Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Pulmonary Rehabilitation (PR)
2.3. Pulmonary Function Tests (PFTs)
2.4. Six-Minute Walk Test
2.5. Cardiopulmonary Exercise Testing (CPET)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 15 October 2021).
- Laviolette, L.; Laveneziana, P. Dyspnoea: A multidimensional and multidisciplinary approach. Eur. Respir. J. 2014, 43, 1750–1762. [Google Scholar] [CrossRef] [Green Version]
- Miki, K. Motor Pathophysiology Related to Dyspnea in COPD Evaluated by Cardiopulmonary Exercise Testing. Diagnostics 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, D.E.; Milne, K.M.; James, M.D.; de Torres, J.P.; Neder, J.A. Dyspnea in COPD: New Mechanistic Insights and Management Implications. Adv. Ther. 2020, 37, 41–60. [Google Scholar] [CrossRef] [Green Version]
- Riley, C.M.; Sciurba, F.C. Diagnosis and Outpatient Management of Chronic Obstructive Pulmonary Disease: A Review. JAMA 2019, 321, 786–797. [Google Scholar] [CrossRef] [PubMed]
- Laviolette, L.; Laveneziana, P. Exercise Testing in the prognostic evaluation of patients with lung and heart diseases. In Clinical Exercise Testing (ERS Monograph); Palange, P., Laveneziana, P., Neder, J.A., Ward, S.A., Eds.; European Respiratory Society: Sheffield, UK, 2018; pp. 222–234. [Google Scholar]
- Garvey, C.; Bayles, M.P.; Hamm, L.F.; Hill, K.; Holland, A.; Limberg, T.M.; Spruit, M.A. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: An Official Statement from the American Association of Cardiovascular and Pulmonary Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2016, 36, 75–83. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Camillo, C.A.; Langer, D.; Osadnik, C.R.; Pancini, L.; Demeyer, H.; Burtin, C.; Gosselink, R.; Decramer, M.; Janssens, W.; Troosters, T. Survival after pulmonary rehabilitation in patients with COPD: Impact of functional exercise capacity and its changes. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2671–2679. [Google Scholar] [CrossRef] [Green Version]
- Maekura, R.; Hiraga, T.; Miki, K.; Kitada, S.; Miki, M.; Yoshimura, K.; Yamamoto, H.; Kawabe, T.; Mori, M. Personalized pulmonary rehabilitation and occupational therapy based on cardiopulmonary exercise testing for patients with advanced chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1787–1800. [Google Scholar] [CrossRef] [Green Version]
- Burtin, C.; Saey, D.; Saglam, M.; Langer, D.; Gosselink, R.; Janssens, W.; Decramer, M.; Maltais, F.; Troosters, T. Effectiveness of exercise training in patients with COPD: The role of muscle fatigue. Eur. Respir. J. 2012, 40, 338–344. [Google Scholar] [CrossRef]
- Miki, K.; Maekura, R.; Kitada, S.; Miki, M.; Yoshimura, K.; Yamamoto, H.; Kawabe, T.; Kagawa, H.; Oshitani, Y.; Satomi, A.; et al. Pulmonary rehabilitation for COPD improves exercise time rather than exercise tolerance: Effects and mechanisms. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, K.; Hansen, J.; Sue, D.; Stringer, W.; Sietsema, K.; Sun, X.-G. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications, 5th, ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Oga, T.; Nishimura, K.; Tsukino, M.; Sato, S.; Hajiro, T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: Role of exercise capacity and health status. Am. J. Respir. Crit. Care Med. 2003, 167, 544–549. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Maekura, R.; Hiraga, T.; Miki, K.; Kitada, S.; Miki, M.; Tateishi, Y.; Mori, M. Identification of three exercise-induced mortality risk factors in patients with COPD. COPD J. Chronic Obstr. Pulm. Dis. 2014, 11, 615–626. [Google Scholar] [CrossRef]
- Neder, J.A.; Berton, D.C.; Arbex, F.F.; Alencar, M.C.; Rocha, A.; Sperandio, P.A.; Palange, P.; O’Donnell, D.E. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur. Respir. J. 2017, 49, 1602036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, D.B.; Collins, S.; Stickland, M.K. Measurement and Interpretation of Exercise Ventilatory Efficiency. Front. Physiol. 2020, 11, 659. [Google Scholar] [CrossRef]
- Weatherald, J.; Sattler, C.; Garcia, G.; Laveneziana, P. Ventilatory response to exercise in cardiopulmonary disease: The role of chemosensitivity and dead space. Eur. Respir. J. 2018, 51, 1700860. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Tsujino, K.; Maekuara, R.; Matsuki, T.; Miki, M.; Hashimoto, H.; Kagawa, H.; Kawasaki, T.; Kuge, T.; Kida, H. Oxygen Extraction Based on Inspiratory and Expiratory Gas Analysis Identifies Ventilatory Inefficiency in Chronic Obstructive Pulmonary Disease. Front. Physiol. 2021, 12, 703977. [Google Scholar] [CrossRef] [PubMed]
- GOLD. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2020 Report). Available online: https://goldcopd.org/wp-content/uploads/2019/12/GOLD-2020-FINAL-ver1.2-03Dec19_WMV.pdf (accessed on 15 October 2021).
- Miki, K.; Maekura, R.; Nagaya, N.; Nakazato, M.; Kimura, H.; Murakami, S.; Ohnishi, S.; Hiraga, T.; Miki, M.; Kitada, S.; et al. Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: A multicenter, randomized, double-blind, placebo-controlled trial. PLoS ONE 2012, 7, e35708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crapo, R.O.; Hankinson, J.L.; Irvin, C.; MacIntyre, N.R.; Voter, K.Z.; Wise, R.A.; Graham, B.; O’Donnell, C.; Paoletti, P.; Roca, J.; et al. Standardization of Spirometry: 1994 Update. Am. J. Respir. Crit. Care Med. 1995, 152, 1107–1136. [Google Scholar] [CrossRef]
- Woo, M.A.; Moser, D.K.; Stevenson, L.W.; Stevenson, W.G. Six-minute walk test and heart rate variability: Lack of association in advanced stages of heart failure. Am. J. Crit. Care 1997, 6, 348–354. [Google Scholar] [CrossRef]
- Gargiulo, P.; Apostolo, A.; Perrone-Filardi, P.; Sciomer, S.; Palange, P.; Agostoni, P. A non invasive estimate of dead space ventilation from exercise measurements. PLoS ONE 2014, 9, e87395. [Google Scholar] [CrossRef] [Green Version]
- Hey, E.N.; Lloyd, B.B.; Cunningham, D.J.; Jukes, M.G.; Bolton, D.P. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1966, 1, 193–205. [Google Scholar] [CrossRef]
- Whipp, B.J.; Ward, S.A. Cardiopulmonary coupling during exercise. J. Exp. Biol. 1982, 100, 175–193. [Google Scholar] [CrossRef]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Okumura, H.; Nagaya, N.; Enomoto, M.; Nakagawa, E.; Oya, H.; Kangawa, K. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. J. Cardiovasc. Pharmacol. 2002, 39, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, N.; Uematsu, M.; Kojima, M.; Ikeda, Y.; Yoshihara, F.; Shimizu, W.; Hosoda, H.; Hirota, Y.; Ishida, H.; Mori, H.; et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation 2001, 104, 1430–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, K.; Kitada, S.; Miki, M.; Hui, S.P.; Shrestha, R.; Yoshimura, K.; Tsujino, K.; Kagawa, H.; Oshitani, Y.; Kida, H.; et al. A phase II, open-label clinical trial on the combination therapy with medium-chain triglycerides and ghrelin in patients with chronic obstructive pulmonary disease. J. Physiol. Sci. 2019, 69, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, H.; Takahashi, K.; Tanaka, M.; Sadamatsu, H.; Kurihara, Y.; Tajiri, R.; Takamori, A.; Naotsuka, H.; Imaizumi, H.; Kimura, S.; et al. Skeletal muscle is associated with exercise tolerance evaluated by cardiopulmonary exercise testing in Japanese patients with chronic obstructive pulmonary disease. Sci. Rep. 2021, 11, 15862. [Google Scholar] [CrossRef]
- Buchfuhrer, M.J.; Hansen, J.E.; Robinson, T.E.; Sue, D.Y.; Wasserman, K.; Whipp, B.J. Optimizing the exercise protocol for cardiopulmonary assessment. J. Appl. Physiol. 1983, 55, 1558–1564. [Google Scholar] [CrossRef]
All Patients (n = 38) | |
---|---|
Age, years | 68.9 (9.1) |
Sex, male/female | 37/1 |
BMI, kg·m−2 | 20.1 (3.7) |
GOLD stage, III/IV | 21/17 |
Pulmonary function | |
FEV1, L | 0.84 (0.29) |
%FEV1, %predicted | 31.6 (10.3) |
FEV1/FVC, % | 39.5 (9.2) |
VC, L | 2.69 (0.62) |
%VC, %predicted | 83.3 (16.9) |
IC, L | 1.71 (0.46) |
6-MWD *, m | 262.8 (113.3) |
Incremental CPET | |
Peak V’O2, mL·min−1·kg−1 | 13.3 (3.7) |
Percent predicted peak V’O2, % | 57.8 (16.4) |
SAMA | 17 |
LAMA | 9 |
SABA | 6 |
LABA | 14 |
ICS | 9 |
LAMA·LABA/ICS·LABA/Triple therapy | 7/4/1 |
Peak V’O2 Inc. Group (n = 14) | Peak V’O2 Non-Inc. Group (n = 24) | p-Value (Between the Two Groups) | |||
---|---|---|---|---|---|
Pre-PR | Difference | Pre-PR | Difference | ||
Pulmonary function | |||||
FEV1, L | 0.77 (0.26) | +0.16 (0.19) * | 0.87 (0.30) | +0.02 (0.13) | 0.0514 |
IC, L | 1.58 (0.42) | +0.16 (0.34) | 1.78 (0.47) | −0.10 (0.33) | 0.0735 |
6-MWD †, m | 292.3 (104.6) | +43.2 (53.6) ** | 243.2 (117.0) | +56.8 (65.8) *** | 0.6373 |
Incremental CPET at peak exercise | |||||
Dyspnea, Borg scale | 6.6 (2.5) | −1.1 (2.0) | 6.3 (2.6) | −1.3 (2.2) ** | 0.8299 |
Work rate, watts | 39 (9) | +9 (8) ** | 39 (14) | +2 (10) | 0.0183 |
V’O2 at anaerobic threshold ††, mL·min−1 | 521.5 (152.6) | +33.6 (52.6) | 547.4 (80.0) | −31.4(51.5) * | 0.0045 |
R | 1.04 (0.08) | +0.03 (0.08) | 1.03 (0.11) | −0.01 (0.05) | 0.0863 |
V’E, L·min−1 | 29.3 (7.4) | +4.0 (7.3) ** | 29.8 (6.6) | −1.2 (2.5) * | 0.0008 |
VT, mL | 986 (182) | +133 (154) *** | 1025 (258) | +15 (153) | 0.0062 |
fR, breaths·min−1 | 31 (8) | −1 (6) | 30 (5) | −1 (6) | 0.9516 |
Ti/Ttot | 0.37 (0.04) | +0.01 (0.04) | 0. 36 (0.07) | +0.02 (0.05) | 0.7038 |
VD/VT | 0.37 (0.08) | −0.02 (0.04) | 0.35 (0.06) | +0.02 (0.05) * | 0.0185 |
HR, beats·min−1 | 116 (18) | +6 (10) | 119 (20) | + 1 (16) | 0.1112 |
O2 pulse, mL·beats−1 | 6.7 (1.2) | +0.4 (0.7) * | 6.0 (1.5) | −0.5 (0.5) **** | 0.0001 |
SpO2, % | 90.4 (4.6) | 0 (2.5) | 89.5 (5.5) | −0.6 (3.2) | 0.4565 |
PetCO2, mmHg | 37.8 (6.7) | +0.4 (3.2) | 37.3 (4.9) | −1.3 (3.5) | 0.1463 |
ΔFO2, % | 2.79 (0.50) | +0.15 (0.33) | 2.91 (0.42) | −0.20 (0.30) ** | 0.0037 |
VD-intercept/VT | 0.46 (0.20) | −0.01 (0.41) | 0.40 (0.25) | +0.01 (0.23) | 0.5701 |
V’E/V’CO2 | 43.8 (7.8) | -1.1 (4.2) | 42.5 (7.6) | +2.6 (4.2) ** | 0.0168 |
V’E/V’CO2-nadir | 43.3 (8.0) | −1.4 (3.1) | 42.3 (7.6) | +2.4 (4.2) ** | 0.0062 |
V’E−V’CO2-slope | 31.7 (7.2) | +1.3 (4.0) | 34.3 (10.2) | +3.3 (4.7) ** | 0.3884 |
Peak ΔFO2 Inc. Group (n = 17) | Peak ΔFO2 Non-Inc. Group (n = 21) | p-Value | |
---|---|---|---|
Age, years | 71.4 (8.5) | 66.8 (9.2) | 0.1301 |
Sex, male/female | 16/1 | 21/0 | 0.2600 |
BMI, kg·m−2 | 19.7 (3.1) | 20.5 (4.2) | 0.6918 |
GOLD stage, III/IV | 9/8 | 12/9 | 0.7956 |
Pulmonary function | |||
FEV1, L | 0.78 (0.27) | 0.88 (0.30) | 0.3250 |
%FEV1, %predicted | 30.6 (10.2) | 32.4 (10.5) | 0.6281 |
FEV1/FVC, % | 41.0 (7.0) | 38.3 (10.6) | 0.3041 |
VC, L | 2.57 (0.62) | 2.77 (0.62) | 0.2838 |
%VC, %predicted | 81.8 (17.3) | 84.5 (16.8) | 0.6073 |
IC, L | 1.57 (0.41) | 1.81 (0.48) | 0.1487 |
Incremental CPET | |||
peak V’O2, mL·min−1·kg−1 | 13.0 (4.1) | 13.6 (3.3) | 0.6073 |
LAMA·LABA/ICS·LABA/Triple | 2/3/0 | 5/1/1 | 0.3836 |
Peak V’E Inc. group (n = 20) | Peak V’E Non-Inc. group (n = 18) | p-Value | |
Age, years | 67.5 (10.0) | 70.4 (8.0) | 0.3960 |
Sex, male/female | 19/1 | 18/0 | 0.3363 |
BMI, kg·m−2 | 20.6 (4.7) | 19.7 (2.4) | 0.6295 |
GOLD stage, III/IV | 12/8 | 9/9 | 0.5359 |
Pulmonary function | |||
FEV1, L | 0.88 (0.30) | 0.78 (0.27) | 0.2856 |
%FEV1, %predicted | 33.1 (10.2) | 30.0 (10.4) | 0.4047 |
FEV1/FVC, % | 40.6 (9.4) | 38.2 (9.0) | 0.5296 |
VC, L | 2.79 (0.66) | 2.55 (0.56) | 0.2193 |
%VC, % | 86.5 (17.5) | 79.7 (15.8) | 0.1561 |
IC, L | 1.74 (0.51) | 1.68 (0.42) | 0.6808 |
Incremental CPET | |||
peak V’O2, mL·min−1·kg−1 | 13.1 (3.6) | 13.6 (3.9) | 0.7366 |
LAMA·LABA/ICS·LABA/Triple | 1/3/1 | 6/1/0 | 0.0855 |
Peak ΔFO2 Inc. Group (n = 17) | Peak ΔFO2 Non-Inc. Group (n = 21) | p-Value (Between the Two Groups) | |||
---|---|---|---|---|---|
Pre-PR | Difference | Pre-PR | Difference | ||
6-MWD ‡, m | 265.1 (128.4) | +52.2 (70.7) | 260.7 (100.7) | +50.6 (51.8) | 0.4779 |
Incremental CPET at peak exercise | |||||
Dyspnea, Borg scale | 6.3 (2.9) | −0.8 (2.4) | 6.5 (2.3) | −1.6 (1.8) *** | 0.2457 |
V’O2, ml·min−1·kg−1 | 13.0 (4.1) | +0.7 (1.7) | 13.6 (3.3) | −0.6 (2.2) | 0.0136 |
Exercise time, sec | 416 (154) | +58 (72) ** | 418 (160) | +51 (113) | 0.8717 |
Work rate, watts | 39 (12) | +6 (7) ** | 40 (13) | +4 (12) | 0.5296 |
V’O2 at anaerobic threshold ††, mL·min−1 | 502.3 (111.8) | +50.3 (38.7) *** | 564.5 (110.3) | −49.1 (30.0) **** | <0.0001 |
R | 1.02 (0.10) | +0.02 (0.06) | 1.03 (0.10) | +0.00 (0.08) | 0.3104 |
V’E, L·min−1 | 29.2 (8.0) | −0.1 (2.7) | 29.9 (5.9) | +1.4 (6.8) | 0.7134 |
VT, mL | 986 (206) | +110 (153) ** | 1031 (253) | +16 (159) | 0.0167 |
VT at inflection point, mL | 1040 (204) | +155 (195) * | 1029 (231) | +76 (194) | 0.1798 |
fR, breaths·min−1 | 30 (5) | −3 (4) ** | 31 (7) | 0 (7) | 0.0049 |
Ti/Ttot | 0.37 (0.05) | 0 (0.04) | 0.36 (0.07) | +0.02 (0.05) | 0.4788 |
VD/VT | 0.38 (0.06) | −0.01(0.04) | 0.34 (0.07) | +0.02 (0.05) * | 0.0534 |
HR, beats·min−1 | 113 (20) | +6 (9) * | 122 (18) | 0 (17) | 0.2210 |
O2 pulse, mL·beats−1 | 5.8 (1.5) | −0.1 (0.6) | 5.9 (1.4) | −0.3 (0.8) * | 0.2218 |
SpO2, % | 89.6 (5.4) | −0.9 (2.5) | 90.0 (5.0) | +0.0 (3.3) | 0.3656 |
PetCO2, mmHg | 37.8 (5.8) | +1.4 (3.0) | 37.2 (5.5) | −2.4 (2.8) *** | 0.0007 |
V’E/V’CO2 | 44.4 (7.1) | −2.4 (2.8) ** | 418 (8.0) | +4.2 (3.4) **** | <0.0001 |
V’E–V’CO2-intercept, L·min−1 | 6.6 (2.6) | −0.5 (1.6) | 6.0 (3.4) | −0.8 (2.7) | 0.9298 |
VD-intercept/VT | 0.44 (0.26) | +0.10 (0.36) | 0.41 (0.20) | −0.07 (0.24) | 0.4738 |
V’E/V’CO2-nadir | 44.0 (7.4) | −2.1 (2.6) ** | 41.6 (7.9) | +3.5 (3.5) **** | <0.0001 |
V’E–V’CO2-slope | 32.5 (6.7) | +0.8 (3.9) | 34.0 (10.9) | +4.1 (4.5) *** | 0.0413 |
Time slope, sec·mL−1·min | 1.04 (0.29) † | +0.02 (0.33) | 0.91 (0.30) | +0.20 (0.20) *** | 0.0302 |
The causes to stop during CPET | Pre-PR | Post-PR | Pre-PR | Post-PR | Not evaluated |
Dyspnea/leg fatigue | 10/7 | 9/8 | 15/6 | 11/10 * | Not evaluated |
Peak V’E Inc. Group (n = 20) | Peak V’E Non-Inc. Group (n = 18) | p-Value (Between the Two Groups) | |||
---|---|---|---|---|---|
Pre-PR | Difference | Pre-PR | Difference | ||
6-MWD †, m | 268.9 (102.8) | +43.7 (55.1) | 256.4 (126.4) | +59.5 (67.0) | 0.5860 |
Incremental CPET at peak exercise | |||||
Dyspnea, Borg scale | 7.3 (2.0) | −1.8 (2.1) *** | 5.5 (2.8) | −0.6 (2.0) | 0.0778 |
V’O2, ml·min−1·kg−1 | 13.1 (3.6) | +0.8 (2.3) | 13.6 (3.9) | −0.9 (1.4) ** | 0.0109 |
Exercise time, sec | 422 (147) | +77 (110) ** | 411 (167) | +29 (72) * | 0.1077 |
Work rate, watts | 41 (11) | +6 (11) | 38 (14) | +4 (8) | 0.8725 |
V’O2 at anaerobic threshold ††, mL·min−1 | 536.0 (124.6) | −1.7 (64.1) | 538.0 (102.7) | −9.0 (58.1) | 0.6429 |
R | 1.04 (0.10) | +0.02 (0.07) | 1.02 (0.11) | −0.01 (0.06) | 0.3404 |
VT, mL | 1043 (251) | +79 (160) * | 976 (209) | +35 (165) | 0.1932 |
VT at inflection point, mL | 1058 (224) | +102 (167) * | 1003 (212) | +118 (231) | 0.9683 |
fR, breaths·min−1 | 30 (7) | +1 (5) | 30 (6) | −3 (6) * | 0.0415 |
Ti/Ttot | 0.36 (0.05) | +0.01 (0.04) | 0. 36 (0.07) | +0.02 (0.05) | 0.6593 |
VD/VT | 0.36 (0.08) | +0.00 (0.05) | 0.36 (0.05) | +0.00 (0.05) | 0.9415 |
HR, beats·min−1 | 122 (17) | +6 (12) | 114 (21) | −1 (16) | 0.4035 |
O2 pulse, mL·beats−1 | 5.6 (1.2) | +0.1 (0.7) | 6.1 (1.6) | −0.5 (0.6) ** | 0.0108 |
SpO2, % | 90.3 (4.7) | +0.1 (2.8) | 89.3 (5.6) | −0.9 (3.1) | 0.1723 |
PetCO2, mmHg | 37.5 (6.3) | −1.0 (2.8) | 37.4 (4.7) | −0.4 (4.1) | 0.5200 |
ΔFO2, % | 2.85 (0.50) | −0.10 (0.34) | 2.89 (0.41) | −0.03 (0.37) | 0.4558 |
V’E/V’CO2 | 43.2 (8.3) | +1.8 (4.9) | 42.8 (7.1) | +0.6 (4.2) | 0.2792 |
V’E–V’CO2-intercept, L·min−1 | 6.7 (2.7) | −0.2 (2.0) | 5.9 (3.3) | −1.2 (2.4) * | 0.1883 |
VD-intercept/VT | 0.44 (0.20) | −0.01 (0.37) | 0.41(0.27) | 0.03 (0.22) | 0.6674 |
V’E/V’CO2-nadir | 42.9 (8.3) | +1.2 (4.4) | 42.4 (7.1) | +0.8 (4.1) | 0.5685 |
V’E–V’CO2-slope | 32.8 (8.5) | +2.6 (4.6) * | 33.9 (10.2) | +2.7 (4.5) * | 1.0000 |
Time slope, sec·mL−1·min | 0.96 (0.28) | +0.07 (0.30) | 0.98 (0.34) | +0.19 (0.25) ** | 0.3310 |
The causes to stop during CPET | Pre-PR | Post-PR | Pre-PR | Post-PR | Not done |
Dyspnea/leg fatigue | 14/6 | 11/9 | 11/7 | 9/9 | Not done |
r | p-Value | |
---|---|---|
Dyspnea at peak exercise diff., Borg scale | 0.1361 | 0.4153 |
Peak V’O2 diff., mL·min−1 | 0.4884 | 0.0019 |
V’O2 at anaerobic threshold diff., mL·min−1 | 0.6711 | 0.0001 |
V’E at peak exercise diff., L·min−1 | −0.0988 | 0.5552 |
VT at peak exercise diff., mL | 0.2655 | 0.1072 |
fR at peak exercise diff., breaths·min−1 | −0.3894 | 0.0157 |
VD/VT at peak exercise diff. | −0.2428 | 0.1419 |
O2 pulse at peak exercise diff., mL·beats−1 | 0.2547 | 0.1228 |
V’E/V’CO2-nadir diff. | −0.7057 | <0.0001 |
V’E–V’CO2-slope diff. | −0.4578 | 0.0039 |
Time slope diff., s·mL−1·min | −0.4518 | 0.0044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyazaki, A.; Miki, K.; Maekura, R.; Tsujino, K.; Hashimoto, H.; Miki, M.; Yanagi, H.; Koba, T.; Nii, T.; Matsuki, T.; et al. Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2022, 11, 963. https://doi.org/10.3390/jcm11040963
Miyazaki A, Miki K, Maekura R, Tsujino K, Hashimoto H, Miki M, Yanagi H, Koba T, Nii T, Matsuki T, et al. Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine. 2022; 11(4):963. https://doi.org/10.3390/jcm11040963
Chicago/Turabian StyleMiyazaki, Akito, Keisuke Miki, Ryoji Maekura, Kazuyuki Tsujino, Hisako Hashimoto, Mari Miki, Hiromi Yanagi, Taro Koba, Takuro Nii, Takanori Matsuki, and et al. 2022. "Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease" Journal of Clinical Medicine 11, no. 4: 963. https://doi.org/10.3390/jcm11040963
APA StyleMiyazaki, A., Miki, K., Maekura, R., Tsujino, K., Hashimoto, H., Miki, M., Yanagi, H., Koba, T., Nii, T., Matsuki, T., & Kida, H. (2022). Increased Oxygen Extraction by Pulmonary Rehabilitation Improves Exercise Tolerance and Ventilatory Efficiency in Advanced Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 11(4), 963. https://doi.org/10.3390/jcm11040963