
-Obesity grade I (BMI 30–35 kg/m2) (%) | 32.4 | 31.3 | |
-Obesity grade II (BMI 35–40 kg/m2) (%) | 20.6 | 15.6 | |
Maximum temperature in the first 24 h (°C) | 36.4 ± 0.6 | 37.2 ± 0.7 | <0.0001 |
Maximum temperature in the first 24 h (°C) categorized (%): | <0.0001 | ||
-<36.5 °C | 61.8 | 21.9 | |
-36.5–37.5 °C | 35.3 | 34.4 | |
->37.5 °C | 2.9 | 43.8 | |
TOAST (%): | 0.069 | ||
-Atherothrombotic | 11.8 | 9.4 | |
-Cardioembolic | 20.6 | 56.3 | |
-Lacunar | 8.8 | 3.1 | |
-Indeterminate | 58.7 | 31.3 | |
Reperfusion treatment (%) | 32.3 | 53.1 | 0.072 |
NIHSS on admission | 3 [1,2,3,4,5,6,7,8,9] | 14 [10,11,12,13,14,15,16,17,18,19] | <0.0001 |
RBM3 at 72 h (pg/mL) | 458.9 ± 95.1 | 252.6 ± 96.0 | <0.0001 |
FGF21 on admission | 639.6 ± 179.9 | 409.7 ± 193.2 | <0.0001 |
Admission | 72 h | p | |
---|---|---|---|
IL-6 (pg/mL) | 39.71 ± 20.63 | 43.34 ± 28.00 | 0.035 |
IL-10 (pg/mL) | 11.92 ± 6.85 | 13.01 ± 5.38 | <0.0001 |
Leptin (ng/mL) | 89.82 ± 31.23 | 83.82 ± 28.77 | <0.0001 |
Adiponectin (μg/mL) | 36.81 ± 17.91 | 30.84 ± 15.95 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Gómez, P.; Pérez-Mato, M.; Hervella, P.; Dopico-López, A.; Silva-Candal, A.d.; Bugallo-Casal, A.; López-Amoedo, S.; Candamo-Lourido, M.; Sobrino, T.; Iglesias-Rey, R.; et al. Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke. J. Clin. Med. 2022, 11, 949. https://doi.org/10.3390/jcm11040949
Ávila-Gómez P, Pérez-Mato M, Hervella P, Dopico-López A, Silva-Candal Ad, Bugallo-Casal A, López-Amoedo S, Candamo-Lourido M, Sobrino T, Iglesias-Rey R, et al. Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke. Journal of Clinical Medicine. 2022; 11(4):949. https://doi.org/10.3390/jcm11040949
Chicago/Turabian StyleÁvila-Gómez, Paulo, María Pérez-Mato, Pablo Hervella, Antonio Dopico-López, Andrés da Silva-Candal, Ana Bugallo-Casal, Sonia López-Amoedo, María Candamo-Lourido, Tomás Sobrino, Ramón Iglesias-Rey, and et al. 2022. "Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke" Journal of Clinical Medicine 11, no. 4: 949. https://doi.org/10.3390/jcm11040949
APA StyleÁvila-Gómez, P., Pérez-Mato, M., Hervella, P., Dopico-López, A., Silva-Candal, A. d., Bugallo-Casal, A., López-Amoedo, S., Candamo-Lourido, M., Sobrino, T., Iglesias-Rey, R., Castillo, J., & Campos, F. (2022). Associations between RNA-Binding Motif Protein 3, Fibroblast Growth Factor 21, and Clinical Outcome in Patients with Stroke. Journal of Clinical Medicine, 11(4), 949. https://doi.org/10.3390/jcm11040949