Risk Assessment after ST-Segment Elevation Myocardial Infarction: Can Biomarkers Improve the Performance of Clinical Variables?
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Patients
2.2. Laboratory Variables
2.3. Statistical Analysis
3. Results
3.1. Basal Variables
3.2. Cardiovascular Biomarkers
3.3. Risk Assessment
4. Discussion
5. Conclusions
- −
- The STEMI patient group was enriched with critical patients and comorbid patients compared to other studies. This circumstance provides great support to the biomarkers’ prognostic value and could be highlighted as a strength of the study.
- −
- A determination of GDF-15 on admission improved the prognostic capacity of in-hospital mortality compared to a model based only on clinical variables. It could help to grade the treatment required by patients.
- −
- The combination of NT-proBNP and hs-cTnT improved the ability of a powerful clinical model to predict cardiovascular mortality.
- −
- CT-IGFBP-4, proposed as a biomarker of unstable atheroma plaques implicated in STEMI, was not associated with a significant improvement of the risk models with clinical variables and other biomarkers.
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Dégano, I.R.; Elosua, R.; Marrugat, J. Epidemiología del síndrome coronario agudo en España: Estimación del número de casos y la tendencia de 2005 a 2049. Rev. Esp. Cardiol. 2013, 66, 472–481. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.D.; Gore, J.; Yarzebski, J.; Spencer, F.; Lessard, D.; Goldberg, R.J. Recent trends in the incidence, treatment, and outcomes of patients with ST and non-ST-segment acute myocardial infarction. Am. J. Med. 2011, 124, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsuka, F.; Joner, M.; Prati, F.; Virmani, R.; Narula, J. Clinical classification of plaque morphology in coronary disease. Nat. Rev. Cardiol. 2014, 11, 379–389. [Google Scholar] [CrossRef]
- Elgendy, I.Y.; Mahmoud, A.; Kumbhani, D.J.; Bhatt, D.L.; Bavry, A.A. Complete or Culprit-Only Revascularization for Patients with Multivessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Pairwise and Network Meta-Analysis of Randomized Trials. JACC Cardiovasc. Interv. 2017, 10, 315–324. [Google Scholar] [CrossRef]
- Goldberg, R.J.; Darling, C.E.; Fisher, K.A.A.; McManus, D.D.; Coles, A.H.; Spencer, F.A.; Gore, J.M. Survival after hospital discharge for ST-segment elevation and non-ST-segment elevation acute myocardial infarction: A population-based study. Clin. Epidemiol. 2013, 5, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, F.; Butrymovich, V.; Kelbæk, H.; Wachtell, K.; Helqvist, S.; Kastrup, J.; Holmvang, L.; Clemmensen, P.; Engstrøm, T.; Grande, P.; et al. Short- and Long-Term Cause of Death in Patients Treated with Primary PCI for STEMI. J. Am. Coll. Cardiol. 2014, 64, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Vancraeynest, D.; Pasquet, A.; Roelants, V.; Gerber, B.; Vanoverschelde, J.-L.J. Imaging the Vulnerable Plaque. J. Am. Coll. Cardiol. 2011, 57, 1961–1979. [Google Scholar] [CrossRef] [Green Version]
- Fox, K.A.A.; Fitzgerald, G.; Puymirat, E.; Huang, W.; Carruthers, K.F.; Simon, T.; Coste, P.; Monsegu, J.; Steg, P.G.; Danchin, N.; et al. Should patients with acute coronary disease be stratified for management according to their risk? Derivation, external validation and outcomes using the updated GRACE risk score. BMJ Open 2014, 4, e004425. [Google Scholar] [CrossRef]
- Velders, M.A.; Wallentin, L.; Becker, R.C.; van Boven, A.J.; Himmelmann, A.; Husted, S.; Katus, H.A.; Lindholm, D.; Morais, J.; Siegbahn, A.; et al. Biomarkers for risk stratification of patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention: Insights from the Platelet Inhibition and Patient Outcomes trial. Am. Heart J. 2015, 169, 879–889.e7. [Google Scholar] [CrossRef]
- Klingenberg, R.; Aghlmandi, S.; Räber, L.; Gencer, B.; Nanchen, D.; Heg, D.; Carballo, S.; Rodondi, N.; Mach, F.; Windecker, S.; et al. Improved risk stratification of patients with acute coronary syndromes using a combination of hsTnT, NT-proBNP and hsCRP with the GRACE score. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 129–138. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, M.L.; Morrow, D.A.; Cannon, C.P.; Jarolim, P.; Desai, N.R.; Sherwood, M.W.; Murphy, S.A.; Gerszten, R.E.; Sabatine, M.S. Multimarker Risk Stratification in Patients with Acute Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e002586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayes-Genis, A.; Conover, C.A.; Schwartz, R.S. The Insulin-Like Growth Factor Axis: A Review of Atherosclerosis and Restenosis. Circ. Res. 2000, 86, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Bayes-Genis, A.; Conover, C.A.; Overgaard, M.T.; Bailey, K.R.; Christiansen, M.; Holmes, D.R.; Virmani, R.; Oxvig, C.; Schwartz, R.S. Pregnancy-Associated Plasma Protein A as a Marker of Acute Coronary Syndromes. N. Engl. J. Med. 2001, 345, 1022–1029. [Google Scholar] [CrossRef]
- Iversen, K.K.; Dalsgaard, M.; Teisner, A.S.; Schoos, M.; Teisner, B.; Nielsen, H.; Clemmensen, P.; Grande, P. Usefulness of Pregnancy-Associated Plasma Protein A in Patients with Acute Coronary Syndrome. Am. J. Cardiol. 2009, 104, 1465–1471. [Google Scholar] [CrossRef]
- Cirillo, P.; Conte, S.; Pellegrino, G.; Ziviello, F.; Barra, G.; De Palma, R.; Leonardi, A.; Trimarco, B. Pregnancy-associated plasma protein-A promotes TF procoagulant activity in human endothelial cells by Akt–NF-κB axis. J. Thromb. Thrombolysis 2016, 42, 225–232. [Google Scholar] [CrossRef]
- Cirillo, P.; Cimmino, G.; Conte, S.; Pellegrino, G.; Morello, A.; Golino, P.; Trimarco, B. Relationship between Pregnancy-associated Plasma Protein-A and tissue factor levels in the coronary circulation of patients with acute coronary syndrome. Int. J. Cardiol. 2018, 258, 14–16. [Google Scholar] [CrossRef]
- Terkelsen, C.J.; Oxvig, C.; Nørgaard, B.L.; Glerup, S.; Poulsen, T.S.; Lassen, J.F.; Møller, H.J.; Thuesen, L.; Falk, E.; Nielsen, T.T.; et al. Temporal Course of Pregnancy-Associated Plasma Protein-A in Angioplasty-Treated ST-Elevation Myocardial Infarction Patients and Potential Significance of Concomitant Heparin Administration. Am. J. Cardiol. 2009, 103, 29–35. [Google Scholar] [CrossRef]
- Sangiorgi, G.; Mauriello, A.; Bonanno, E.; Oxvig, C.; Conover, C.A.; Christiansen, M.; Trimarchi, S.; Rampoldi, V.; Holmes, D.R.; Schwartz, R.S.; et al. Pregnancy-Associated Plasma Protein-A Is Markedly Expressed by Monocyte-Macrophage Cells in Vulnerable and Ruptured Carotid Atherosclerotic Plaques: A Link Between Inflammation and Cerebrovascular Events. J. Am. Coll. Cardiol. 2006, 47, 2201–2211. [Google Scholar] [CrossRef]
- Hjortebjerg, R.; Lindberg, S.; Hoffmann, S.; Jensen, J.S.; Oxvig, C.; Bjerre, M.; Frystyk, J. PAPP-A and IGFBP-4 fragment levels in patients with ST-elevation myocardial infarction treated with heparin and PCI. Clin. Biochem. 2015, 48, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Postnikov, A.; Smolyanova, T.; Kharitonov, A.; Serebryanaya, D.; Kozlovsky, S.; Tryshina, Y.; Malanicev, R.; Arutyunov, A.; Murakami, M.; Apple, F.; et al. N-terminal and C-terminal fragments of IGFBP-4 as novel biomarkers for short-term risk assessment of major adverse cardiac events in patients presenting with ischemia. Clin. Biochem. 2012, 45, 519–524. [Google Scholar] [CrossRef]
- Hjortebjerg, R.; Tarnow, L.; Jorsal, A.; Parving, H.-H.; Rossing, P.; Bjerre, M.; Frystyk, J. IGFBP-4 Fragments as Markers of Cardiovascular Mortality in Type 1 Diabetes Patients with and without Nephropathy. J. Clin. Endocrinol. Metab. 2015, 100, 3032–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlittenhardt, D.; Schober, A.; Strelau, J.; Bonaterra, G.A.; Schmiedt, W.; Unsicker, K.; Kinscherf, R. Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 2004, 318, 325–333. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, T.; Eden, M.; Strelau, J.; Naguib, M.; Willenbockel, C.; Tongers, J.; Heineke, J.; Kotlarz, D.; Xu, J.; Molkentin, J.; et al. The Transforming Growth Factor-β Superfamily Member Growth-Differentiation Factor-15 Protects the Heart From Ischemia/Reperfusion Injury. Circ. Res. 2006, 98, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin. Chem. 2016, 63, 140–151. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, D.; Wang, X.; Zhu, H.; Jin, H.; Zhao, R.; Jiang, L.; Lu, Q.; Yi, F.; Wan, X.; et al. Growth differentiation factor–15 predicts the prognoses of patients with acute coronary syndrome: A meta-analysis. BMC Cardiovasc. Disord. 2016, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Afilalo, J.; Karunananthan, S.; Eisenberg, M.J.; Alexander, K.P.; Bergman, H. Role of Frailty in Patients with Cardiovascular Disease. Am. J. Cardiol. 2009, 103, 1616–1621. [Google Scholar] [CrossRef]
- Wee, T.; Tang, M.; Zrno, I.; Hamilton, J.; Holmes, D.T. N-Terminal Pro–B-Type Natriuretic Peptide (NT-proBNP) Immunoreactivity Is Reduced After 6 Years of Storage at −70 °C. J. Appl. Lab. Med. 2016, 1, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, S.K.; Avery, C.L.; Ballantyne, C.M.; Catellier, D.; Nambi, V.; Saunders, J.; Sharrett, A.R.; Coresh, J.; Heiss, G.; Hoogeveen, R.C. Sources of Variability in Measurements of Cardiac Troponin T in a Community-Based Sample: The Atherosclerosis Risk in Communities Study. Clin. Chem. 2011, 57, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Konev, A.A.; Kharitonov, A.V.; Rozov, F.N.; Altshuler, E.P.; Serebryanaya, D.V.; Lassus, J.; Harjola, V.; Katrukha, A.G.; Postnikov, A.B. CT-IGFBP-4 as a novel prognostic biomarker in acute heart failure. ESC Heart Fail. 2020, 7, 434–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.; Kozhuharov, N.; Coats, A.J.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; ESC Scientific Document Group. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Hlatky, M.; Greenland, P.; Arnett, D.K.; Ballantyne, C.M.; Criqui, M.H.; Elkind, M.S.; Go, A.S.; Harrell, F.E.; Hong, Y.; Howard, B.V.; et al. Criteria for Evaluation of Novel Markers of Cardiovascular Risk. Circulation 2009, 119, 2408–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januzzi, J.L.; van Kimmenade, R.R. Importance of Rigorous Evaluation in Comparative Biomarker Studies. J. Am. Coll. Cardiol. 2014, 63, 167–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, T.; Björklund, E.; Olofsson, S.; Lindahl, B.; Allhoff, T.; Peter, T.; Tongers, J.; Wollert, K.C.; Wallentin, L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007, 28, 2858–2865. [Google Scholar] [CrossRef] [Green Version]
- Arós, F.; Heras, M.; Vila-Domènech, J.S.; Sanz, H.; Ferreira-González, I.; Permanyer-Miralda, G.; Cuñat, J.; López-Bescós, L.; Cabadés, A.; Loma-Osorio, Á.; et al. Reducción de la mortalidad precoz y a 6 meses en pacientes con IAM en el periodo 1995-2005. Datos de los registros PRIAMHO I, II y MASCARA. Rev. Esp. Cardiol. 2011, 64, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-González, I.; Permanyer-Miralda, G.; Marrugat, J.; Heras, M.; Cuñat, J.; Civeira, E.; Arós, F.; Rodríguez, J.J.; Sánchez, P.L.; Bueno, H. Estudio MASCARA (Manejo del Síndrome Coronario Agudo. Registro Actualizado). Resultados globales. Rev. Esp. Cardiol. 2008, 61, 803–816. [Google Scholar] [CrossRef] [Green Version]
- Killip, T.; Kimball, J.T. Treatment of myocardial infarction in a coronary care unit. Am. J. Cardiol. 1967, 20, 457–464. [Google Scholar] [CrossRef]
- Harjola, V.-P.; Lassus, J.; Sionis, A.; Køber, L.; Tarvasmäki, T.; Spinar, J.; Parissis, J.; Banaszewski, M.; Silva-Cardoso, J.; Carubelli, V.; et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 2015, 17, 501–509. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littnerova, S.; Kala, P.; Jarkovsky, J.; Kubkova, L.; Prymusova, K.; Kubena, P.; Tesak, M.; Toman, O.; Poloczek, M.; Spinar, J.; et al. GRACE Score among Six Risk Scoring Systems (CADILLAC, PAMI, TIMI, Dynamic TIMI, Zwolle) Demonstrated the Best Predictive Value for Prediction of Long-Term Mortality in Patients with ST-Elevation Myocardial Infarction. PLoS ONE 2015, 10, e0123215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pencina, M.J.; D’Agostino, R.B.; Pencina, K.M.; Janssens, A.C.J.W.; Greenland, P. Interpreting Incremental Value of Markers Added to Risk Prediction Models. Am. J. Epidemiol. 2012, 176, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pencina, M.J.; D’Agostino, R.B., Sr.; D’Agostino, R.B., Jr.; Vasan, R.S. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat. Med. 2008, 27, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Hilden, J.; Gerds, T.A. A note on the evaluation of novel biomarkers: Do not rely on integrated discrimination improvement and net reclassification index. Stat. Med. 2014, 33, 3405–3414. [Google Scholar] [CrossRef]
- Hjortebjerg, R.; Lindberg, S.; Pedersen, S.; Mogelvang, R.; Jensen, J.S.; Oxvig, C.; Frystyk, J.; Bjerre, M. Insulin-Like Growth Factor Binding Protein 4 Fragments Provide Incremental Prognostic Information on Cardiovascular Events in Patients with ST-Segment Elevation Myocardial Infarction. J. Am. Heart Assoc. 2017, 6, e005358. [Google Scholar] [CrossRef]
- Reichek, N. Meta-Analysis of MACE in MI: What’s the MO? JACC Cardiovasc. Imaging 2014, 7, 953–955. [Google Scholar] [CrossRef] [Green Version]
- Baggiano, A.; Italiano, G.; Guglielmo, M.; Fusini, L.; Guaricci, A.I.; Maragna, R.; Giacari, C.M.; Mushtaq, S.; Conte, E.; Annoni, A.D.; et al. Changing Paradigms in the Diagnosis of Ischemic Heart Disease by Multimodality Imaging. J. Clin. Med. 2022, 11, 477. [Google Scholar] [CrossRef]
- Ravkilde, J.; Nissen, H.; Mickley, H.; Andersen, P.E.; Thayssen, P.; Horder, M. Cardiac troponin T and CK-MB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pactoris. Am. Heart J. 1994, 127, 13–20. [Google Scholar] [CrossRef]
- Nageh, T.; Sherwood, R.A.; Harris, B.M.; Thomas, M.R. Prognostic role of cardiac troponin I after percutaneous coronary intervention in stable coronary disease. Heart 2005, 91, 1181–1185. [Google Scholar] [CrossRef] [Green Version]
- Schellings, D.A.A.M.; Van’t Hof, A.W.J.; Berg, J.M.T.; Elvan, A.; Giannitsis, E.; Hamm, C.; Suryapranata, H.; Adiyaman, A. NT-proBNP during and after primary PCI for improved scheduling of early hospital discharge. Neth. Heart J. 2016, 25, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchner, S.; Debl, K.; Barlage, S.; Griese, D.; Fredersdorf, S.; Jeron, A.; Lubnow, M.; Müller, T.; Muders, F.; Holmer, S.; et al. Dynamic changes in N-terminal pro-brain natriuretic peptide in acute coronary syndromes treated with percutaneous coronary intervention: A marker of ischemic burden, reperfusion and outcome. Clin. Chem. Lab. Med. 2010, 48, 875–881. [Google Scholar] [CrossRef] [PubMed]
Demography and Antecedents (n = 253, Unless Otherwise Indicated) | |||
---|---|---|---|
Patients and STEMI Characteristics | Laboratory Analysis | ||
Sex, woman | 66 (26.1) | Sodium (mmol/L) | 138 (136–140) |
Age (years) | 66 (55–76) | Potassium (mmol/L) | 3.80 (3.43–4.10) |
BMI (kg/m2) | 26.1 (24.9–29.1) | Glucose (mmol/L) | 8.90 (7.10–12.60) |
Hypertension | 157 (62.1) | Urea (mmol/L) | 7.00 (5.00–9.00) |
Dyslipidemia | 124 (49.0) | Creatinine (µmol/L) | 82.0 (69.0–106) |
Smoking status | 110 (43.5) | eGFR (CKD-EPI; mL/min/1.73 m2) | 81.5 (62.5–90) |
Type 2 diabetes | 55 (21.7) | AST (U/L) | 63.0 (28.0–168) |
Killip–Kimball class 1 | CK (U/L) | 290 (139–804) | |
I | 125 (49.4) | Total cholesterol (mmol/L) | 4.34 (3.59–5.09) |
II | 42 (16.6) | HDL cholesterol (mmol/L) | 0.97 (0.82–1.15) |
III | 21 (8.30) | LDL cholesterol (mmol/L) | 2.66 (2.02–3.39) |
IV | 65 (25.7) | Hemoglobin (g/L) | 136 (123–152) |
Cardiac arrest | 21 (8.30) | Hematocrit (L/L) | 40.0 (36.0–44.0) |
GRACE 2.0 Risk Score 1 | 179 (145–232) | Platelets (×109/L) | 212 (169–252) |
Ischemia time (min) | 208 (160–320) | Leukocytes (×109/L) | 11.9 (9.42–14.8) |
Systolic BP (mm Hg) | 115 (85–135) | HbA1c (%) | 5.70 (5.40–6.10) |
Diastolic BP (mm Hg) | 70 (53–80) | ||
LVEF % | 44 (35–55) | ||
PCI | 240 (94.9) |
Biomarker | Total Group Median (IQR) (n = 253) | Deceased Patients Median (IQR) (n = 55) | Surviving Patients Median (IQR) (n = 198) | Reference Values |
---|---|---|---|---|
CT-IGFBP-4, µg/L | 48.7 (32.9–67.8) | 69.9 (42.6–91.1) | 45.0 (30.1–60.5) | Not evaluated in the literature; a concentration < 34.3 µg/L is associated with the lowest mortality and MACE occurrence in STEMI patients [20] |
hs-cTnT, ng/L | 373 (84.0–1614) | 1148 (146–3868) | 351 (80–1209) | A concentration > 14 ng/L indicates myocardial injury |
NT-proBNP, ng/L | 508 (99.0–1897) | 2201 (519–14,004) | 329 (84–1197) | Depending on the patient’s age < 300 or <900 or <1800 ng/L rules-out acute heart failure |
GDF-15, ng/L | 2297 (1328–5323) | 6989 (3215–20,000) | 1918 (1187–3496) | A concentration > 1200 ng/L is associated to incresed mortality in STEMI patients [36] |
Biomarker | In-Hospital Mortality | Follow-Up Mortality | Cardiovascular Mortality | All-Cause Mortality | MACE | |||||
---|---|---|---|---|---|---|---|---|---|---|
AUC (95%CI) | p-Value | AUC (95%CI) | p-Value | AUC (95%CI) | p-Value | AUC (95%CI) | p-Value | AUC (95%CI) | p-Value | |
CT-IGFBP-4 | 0.656 | <0.001 | 0.765 (0.658–0.872) | 0.002 | 0.731 | <0.001 | 0.713 | <0.001 | 0.625 | 0.379 |
(0.539–0.772) | (0.640–0.822) | (0.628–0.798) | (0.541–0.709) | |||||||
hs-cTnT | 0.632 | <0.001 | 0.610 (0.488–0.732) | <0.001 | 0.697 | <0.001 | 0.611 | <0.001 | 0.608 | 0.215 |
(0.531–0.732) | (0.609–0.785) | (0.528–0.695) | (0.528–0.688) | |||||||
NT-proBNP | 0.716 | 0.003 | 0.746 (0.632–0.861) | 0.001 | 0.809 | 0.138 | 0.740 | 0.002 | 0.661 | 0.791 |
(0.612–0.820) | (0.731–0.887) | (0.660–0.819) | (0.579–0.743) | |||||||
GDF-15 | 0.874 | 0.457 | 0.717 (0.604–0.829) | 0.005 | 0.808 | 0.042 | 0.819 | 0.130 | 0.616 | 0.055 |
(0.802–0.946) | (0.727–0.889) | (0.749–0.888) | (0.528–0.704) | |||||||
Multibiomarker | 0.877 | Ref | 0.810 (0.722–0.899) | Ref | 0.865 | Ref | 0.848 | Ref | 0.668 | Ref |
(0.809–0.946) | (0.806–0.924) | (0.790–0.907) | (0.583–0.754) |
Biomarker | In-Hospital Mortality | Follow-Up Mortality | Cardiovascular Mortality | ||||||
---|---|---|---|---|---|---|---|---|---|
Log-Rank χ2 (p-Value) | Univariate HR (95%CI) | Adjusted for GRACE 2.0 HR (95%CI) | Log-Rank χ2 (p-Value) | Univariate HR (95%CI) | Adjusted for GRACE 2.0 HR (95%CI) | Log-Rank χ2 (p-Value) | Univariate HR (95%CI) | Adjusted for GRACE 2.0 HR (95%CI) | |
CT-IGFBP-4 | 14.33 (<0.001) | 3.48 (1.74–6.94) | NS | 23.56 (<0.001) | 6.80 (2.77–16.69) | 4.85 (1.92–12.23) | 23.99 (<0.001) | 4.48 (2.31–8.66) | 2.46 (1.26–4.81) |
hs-cTnT | 7.33 (0.007) | 2.48 (1.25–4.93) | NS | 4.48 (0.034) | NS | NS | 20.92 (<0.001) | 4.20 (2.14–8.21) | 3.21 (1.63–6.30) |
NT-proBNP | 22.90 (<0.001) | 4.77 (2.34–9.70) | 2.30 (1.13–4.70) | 14.41 (<0.001) | 9.83 (2.30–42.06) | 6.95 (1.60–30.30) | 40.71 (<0.001) | 7.07 (3.50–14.27) | 4.05 (1.99–8.24) |
GDF-15 | 61.67 (<0.001) | 55.02 (7.51–402.8) | 14.28 (1.84–110.88) | 16.39 (<0.001) | 5.58 (2.19–14.27) | 3.44 (1.16–10.17) | 38.01 (<0.001) | 10.64 (4.10–27.26) | 3.65 (1.28–10.38) |
Biomarker | All-Cause Mortality | MACE | |||||||
Log-Rank χ2 (p-Value) | Univariate HR (95%CI) | Adjusted for GRACE 2.0 HR (95%CI) | Log-Rank χ2 (p-Value) | Univariate HR (95%CI) | Adjusted for GRACE 2.0 HR (95%CI) | ||||
CT-IGFBP-4 | 35.43 (<0.001) | 4.50 (2.61–7.77) | 2.49 (1.43–4.33) | 23.99 (<0.001) | 1.86 (1.12–3.08) | NS | |||
hs-cTnT | 9.43 (0.002) | 2.24 (1.32–3.81) | NS | 9.43 (0.002) | 2.41 (1.47–3.96) | 2.18 (1.32–3.58) | |||
NT-proBNP | 35.74 (<0.001) | 4.49 (2.61–7.01) | 2.41 (1.39–4.19) | 35.74 (<0.001) | 2.91 (1.77–4.76) | 2.32 (1.38–3.90) | |||
GDF-15 | 62.72 (<0.001) | 12.22 (5.52–27.04) | 4.60 (1.93–10.99) | 62.72 (<0.001) | 2.51 (1.51–4.16) | NS |
In-Hospital Mortality | Follow-Up Mortality | Cardiovascular Mortality | |||||||
---|---|---|---|---|---|---|---|---|---|
NRIe % (p-Value) | NRIne % (p-Value) | NRI % (p-Value) | NRIe % (p-Value) | NRIne % (p-Value) | NRI % (p-Value) | NRIe % (p-Value) | NRIne % (p-Value) | NRI % (p-Value) | |
CM + log CT-IGFBP-4 | 21.21 (NS) | 5.45 (NS) | 26.67 (NS) | 0 (NS) | 15.2 (0.020) | 15.2 (NS) | −10.53 (NS) | 6.05 (NS) | −4.48 (NS) |
CM + log hs-cTnT | 9.09 (NS) | 0 (NS) | 9.09 (NS) | 9.09 (NS) | 1.3 (NS) | 10.39 (NS) | 26.30 (NS) | 19.19 (0.004) | 45.40 (0.008) |
CM + log NT-proBNP | 21.21 (NS) | −7.27 (NS) | 13.94 (NS) | 0 (NS) | 3.9 (NS) | 3.9 (NS) | 42.10 (0.004) | 14.40 (0.032) | 56.50 (<0.001) |
CM + log hs-cTnT + log NT-proBNP | - | - | - | - | - | - | 47.40 (<0.001) | 21,90 (<0.001) | 69.20 (<0.001) |
CM + log GDF-15 | 39.40 (0.014) | 16.40 (0.014) | 55.80 (0.001) | −9.09 (NS) | 3.9 (NS) | −5.19 (NS) | 21.05 (NS) | 0.465 (NS) | 21.52 (NS) |
CM + Multibiomarker | 45.45 (0.003) | 21.80 (<0.001) | 67.30 (<0.001) | 9.09 (NS) | 10.82 (NS) | 19.91 (NS) | 47.40 (<0.001) | 27.40 (<0.001) | 74.80 (<0.001) |
All-Cause Mortality | MACE | ||||||||
NRIe % (p-value) | NRIne % (p-Value) | NRI % (p-Value) | NRIe % (p-Value) | NRIne % (p-Value) | NRI % (p-Value) | ||||
CM + log CT-IGFBP-4 | −5.45 (NS) | 2.02 (NS) | −3.43 (NS) | 7.94 (NS) | 6.32 (NS) | 14.25 (NS) | |||
CM + log hs-cTnT | 9.09 (NS) | 6.06 (NS) | 15.15 (NS) | 14.29 (NS) | 7.37 (NS) | 21.65 (NS) | |||
CM + log NT-proBNP | 20.0 (NS) | 6.06 (NS) | 26.06 (NS) | 2.02 (0.022) | 14.70 (0.040) | 29.00 (0.043) | |||
CM + log GDF-15 | 27.27 (0.035) | 8.08 (NS) | 35.35 (0.017) | −1.59 (NS) | 1.05 (NS) | −0.54 (NS) | |||
CM + Multibiomarker | 9.09 (NS) | 16.16 (0.020) | 25.25 (NS) | 30.2 (0.012) | 13.70 (0.050) | 43.80 (0.001) |
In-Hospital Mortality | Follow-Up Mortality | Cardiovascular Mortality | All-Cause Mortality | MACE | |
---|---|---|---|---|---|
Best risk assessment strategy | Clinical model 1 + GDF-15 | Clinical model | Clinical model + hs-cTnT + NT-proBNP | Clinical model | Clinical model + NT-proBNP |
Evidence | Discrimination (IDI) Survival analysis (HR) Calibration (Brier Score, AIC) Reclassification (NRIe/NRIne) | Discrimination (IDI) Calibration (Brier Score, AIC) Reclassification (NRIe/NRIne) | Survival analysis (HR) Calibration (Brier Score, AIC) Reclassification (NRIne) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Osuna, A.; Sans-Rosello, J.; Ferrero-Gregori, A.; Alquezar-Arbe, A.; Sionis, A.; Ordóñez-Llanos, J. Risk Assessment after ST-Segment Elevation Myocardial Infarction: Can Biomarkers Improve the Performance of Clinical Variables? J. Clin. Med. 2022, 11, 1266. https://doi.org/10.3390/jcm11051266
Garcia-Osuna A, Sans-Rosello J, Ferrero-Gregori A, Alquezar-Arbe A, Sionis A, Ordóñez-Llanos J. Risk Assessment after ST-Segment Elevation Myocardial Infarction: Can Biomarkers Improve the Performance of Clinical Variables? Journal of Clinical Medicine. 2022; 11(5):1266. https://doi.org/10.3390/jcm11051266
Chicago/Turabian StyleGarcia-Osuna, Alvaro, Jordi Sans-Rosello, Andreu Ferrero-Gregori, Aitor Alquezar-Arbe, Alessandro Sionis, and Jordi Ordóñez-Llanos. 2022. "Risk Assessment after ST-Segment Elevation Myocardial Infarction: Can Biomarkers Improve the Performance of Clinical Variables?" Journal of Clinical Medicine 11, no. 5: 1266. https://doi.org/10.3390/jcm11051266
APA StyleGarcia-Osuna, A., Sans-Rosello, J., Ferrero-Gregori, A., Alquezar-Arbe, A., Sionis, A., & Ordóñez-Llanos, J. (2022). Risk Assessment after ST-Segment Elevation Myocardial Infarction: Can Biomarkers Improve the Performance of Clinical Variables? Journal of Clinical Medicine, 11(5), 1266. https://doi.org/10.3390/jcm11051266