Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Measurements
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Comparison of Clinical and Laboratory Characteristics in Pre-Transplant Cirrhotic Patients and OLT Recipients
3.2. Comparison of Pre-Transplant Cirrhotic Patients and OLT Recipients with PREVEND Population
3.3. Determinants of the Presence of LP-Z
3.4. Presence of LP-Z and Mortality in Pre-Transplant Cirrhotic Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McIntyre, N. Plasma Lipids and Lipoproteins in Liver Disease. Gut 1978, 19, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, R.C.; Harry, D.S.; Owen, J.S.; Foo, A.Y.; McIntyre, N. Lecithin—Cholesterol Acyltransferase and the Lipoprotein Abnormalities of Parenchymal Liver Disease. Clin. Sci. 1979, 56, 575–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Privitera, G.; Spadaro, L.; Marchisello, S.; Fede, G.; Purrello, F. Abnormalities of Lipoprotein Levels in Liver Cirrhosis: Clinical Relevance. Digest. Dis. Sci. 2018, 63, 16–26. [Google Scholar] [CrossRef]
- Jonas, A. Lecithin Cholesterol Acyltransferase. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2000, 1529, 245–256. [Google Scholar] [CrossRef]
- Chatterjee, C.; Sparks, D.L. Hepatic Lipase, High Density Lipoproteins, and Hypertriglyceridemia. Am. J. Pathol. 2011, 178, 1429–1433. [Google Scholar] [CrossRef]
- McIntyre, N.; Calandra, S.; Pearson, A.J.G. Lipid and Lipoprotein Abnormalities in Liver Disease: The Possible Role of Lecithin: Cholesterol Acyltransferase Deficiency. Scand. J. Clin. Lab. Investig. 2009, 33, 115–120. [Google Scholar] [CrossRef]
- Tahara, D.; Nakanishi, T.; Akazawa, S.; Yamaguchi, Y.; Yamamoto, H.; Akashi, M.; Chikuba, N.; Okuno, S.; Maeda, Y.; Kusumoto, Y.; et al. Lecithin-Cholesterol Acyltransferase and Lipid Transfer Protein Activities in Liver Disease. Metabolis 1993, 42, 19–23. [Google Scholar] [CrossRef]
- Simon, J.B.; Scheig, R. Serum Cholesterol Esterification in Liver Disease—Importance of Lecithin-Cholesterol Acyltransferase. N. Engl. J. Med. 1970, 283, 841–846. [Google Scholar] [CrossRef]
- Agorastos, J.; Fox, C.; Harry, D.S.; McIntyre, N. Lecithin—Cholesterol Acyltransferase and the Lipoprotein Abnormalities of Obstructive Jaundice. Clin. Sci. 1978, 54, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Ghadir, M.R.; Riahin, A.A.; Havaspour, A.; Nooranipour, M.; Habibinejad, A.A. The Relationship between Lipid Profile and Severity of Liver Damage in Cirrhotic Patients. Hepat. Mon. 2010, 10, 285–288. [Google Scholar]
- Chrostek, L.; Supronowicz, L.; Panasiuk, A.; Cylwik, B.; Gruszewska, E.; Flisiak, R. The Effect of the Severity of Liver Cirrhosis on the Level of Lipids and Lipoproteins. Clin. Exp. Med. 2014, 14, 417–421. [Google Scholar] [CrossRef] [Green Version]
- Varghese, J.S.; Krishnaprasad, K.; Upadhuyay, R.; Revathy, M.S.; Jayanthi, V. Lipoprotein Profile in Cirrhosis of Liver. Eur. J. Gastroenterol. Hepatol. 2007, 19, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Sepanlou, S.G.; Safiri, S.; Bisignano, C.; Ikuta, K.S.; Merat, S.; Saberifiroozi, M.; Poustchi, H.; Tsoi, D.; Colombara, D.V.; et al.; GBD 2017 Cirrhosis Collaborators The Global, Regional, and National Burden of Cirrhosis by Cause in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.D.; Morris, J.K.; Cramb, R.; Gunson, B.K.; Neuberger, J. Cardiovascular Morbidity and Mortality after Orthotopic Liver Transplantation. Transplantation 2002, 73, 901–906. [Google Scholar] [CrossRef]
- Fernández-Miranda, C.; Guijarro, C.; Calle, A.; Loinaz, C.; Gónzalez-Pinto, I.; Gómez-Izquierdo, T.; Larumbe, S.; Moreno, E.; Palacio, A. Lipid Abnormalities in Stable Liver Transplant Recipients—Effects of Cyclosporin, Tacrolimus, and Steroids. Transpl. Int. 1998, 11, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Charco, R.; Cantarell, C.; Vargas, V.; Capdevila, L.; Lázaro, J.L.; Hidalgo, E.; Murio, E.; Margarit, C. Serum Cholesterol Changes in Long-term Survivors of Liver Transplantation: A Comparison between Cyclosporine and Tacrolimus Therapy. Liver Transplant. Surg. 1999, 5, 204–208. [Google Scholar] [CrossRef]
- Lucey, M.R.; Terrault, N.; Ojo, L.; Hay, J.E.; Neuberger, J.; Blumberg, E.; Teperman, L.W. Long-term Management of the Successful Adult Liver Transplant: 2012 Practice Guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Liver Transpl. 2013, 19, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Laish, I.; Braun, M.; Mor, E.; Sulkes, J.; Harif, Y.; Ari, Z.B. Metabolic Syndrome in Liver Transplant Recipients: Prevalence, Risk Factors, and Association with Cardiovascular Events. Liver Transpl. 2011, 17, 15–22. [Google Scholar] [CrossRef]
- Xanthopoulos, A.; Starling, R.C.; Kitai, T.; Triposkiadis, F. Heart Failure and Liver Disease Cardiohepatic Interactions. JACC Heart Fail. 2019, 7, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Stegall, M.D.; Everson, G.; Schroter, G.; Bilir, B.; Karrer, F.; Kam, I. Metabolic Complications after Liver Transplantation. Diabetes, Hypercholesterolemia, Hypertension, and Obesity. Transplantation 1995, 60, 1057–1060. [Google Scholar]
- McCaughan, G.W.; O’Brien, E.; Sheil, A.G.R. A Follow up of 53 Adult Patients Alive beyond 2 Years Following Liver Transplantation. J. Gastroenterol. Hepatol. 1993, 8, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Jindal, R.M.; Sidner, R.A.; Hughes, D.; Pescovitz, M.D.; Leapman, S.B.; Milgrom, M.L.; Lumeng, L.; Filo, R.S. Metabolic Problems in Recipients of Liver Transplants. Clin. Transplant. 1996, 10, 213–217. [Google Scholar]
- McDiarmid, S.V.; Farmer, D.A.; Goldstein, L.I.; Martin, P.; Vargas, J.; Tipton, J.R.; Simmons, F.; Busuttil, R.W. A Randomized Prospective Trial of Steroid Withdrawal after Liver Transplantation. Transplantation 1995, 60, 1443–1450. [Google Scholar] [CrossRef]
- Punch, J.D.; Shieck, V.L.; Campbell, D.A.; Bromberg, J.S.; Turcotte, J.G.; Merion, R.M. Corticosteroid Withdrawal after Liver Transplantation. Surgery 1995, 118, 783–788. [Google Scholar] [CrossRef]
- Holdaas, H.; Potena, L.; Saliba, F. MTOR Inhibitors and Dyslipidemia in Transplant Recipients: A Cause for Concern? Transplant. Rev. 2015, 29, 93–102. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjærg-Hansen, A.; Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G. Remnant Cholesterol as a Causal Risk Factor for Ischemic Heart Disease. J. Am. Coll. Cardiol. 2013, 61, 427–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duran, E.K.; Aday, A.W.; Cook, N.R.; Buring, J.E.; Ridker, P.M.; Pradhan, A.D. Triglyceride-Rich Lipoprotein Cholesterol, Small Dense LDL Cholesterol, and Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 75, 2122–2135. [Google Scholar] [CrossRef]
- Singh, K.; Chandra, A.; Sperry, T.; Joshi, P.H.; Khera, A.; Virani, S.S.; Ballantyne, C.M.; Otvos, J.D.; Dullaart, R.P.F.; Gruppen, E.G.; et al. Associations Between HDL Particles and Ischemic Events by Vascular Domain, Gender, and Ethnicity: A Pooled Cohort Analysis. Circulation 2020, 142, 657–669. [Google Scholar] [CrossRef]
- Sokooti, S.; Flores-Guerrero, J.L.; Kieneker, L.M.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. HDL Particle Subspecies and Their Association with Incident Type 2 Diabetes: The PREVEND Study. J. Clin. Endocrinol. Metab. 2021, 106, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Sokooti, S.; Szili-Torok, T.; Flores-Guerrero, J.L.; Osté, M.C.J.; Gomes-Neto, A.W.; Kootstra-Ros, J.E.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. High-Density Lipoprotein Particles and Their Relationship to Posttransplantation Diabetes Mellitus in Renal Transplant Recipients. Biomolecules 2020, 10, 481. [Google Scholar] [CrossRef] [Green Version]
- Sokooti, S.; Flores-Guerrero, J.L.; Heerspink, H.J.L.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Triglyceride-Rich Lipoprotein and LDL Particle Subfractions and Their Association with Incident Type 2 Diabetes: The PREVEND Study. Cardiovasc. Diabetol. 2021, 20, 156. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.; Corpeleijn, E.; Gansevoort, R.T.; Gans, R.O.B.; Hillege, H.L.; Stolk, R.P.; Navis, G.; Bakker, S.J.L.; Dullaart, R.P.F. Role of HDL Cholesterol and Estimates of HDL Particle Composition in Future Development of Type 2 Diabetes in the General Population: The PREVEND Study. J. Clin. Endocrinol. Metab. 2013, 98, E1352–E1359. [Google Scholar] [CrossRef] [Green Version]
- Bedi, S.; Garcia, E.; Jeyarajah, E.J.; Shalaurova, I.; Perez-Matos, M.C.; Jiang, Z.G.; Dullaart, R.P.F.; Matyus, S.P.; Kirk, W.J.; Otvos, J.D.; et al. Characterization of LP-Z Lipoprotein Particles and Quantification in Subjects with Liver Disease Using a Newly Developed NMR-Based Assay. J. Clin. Med. 2020, 9, 2915. [Google Scholar] [CrossRef] [PubMed]
- Kostner, G.M.; Laggner, P.; Prexl, H.J.; Holasek, A. Investigation of the Abnormal Low-Density Lipoproteins Occurring in Patients with Obstructive Jaundice. Biochem. J. 1976, 157, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Osté, M.C.J.; Knobbe, T.J.; Hessels, N.R.; Buunk, A.M.; et al. Rationale and Design of TransplantLines: A Prospective Cohort Study and Biobank of Solid Organ Transplant Recipients. BMJ Open 2018, 8, e024502. [Google Scholar] [CrossRef]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F.; on behalf of the PREVEND Study Group. The Effect of Cholesteryl Ester Transfer Protein -629C->A Promoter Polymorphism on High-Density Lipoprotein Cholesterol Is Dependent on Serum Triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- Kappelle, P.J.W.H.; Gansevoort, R.T.; Hillege, J.L.; Wolffenbuttel, B.H.R.; Dullaart, R.P.F.; on behalf of the PREVEND study group. Apolipoprotein B/A-I and Total Cholesterol/High-Density Lipoprotein Cholesterol Ratios Both Predict Cardiovascular Events in the General Population Independently of Nonlipid Risk Factors, Albuminuria and C-Reactive Protein. J. Intern. Med. 2011, 269, 232–242. [Google Scholar] [CrossRef]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A Model to Predict Survival in Patients with End-Stage Liver Disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef]
- Wiesner, R.; Edwards, E.; Freeman, R.; Harper, A.; Kim, R.; Kamath, P.; Kremers, W.; Lake, J.; Howard, T.; Merion, R.M.; et al. Model for End-Stage Liver Disease (MELD) and Allocation of Donor Livers. Gastroenterology 2003, 124, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the Oesophagus for Bleeding Oesophageal Varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; de Borst, M.H.; Wolak-Dinsmore, J.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Non-Alcoholic Fatty Liver Disease and Risk of Incident Type 2 Diabetes: Role of Circulating Branched-Chain Amino Acids. Nutrients 2019, 11, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolak-Dinsmore, J.; Gruppen, E.G.; Shalaurova, I.; Matyus, S.P.; Grant, R.P.; Gegen, R.; Bakker, S.J.L.; Otvos, J.D.; Connelly, M.A.; Dullaart, R.P.F. A Novel NMR-Based Assay to Measure Circulating Concentrations of Branched-Chain Amino Acids: Elevation in Subjects with Type 2 Diabetes Mellitus and Association with Carotid Intima Media Thickness. Clin. Biochem. 2018, 54, 92–99. [Google Scholar] [CrossRef]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Jeyarajah, E.J.; Shalaurova, I.; Xu, Y.; Warner, S.M.; Clement, T.S.; Connelly, M.A.; Fischer, T.J. NMR Measurement of LDL Particle Number Using the Vantera® Clinical Analyzer. Clin. Biochem. 2014, 47, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matyus, S.P.; Braun, P.J.; Wolak-Dinsmore, J.; Saenger, A.K.; Jeyarajah, E.J.; Shalaurova, I.; Warner, S.M.; Fischer, T.J.; Connelly, M.A. HDL Particle Number Measured on the Vantera®, the First Clinical NMR Analyzer. Clin. Biochem. 2015, 48, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeyarajah, E.J.; Cromwell, W.C.; Otvos, J.D. Lipoprotein Particle Analysis by Nuclear Magnetic Resonance Spectroscopy. Clin. Lab. Med. 2006, 26, 847–870. [Google Scholar] [CrossRef]
- Garcia, E.; Bennett, D.W.; Connelly, M.A.; Jeyarajah, E.J.; Warf, F.C.; Shalaurova, I.; Matyus, S.P.; Wolak-Dinsmore, J.; Oskardmay, D.N.; Young, R.M.; et al. The Extended Lipid Panel Assay: A Clinically-Deployed High-Throughput Nuclear Magnetic Resonance Method for the Simultaneous Measurement of Lipids and Apolipoprotein B. Lipids Health Dis. 2020, 19, 247. [Google Scholar] [CrossRef]
- Freeman, L.A.; Shamburek, R.D.; Sampson, M.L.; Neufeld, E.B.; Sato, M.; Karathanasis, S.K.; Remaley, A.T. Plasma Lipoprotein-X Quantification on Filipin-Stained Gels: Monitoring Recombinant LCAT Treatment Ex Vivo. J. Lipid Res. 2019, 60, 1050–1057. [Google Scholar] [CrossRef]
- Newson, R.B. Comparing the Predictive Powers of Survival Models Using Harrell’s C or Somers’ D. Stata J. 2010, 10, 339–358. [Google Scholar] [CrossRef] [Green Version]
- Seidel, D. Lipoproteins in Liver Disease. Clin. Chem. Lab. Med. 1987, 25, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Fellin, R.; Lambrecht, J.; Agostini, B.; Wieland, H.; Rost, W.; Seidel, D. Hypertriglyceridaemia Secondary to Liver Disease. Eur. J. Clin. Investig. 1974, 4, 419–428. [Google Scholar] [CrossRef]
- Jiang, X.-C.; Qin, S.; Qiao, C.; Kawano, K.; Lin, M.; Skold, A.; Xiao, X.; Tall, A.R. Apolipoprotein B Secretion and Atherosclerosis Are Decreased in Mice with Phospholipid-Transfer Protein Deficiency. Nat. Med. 2001, 7, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Swenson, T.; Simmons, J.; Hesler, C.; Bisgaier, C.; Tall, A. Cholesteryl Ester Transfer Protein Is Secreted by Hep G2 Cells and Contains Asparagine-Linked Carbohydrate and Sialic Acid. J. Biol. Chem. 1987, 262, 16271–16274. [Google Scholar] [CrossRef]
- Vergeer, M.; Boekholdt, S.M.; Sandhu, M.S.; Ricketts, S.L.; Wareham, N.J.; Brown, M.J.; de Faire, U.; Leander, K.; Gigante, B.; Kavousi, M.; et al. Genetic Variation at the Phospholipid Transfer Protein Locus Affects Its Activity and High-Density Lipoprotein Size and Is a Novel Marker of Cardiovascular Disease Susceptibility. Circulation 2010, 122, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dijk, P.R.; Abdulle, A.E.; Bulthuis, M.L.C.; Perton, F.G.; Connelly, M.A.; van Goor, H.; Dullaart, R.P.F. The Systemic Redox Status Is Maintained in Non-Smoking Type 2 Diabetic Subjects without Cardiovascular Disease: Association with Elevated Triglycerides and Large VLDL. J. Clin. Med. 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagrost, L. Plasma Phospholipid Transfer Protein: A Multifaceted Protein with a Key Role in the Assembly and Secretion of Apolipoprotein B–Containing Lipoproteins by the Liver. Hepatology 2012, 56, 415–418. [Google Scholar] [CrossRef]
- Bassani, L.; Fernandes, S.A.; Raimundo, F.V.; Harter, D.L.; Gonzalez, M.C.; Marroni, C.A. Lipid Profile Of Cirrhotic Patients And Its Association with Prognostic Scores: A Cross-Sectional Study. Arq. Gastroenterol. 2015, 52, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Borggreve, S.E.; Vries, R.D.; Dullaart, R.P.F. Alterations in High-density Lipoprotein Metabolism and Reverse Cholesterol Transport in Insulin Resistance and Type 2 Diabetes Mellitus: Role of Lipolytic Enzymes, Lecithin: Cholesterol Acyltransferase and Lipid Transfer Proteins. Eur. J. Clin Investig. 2003, 33, 1051–1069. [Google Scholar] [CrossRef]
- Eppinga, R.N.; Hartman, M.H.T.; van Veldhuisen, D.J.; Lexis, C.P.H.; Connelly, M.A.; Lipsic, E.; van der Horst, I.C.C.; van der Harst, P.; Dullaart, R.P.F. Effect of Metformin Treatment on Lipoprotein Subfractions in Non-Diabetic Patients with Acute Myocardial Infarction: A Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction (GIPS-III) Trial. PLoS ONE 2016, 11, e0145719. [Google Scholar] [CrossRef]
- Hu, K.; Perez-Matos, M.C.; Argemi, J.; Vilar, E.; Shalaurova, I.; Bullitt, E.; Landeen, L.; Sugahara, G.; Deng, H.; Mathur, K.; et al. Lipoprotein Z, A Novel Hepatotoxic Lipoprotein, Predicts Outcome in Alcoholic Hepatitis. Hepatology, 2021; online ahead of print. [Google Scholar] [CrossRef]
- Pavanello, C.; Calabresi, L. Genetic, Biochemical, and Clinical Features of LCAT Deficiency: Update for 2020. Curr. Opin. Lipidol. 2020, 31, 232–237. [Google Scholar] [CrossRef]
Pre-Transplant Cirrhotic Patients N = 130 | OLT Recipients N = 372 | p-Value | Adjusted p-Value * | |
---|---|---|---|---|
Baseline characteristics | ||||
Sex: men/women, n (%) | 85 (65.4)/45 (34.6) | 218 (58.6)/154 (41.4) | 0.174 | n.a. |
Age (years), median (IQR) | 59.5 (52.0–65.0) | 59.0 (47.0–67.0) | 0.652 | n.a. |
BMI (kg/m2), median (IQR) | 28.1 (24.3–30.9) | 25.9 (22.9–29.6) | 0.006 | 0.726 |
BMI
| 28 (30.8) 32 (35.2) 31 (34.1) | 135 (41.5) 117 (36.0) 73 (22.5) | 0.063 0.883 0.024 | 0.928 0.605 0.616 |
Smoking, n (%) | 16 (18.8) | 34 (11.7) | 0.088 | 0.132 |
Child Pugh Turcotte classification
| 28 (21.5) 64 (49.2) 38 (29.2) | - - - | n.a. n.a. n.a. | n.a. n.a. n.a. |
MELD score, median (IQR) | 15.0 (10.0–19.0) | - | n.a. | n.a. |
Mortality on waiting list, n (%) | 29 (22.3) | - | n.a. | n.a. |
History of cardiovascular disease, n (%) | 6 (4.8) | 28 (7.6) | 0.282 | 0.067 |
History of diabetes, n (%) | 36 (28.6) | 106 (28.6) | 0.987 | 0.055 |
Glucose lowering drugs, n (%) | 35 (31.8) | 79 (21.8) | 0.031 | 0.697 |
Lipid lowering drugs, n (%) | 19 (17.3) | 87 (24.0) | 0.140 | 0.019 |
Blood tests | ||||
ALT (U/L), median (IQR) | 40.0 (28.0–60.0) | 25.0 (18.0–36.5) | <0.001 | 0.002 |
AST (U/L), median (IQR) | 54.0 (44.0–84.0) | 25.0 (20.0–33.0) | <0.001 | <0.001 |
GGT (U/L), median (IQR) | 95.5 (48.3–150.8) | 39.0 (21.0–89.0) | <0.001 | 0.483 |
ALP (U/L), mean ± SD | 140.5 (98.3–215.3) | 87.0 (69.3–129.8) | <0.001 | 0.003 |
Bilirubin direct, median (IQR) | 27.0 (16.0–85.0) | 9.0 (7.0–12.0) | <0.001 | 0.002 |
Bilirubin total, median (IQR) | 40.0 (23.0–99.0) | 10.0 (7.0–14.0) | <0.001 | <0.001 |
Albumin (g/L), median (IQR) | 31.0 (27.0–36.0) | 44.0 (42.0–46.0) | <0.001 | <0.001 |
HbA1c (mmol/mol), median (IQR) | 32.0 (26.0–39.5) | 36.0 (32.0–43.0) | 0.001 | 0.001 |
HbA1c (%), median (IQR) | 5.1 (4.5–5.8) | 5.4 (5.1–6.1) | 0.001 | 0.001 |
Fasting glucose (mmol/L), median (IQR) | 6.4 (5.0–8.5) | 5.7 (5.2–6.8) | 0.133 | 0.712 |
Lipids and lipoproteins | ||||
Total cholesterol (mmol/L), median (IQR) | 3.2 (2.5–4.1) | 4.2 (3.6–4.9) | <0.001 | <0.001 |
Non-HDL cholesterol (mmol/L), median (IQR) | 2.2 (1.7–3.0) | 2.8 (2.2–3.4) | <0.001 | 0.003 |
HDL cholesterol (mmol/L), median (IQR) | 0.9 (0.4–1.2) | 1.3 (1.1–1.7) | <0.001 | <0.001 |
LDL cholesterol (mmol/L), median (IQR) | 1.8 (1.2–2.3) | 2.1 (1.7–2.5) | <0.001 | 0.031 |
Triglycerides (mmol/L), median (IQR) | 0.7 (0.5–1.1) | 1.3 (1.0–1.8) | <0.001 | <0.001 |
ApoB (g/L), median (IQR) | 63.0 (48.0–83.8) | 74.0 (59.0–89.0) | <0.001 | 0.182 |
ApoA-I (g/L), median (IQR) | 57.5 (31.8–82.3) | 128.0 (111.0–146.0) | <0.001 | <0.001 |
TRLP (nmol/L), median (IQR) | 94.3 (39.6–147.0) | 127.7 (85.4–182.6) | <0.001 | 0.001 |
Very large TRLP (nmol/L), median (IQR) | 0.0 (0.0–0.0) | 0.0 (0.0–0.1) | <0.001 | 0.173 |
Large TRLP (nmol/L), median (IQR) | 0.3 (0.0–1.4) | 2.0 (0.4–5.8) | <0.001 | <0.001 |
Medium TRLP (nmol/L), median (IQR) | 2.1 (0.0–8.0) | 15.4 (7.0–26.3) | <0.001 | <0.001 |
Small TRLP (nmol/L), median (IQR) | 17.3 (1.6–34.0) | 33.4 (17.0–57.5) | <0.001 | <0.001 |
Very small TRLP (nmol/L), median (IQR) | 62.3 (18.2–117.2) | 65.5 (35.7–107.4) | 0.370 | 0.836 |
TRL size (nm), median (IQR) | 41.5 (35.4–49.4) | 45.9 (41.6–51.8) | <0.001 | <0.001 |
LDLP (nmol/L), median (IQR) | 1026.5 (745.3–1477.3) | 1234.5 (1013.5–1494.8) | <0.001 | 0.316 |
Large LDLP (nmol/L), median (IQR) | 438.0 (208.8.3–671.8) | 292.5 (139.8–496.0) | <0.001 | <0.001 |
Medium LDLP (nmol/L), median (IQR) | 0.0 (0.0–155.3) | 139.5 (0.0–396.0) | <0.001 | <0.001 |
Small LDLP (nmol/L), median (IQR) | 256.0 (98.8–398.5) | 637.0 (403.3–860.5) | <0.001 | <0.001 |
LDL size (nm), median (IQR) | 21.7 (21.1–22.0) | 21.1 (20.7–21.4) | <0.001 | <0.001 |
Total HDLP (µmol/L), median (IQR) | 6.5 (4.0–10.0) | 19.5 (17.1–21.6) | <0.001 | <0.001 |
Large HDLP (µmol/L), median (IQR) | 2.3 (1.0–3.8) | 2.1 (1.2–3.6) | 0.415 | 0.930 |
Medium HDLP (µmol/L), median (IQR) | 0.5 (0.0–2.0) | 4.8 (3.6–6.3) | <0.001 | <0.001 |
Small HDLP (µmol/L), median (IQR) | 3.0 (1.2–5.5) | 12.1 (9.6–14.1) | <0.001 | <0.001 |
HDL size (nm), median (IQR) | 10.4 (9.3–11.3) | 9.2 (8.8–9.7) | <0.001 | <0.001 |
HDL subspecies
| 0.0 (0.0–0.2) 2.8 (0.9–5.1) 0.1 (0.0–0.8) 0.2 (0.0–0.9 )0.1 (0.0–0.6) 0.4 (0.0–1.1) 0.8 (0.0–2.5) | 1.9 (0.5–3.4) 9.6 (7.8–11.5) 3.1 (1.6–4.3) 1.7 (1.0–2.4) 0.5 (0.2–1.0) 0.7 (0.3–1.7) 0.4 (0.1–1.0) | <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.044 | <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 |
LP-Z present, n (%) LP-Z (nmol/L), median (IQR) | 40 (30.8%) 0 (0.0–666.4) | 3 (0.8%) 0 (0.0–0.0) | <0.001 <0.001 | <0.001 <0.001 |
Primary liver diseases | ||||
Storage disease, n (%) | 4 (3.1) | 33 (8.9) | 0.031 | n.a. |
Autoimmune hepatitis, n (%) | 11 (8.5) | 19 (5.1) | 0.165 | n.a. |
Cholestatic liver disease (PSC/PBC), n (%) | 34 (26.2) | 99 (26.6) | 0.919 | n.a. |
Viral, n (%) | 12 (9.2) | 39 (10.5) | 0.684 | n.a. |
Alcohol, n (%) | 29 (22.3) | 49 (13.2) | 0.013 | n.a. |
MAFLD, n (%) | 33 (25.4) | 34 (9.1) | <0.001 | n.a. |
Vascular, n (%) | 2 (1.5) | 1 (0.3) | 0.166 | n.a. |
Malignancy, n (%) | 0 (0) | 5 (1.3) | 0.334 | n.a. |
Other, n (%) | 5 (3.8) | 93 (25.0) | <0.001 | n.a. |
Comparison of Pre-Transplant Cirrhotic Patients (N = 130) with the PREVEND Population (N = 6027) | Comparison of OLT Recipients (N = 372) with the PREVEND Population (N = 6027) | |
---|---|---|
Lipids and lipoproteins | ||
Total cholesterol (mmol/L), median (IQR) | −1.827 (−1.989 to −1.665) * | −1.000 (−1.097 to −0.904) * |
Non-HDL cholesterol (mmol/L), median (IQR) | −1.514 (−1.676 to −1.352) * | −1.157 (−1.253 to −1.060) * |
HDL cholesterol (mmol/L), median (IQR) | −1.096 (−1.249 to −0.944) * | 0.508 (0.415 to 0.600) * |
LDL cholesterol (mmol/L), median (IQR) | −1.684 (−1.844 to −1.525) * | −1.426 (−1.521 to −1.331) * |
Triglycerides (mmol/L), median (IQR) | −0.552 (−0.724 to −0.379) * | 0.141 (0.038 to 0.245) * |
ApoB (mg/dL), median (IQR) | −0.803 (−0.971 to −0.635) * | −0.600 (−0.699 to −0.501) * |
ApoA-I (mg/dL), median (IQR) | −2.815 (−2.961 to −2.669) * | 0.001 (−0.086 to 0.089) |
TRLP (nmol/L), median (IQR) | −0.644 (−0.813 to −0.476) * | −0.235 (−0.335 to −0.134) * |
Very large TRLP (nmol/L), median (IQR) | −0.088 (−0.263 to 0.087) | 0.025 (−0.079 to 0.130) |
Large TRLP (nmol/L), median (IQR) | −0.609 (−0.779 to −0.439) * | −0.023 (−0.127 to 0.081) |
Medium TRLP (nmol/L), median (IQR) | −0.732 (−0.901 to −0.564) * | 0.149 (0.047 to 0.251) * |
Small TRLP (nmol/L), median (IQR) | −0.740 (−0.913 to −0.567) * | −0.353 (−0.457 to −0.249) * |
Very small TRLP (nmol/L), median (IQR) | 0.056 (−0.117 to 0.228) | −0.046 (−0.149 to 0.056) |
TRL size (nm), median (IQR) | −0.423 (−0.596 to −0.250) * | 0.116 (0.013 to 0.219) ** |
LDLP (nmol/L), median (IQR) | −0.781 (−0.949 to −0.612) * | −0.606 (−0.705 to −0.507) * |
Large LDLP (nmol/L), median (IQR) | 0.628 (0.463 to 0.792) * | −0.089 (−0.186 to 0.009) |
Medium LDLP (nmol/L), median (IQR) | −0.950 (−1.121 to −0.778) * | −0.531 (−0.634 to −0.428) * |
Small LDLP (nmol/L), median (IQR) | −0.833 (−1.006 to −0.661) * | −0.014 (−0.118 to 0.090) |
LDL size (nm), median (IQR) | 0.833 (0.667 to 1.000) * | −0.051 (−0.150 to 0.048) |
Total HDLP (µmol/L), median (IQR) | −3.990 (−4.129 to −3.851) * | −0.473 (−0.556 to −0.389) * |
Large HDLP (µmol/L), median (IQR) | 0.518 (0.362 to 0.674) * | 0.631 (0.536 to 0.727) * |
Medium HDLP (µmol/L), median (IQR) | −1.619 (−1.777 to −1.460) * | −0.030 (−0.126 to 0.065) |
Small HDLP (µmol/L), median (IQR) | −3.289 (−3.435 to −3.143) * | −0.731 (−0.820 to −0.642) * |
HDL size (nm), median (IQR) | 0.371 (2.436 to 2.733) * | 0.655 (0.571 to 0.738) * |
HDL subspecies | ||
| −1.719 (−1.881 to −1.557) * −2.839 (−2.995 to −2.682) * −1.353 (−1.517 to −1.189) * −1.026 (−1.190 to −0.862) * −0.098 (−0.264 to 0.069) −0.217 (−0.379 to −0.055) * 1.686 (1.536 to 1.836) * | −0.681 (−0.780 to −0.582) * −0.424 (−0.519 to −0.330) * −0.102 (−0.202 to −0.002) ** 0.108 (0.008 to 0.208) ** 0.596 (0.492 to 0.699) * 0.239 (0.140 to 0.338) * 0.610 (0.520 to 0.700) * |
LP-Z (nmol/L), median (IQR) | 3.176 (3.017 to 3.336) * | 0.031 (0.008 to 0.055) * |
LP-Z Not Detectable N = 90 (69.2%) | LP-Z Detectable N = 40 (30.8%) | p-Value | Adjusted p-Value * | |
---|---|---|---|---|
Baseline characteristics | ||||
Sex: men/women, n (%) | 60 (66.7)/30 (33.3) | 25 (62.5)/15 (37.5) | 0.645 | n.a. |
Age (years), median (IQR) | 60.0 (54.0–65.3) | 58.5 (51.0–64.0) | 0.296 | n.a. |
BMI (kg/m2), median (IQR) | 28.2 (24.6–31.1) | 26.4 (23.2–31.0) | 0.239 | 0.932 |
BMI | ||||
| 17 (26.2) 25 (38.5) 23 (35.4) | 11 (42.3) 7 (26.9) 8 (30.8) | 0.131 0.298 0.675 | 0.494 0.132 0.255 |
Smoking, n (%) | 13 (20.0) | 3 (15.0) | 0.617 | 0.418 |
Child Pugh Turcotte classification
| 24 (26.7) 53 (58.9) 13 (14.4) | 4 (10.0) 11 (27.5) 25 (62.5) | 0.038 0.001 <0.001 | 0.035 0.001 <0.001 |
MELD score, median (IQR) | 13.0 (9.8–16.0) | 19.5 (17.0–22.0) | <0.001 | <0.001 |
Mortality on waiting list, n (%) | 18 (20.0) | 11 (27.5) | 0.150 | 0.999 |
History of cardiovascular disease, n (%) | 6 (6.9) | 0 (0.0) | 0.176 | 0.999 |
History of diabetes, n (%) | 28 (32.2) | 8 (20.5) | 0.180 | 0.252 |
Glucose lowering drugs, n (%) | 28 (37.8) | 7 (19.4) | 0.052 | 0.069 |
Lipid lowering drugs, n (%) | 13 (17.6) | 6 (16.7) | 0.907 | 0.775 |
Blood tests | ||||
ALT (U/L), median (IQR) | 36.0 (28.0–49.5) | 53.5 (33.5–112.3) | 0.006 | 0.031 |
AST (U/L), median (IQR) | 50.0 (37.0–62.3) | 88.0 (54.0–152.8) | <0.001 | 0.069 |
GGT (U/L), median (IQR) | 97.5 (52.5–152.0) | 69.5 (40.5–141.5) | 0.378 | 0.630 |
ALP (U/L), mean ± SD | 130.5 (92.0–167.5) | 218.5 (104.3–298.0) | 0.005 | 0.004 |
Bilirubin direct, median (IQR) | 18.0 (13.0–29.0) | 162.0 (51.0–228.0) | <0.001 | 0.002 |
Bilirubin total, median (IQR) | 28.0 (18.0–52.5) | 162.5 (75.5–257.3) | <0.001 | <0.001 |
Albumin (g/L), median (IQR) | 32.0 (27.3–36.0) | 28.0 (25.3–36.0) | 0.111 | 0.169 |
HbA1c (mmol/mol), median (IQR) | 34.0 (27.0–46.0) | 27.0 (18.0–33.0) | 0.018 | 0.095 |
HbA1c (%), median (IQR) | 5.3 (4.7–6.4) | 4.6 (3.8–5.2) | 0.017 | 0.093 |
Fasting glucose (mmol/L), median (IQR) | 6.4 (5.0–8.0) | 6.6 (4.9–9.8) | 0.554 | 0.326 |
Lipids and lipoproteins | ||||
Total cholesterol (mmol/L), median (IQR) | 3.4 (2.8–4.1) | 2.4 (1.6–4.2) | 0.001 | 0.044 |
Non-HDL cholesterol (mmol/L), median (IQR) | 2.3 (1.9–3.0) | 2.1 (1.4–3.9) | 0.504 | 0.356 |
HDL cholesterol (mmol/L), median (IQR) | 1.1 (0.8–1.3) | 0.2 (0.1–0.5) | <0.001 | <0.001 |
LDL cholesterol (mmol/L), median (IQR) | 1.9 (1.4–2.2) | 1.7 (1.1–2.3) | 0.409 | 0.915 |
Triglycerides (mmol/L), median (IQR) | 0.6 (0.5–1.0) | 0.9 (0.5–1.3) | 0.101 | 0.152 |
ApoB (mg/dL), median (IQR) | 57.0 (46.8–73.5) | 94.0 (50.5–123.0) | <0.001 | <0.001 |
ApoA-I (mg/dL), median (IQR) | 68.5 (53.0–88.0) | 20.5 (11.3–34.0) | <0.001 | <0.001 |
TRLP (nmol/L), median (IQR) | 112.0 (69.6–147.0) | 28.4 (4.7–163.6) | 0.001 | 0.220 |
Very large TRLP (nmol/L), median (IQR) | 0.0 (0.0–0.1) | 0.0 (0.0–0.0) | 0.010 | 0.310 |
Large TRLP (nmol/L), median (IQR) | 0.3 (0.0–1.6) | 0.1 (0.0–1.3) | 0.208 | 0.358 |
Medium TRLP (nmol/L), median (IQR) | 2.0 (0.0–6.8) | 2.7 (0.0–13.3) | 0.215 | 0.138 |
Small TRLP (nmol/L), median (IQR) | 20.3 (11.2–33.8) | 0.6 (0.0–29.3) | 0.001 | 0.859 |
Very small TRLP (nmol/L), median (IQR) | 74.6 (38.8–118.4) | 4.6 (0.0–110.6) | <0.001 | 0.100 |
TRL size (nm), median (IQR) | 40.9 (34.7–48.4) | 45.6 (36.2–55.7) | 0.154 | 0.756 |
LDLP (nmol/L), median (IQR) | 956.0 (721.5–1166.3) | 1715.0 (968.5–2256.3) | <0.001 | <0.001 |
Large LDLP (nmol/L), median (IQR) | 472.5 (337.8–671.8) | 235.5 (20.5–727.3) | 0.007 | 0.274 |
Medium LDLP (nmol/L), median (IQR) | 16.5 (0.0–234.5) | 0.0 (0.0–0.0) | <0.001 | 0.004 |
Small LDLP (nmol/L), median (IQR) | 277.0 (113.0–425.0) | 182.0 (26.8–394.0) | 0.108 | 0.298 |
LDL size (nm), median (IQR) | 21.7 (21.3–22.0) | 21.3 (20.0–22.1) | 0.033 | <0.001 |
Total HDLP (µmol/L), median (IQR) | 8.1 (5.8–11.5) | 3.3 (1.6–4.8) | <0.001 | <0.001 |
Large HDLP (µmol/L), median (IQR) | 3.1 (1.9–3.9) | 0.7 (0.0–1.5) | <0.001 | <0.001 |
Medium HDLP (µmol/L), median (IQR) | 0.9 (0.2–3.0) | 0.0 (0.0–0.3) | <0.001 | <0.001 |
Small HDLP (µmol/L), median (IQR) | 3.4 (1.8–6.1) | 2.1 (0.4–3.2) | 0.001 | 0.001 |
HDL size (nm), median (IQR) | 10.8 (9.7–11.5) | 9.5 (8.1–10.3) | <0.001 | <0.001 |
HDL subspecies
| 0.0 (0.0–0.4) 3.3 (1.3–5.6) 0.4 (0.0–1.2) 0.5 (0.0–1.3) 0.1 (0.0–0.6) 0.6 (0.0–1.3) 1.8 (0.3–2.9) | 0.0 (0.0–0.1) 1.7 (0.0–2.8) 0.0 (0.0–0.1) 0.0 (0.0–0.1) 0.0 (0.0–0.6) 0.0 (0.0–0.5) 0.0 (0.0–0.3) | 0.264 <0.001 <0.001 <0.001 0.699 <0.001 <0.001 | 0.962 <0.001 0.004 0.001 0.377 <0.001 <0.001 |
LP-Z (nmol/L), median (IQR) | - | 1354.5 (725.7–2080.9) | n.a. | n.a. |
Primary liver diseases | ||||
Storage disease, n (%) | 4 (4.4) | 0 (0) | 0.311 | n.a. |
Autoimmune hepatitis, n (%) | 8 (8.9) | 3 (7.5) | 1.00 | n.a. |
Cholestatic liver disease (PSC/PBC), n (%) | 18 (20.0) | 16 (40.0) | 0.017 | n.a. |
Viral, n (%) | 9 (10.0) | 3 (7.5) | 0.754 | n.a. |
Alcohol, n (%) | 22 (24.4) | 7 (17.5) | 0.380 | n.a. |
MAFLD, n (%) | 24 (26.7) | 9 (22.5) | 0.614 | n.a. |
Vascular, n (%) | 2 (2.2) | 0 (0.0) | 1.00 | n.a. |
Malignancy, n (%) | 0 (0) | 0 (0) | n.a. | n.a. |
Other, n (%) | 3 (3.3) | 2 (5.0) | 0.643 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; Garcia, E.; Connelly, M.A.; de Meijer, V.E.; Bakker, S.J.L.; Blokzijl, H.; Dullaart, R.P.F. Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein. J. Clin. Med. 2022, 11, 1223. https://doi.org/10.3390/jcm11051223
van den Berg EH, Flores-Guerrero JL, Gruppen EG, Garcia E, Connelly MA, de Meijer VE, Bakker SJL, Blokzijl H, Dullaart RPF. Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein. Journal of Clinical Medicine. 2022; 11(5):1223. https://doi.org/10.3390/jcm11051223
Chicago/Turabian Stylevan den Berg, Eline H., Jose L. Flores-Guerrero, Eke G. Gruppen, Erwin Garcia, Margery A. Connelly, Vincent E. de Meijer, Stephan J. L. Bakker, Hans Blokzijl, and Robin P. F. Dullaart. 2022. "Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein" Journal of Clinical Medicine 11, no. 5: 1223. https://doi.org/10.3390/jcm11051223
APA Stylevan den Berg, E. H., Flores-Guerrero, J. L., Gruppen, E. G., Garcia, E., Connelly, M. A., de Meijer, V. E., Bakker, S. J. L., Blokzijl, H., & Dullaart, R. P. F. (2022). Profoundly Disturbed Lipoproteins in Cirrhotic Patients: Role of Lipoprotein-Z, a Hepatotoxic LDL-like Lipoprotein. Journal of Clinical Medicine, 11(5), 1223. https://doi.org/10.3390/jcm11051223