Estimating Renal Function Following Lung Transplantation
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Kidney Function over Time
2.3. Performance of Estimated GFR Equations
3. Discussion
3.1. Results in Context of Other Studies and Perspectives
3.2. Strengths and Limitations
4. Materials and Methods
4.1. Design and Study Cohort
4.2. P-Creatinine and P-Cystatin C Measurement
4.3. Measured Glomerular Filtration Rate
4.4. Estimated Glomerular Filtration Rate
4.5. Outcomes and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chambers, D.C.; Zuckermann, A.; Cherikh, W.S.; Harbay, M.O.; Hayes, D.; Hsich, E.; Khush, K.K.; Potena, L.; Sadavarte, A.; Singh, T.P.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: 37th Adult Lung Transplantation Report—2020; Focus on Deceased Donor Characteristics. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2020, 39, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Noreen, S.M.; Robinson, A.M.; Miller, E.; Snyder, J.J.; Israni, A.K.; et al. OPTN/SRTR 2017 Annual Data Report: Liver. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2019, 19, 184–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornum, M.; Burton, C.M.; Iversen, M.; Hovind, P.; Hilsted, L.; Feldt-Rasmussen, B. Decline in 51Cr-Labelled EDTA Measured Glomerular Filtration Rate Following Lung Transplantation. Nephrol. Dial. Transplant. 2007, 22, 3616–3622. [Google Scholar] [CrossRef] [Green Version]
- Hornum, M.; Iversen, M.; Steffensen, I.; Hovind, P.; Carlsen, J.; Andersen, L.W.; Steinbrüchel, D.A.; Feldt-Rasmussen, B. Rapid Decline in 51Cr-EDTA Measured Renal Function during the First Weeks Following Lung Transplantation. Am. J. Transplant. 2009, 9, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Florens, N.; Dubourg, L.; Bitker, L.; Kalbacher, E.; Philit, F.; Mornex, J.F.; Parant, F.; Guebre-Egziabher, F.; Juillard, L.; Lemoine, S. Measurement of Glomerular Filtration Rate in Lung Transplant Recipients Highlights a Dramatic Loss of Renal Function after Transplantation. Clin. Kidney J. 2020, 13, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Hornum, M.; Iversen, M.; Oturai, P.; Andersen, M.J.; Zemtsovski, M.; Bredahl, P.; Bjarnason, N.H.; Christensen, K.B.; Carlsen, J.; Møller, C.H.; et al. Felodipine and Renal Function in Lung Transplantation: A Randomized Placebo-Controlled Trial. J. Heart Lung Transplant. 2020, 39, 541–550. [Google Scholar] [CrossRef]
- Hellemons, M.E.; Bakker, S.J.; Postmus, D.; Verschuuren, E.A.; Erasmus, M.E.; Navis, G.; van der Bij, W. Incidence of Impaired Renal Function after Lung Transplantation. J. Heart Lung Transplant. 2012, 31, 238–243. [Google Scholar] [CrossRef]
- Chan, C.; Maurer, J.; Cardella, C.; Cattran, D.; Pei, Y. A Randomized Controlled Trial of Verapamil on Cyclosporine Nephrotoxicity in Heart and Lung Transplant Recipients. Transplantation 1997, 63, 1435–1440. [Google Scholar] [CrossRef]
- Hornum, M.; Feldt-Rasmussen, B. Drug Dosing and Estimated Renal Function-Any Step Forward from Effersoe? Nephron 2017, 136, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Stevens, L.A.; Nolin, T.D.; Richardson, M.M.; Feldman, H.I.; Lewis, J.B.; Rodby, R.; Townsend, R.; Okparavero, A.; Zhang, Y.; Schmid, C.H.; et al. Comparison of Drug Dosing Recommendations Based on Measured GFR and Kidney Function Estimating Equations. Am. J. Kidney Dis. 2009, 54, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Degen, D.A.; Janardan, J.; Barraclough, K.A.; Schneider, H.G.; Barber, T.; Barton, H.; Snell, G.; Levvey, B.; Walker, R.G. Predictive Performance of Different Kidney Function Estimation Equations in Lung Transplant Patients. Clin. Biochem. 2017, 50, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Broekroelofs, J.; Stegeman, C.A.; Navis, G.J.; de Haan, J.; van der Bij, W.; de Boer, W.J.; de Zeeuw, D.; de Jong, P.E. Creatinine-Based Estimation of Rate of Long Term Renal Function Loss in Lung Transplant Recipients. Which Method Is Preferable? J. Heart Lung Transplant. 2000, 19, 256–262. [Google Scholar] [CrossRef]
- Rasmussen, S.R.; Nielsen, R.V.; Møgelvang, R.; Ostrowski, S.R.; Ravn, H.B. Prognostic Value of SuPAR and HsCRP on Acute Kidney Injury after Cardiac Surgery. BMC Nephrol. 2021, 22, 120. [Google Scholar] [CrossRef] [PubMed]
- Mossanen, J.C.; Pracht, J.; Jansen, T.U.; Buendgens, L.; Stoppe, C.; Goetzenich, A.; Struck, J.; Autschbach, R.; Marx, G.; Tacke, F. Elevated Soluble Urokinase Plasminogen Activator Receptor and Proenkephalin Serum Levels Predict the Development of Acute Kidney Injury after Cardiac Surgery. Int. J. Mol. Sci. 2017, 18, 1662. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Levey, A.S.; Coresh, J. Estimated Glomerular Filtration Rate From a Panel of Filtration Markers—Hope for Increased Accuracy Beyond Measured Glomerular Filtration Rate? Adv. Chronic Kidney Dis. 2018, 25, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luis-Lima, S.; Escamilla-Cabrera, B.; Negrín-Mena, N.; Estupiñán, S.; Delgado-Mallén, P.; Marrero-Miranda, D.; González-Rinne, A.; Miquel-Rodríguez, R.; Cobo-Caso, M.Á.; Hernández-Guerra, M.; et al. Chronic Kidney Disease Staging with Cystatin C or Creatinine-Based Formulas: Flipping the Coin. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2019, 34, 287–294. [Google Scholar] [CrossRef]
- Hornum, M.; Feldt-Rasmussen, B. Glomerular Filtration Rate Estimation in Renal and Non-Renal Solid Organ Transplantation. Nephron 2017, 136, 298–301. [Google Scholar] [CrossRef] [Green Version]
- Luis-Lima, S.; Porrini, E. An Overview of Errors and Flaws of Estimated GFR versus True GFR in Patients with Diabetes Mellitus. Nephron 2017, 136, 287–291. [Google Scholar] [CrossRef]
- Filler, G.; Sharma, A.P. How to Monitor Renal Function in Pediatric Solid Organ Transplant Recipients. Pediatr. Transplant. 2008, 12, 393–401. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Schmid, C.H.; Feldman, H.I.; Froissart, M.; Kusek, J.; Rossert, J.; Van Lente, F.; Bruce, R.D.; Zhang, Y.; et al. Estimating GFR Using Serum Cystatin C Alone and in Combination With Serum Creatinine: A Pooled Analysis of 3418 Individuals With CKD. Am. J. Kidney Dis. 2008, 51, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Bukabau, J.B.; Yayo, E.; Gnionsahé, A.; Monnet, D.; Pottel, H.; Cavalier, E.; Nkodila, A.; Makulo, J.R.R.; Mokoli, V.M.; Lepira, F.B.; et al. Performance of Creatinine- or Cystatin C–Based Equations to Estimate Glomerular Filtration Rate in Sub-Saharan African Populations. Kidney Int. 2019, 95, 1181–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottel, H.; Delanaye, P.; Schaeffner, E.; Dubourg, L.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; Glassock, R.J.; et al. Estimating Glomerular Filtration Rate for the Full Age Spectrum from Serum Creatinine and Cystatin C. Nephrol. Dial. Transplant. 2017, 32, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Warnock, D.G.; Delanaye, P. The Global Burden of Chronic Kidney Disease: Estimates, Variability and Pitfalls. Nat. Rev. Nephrol. 2017, 13, 104–114. [Google Scholar] [CrossRef]
- den Bakker, E.; Gemke, R.J.B.J.; Bökenkamp, A. Endogenous Markers for Kidney Function in Children: A Review. Crit. Rev. Clin. Lab. Sci. 2018, 55, 163–183. [Google Scholar] [CrossRef]
- Iversen, E.; Bodilsen, A.C.; Klausen, H.H.; Treldal, C.; Andersen, O.; Houlind, M.B.; Petersen, J. Kidney Function Estimates Using Cystatin C versus Creatinine: Impact on Medication Prescribing in Acutely Hospitalized Elderly Patients. Basic Clin. Pharmacol. Toxicol. 2019, 124, 466–478. [Google Scholar] [CrossRef]
- White, C.A.; Akbari, A.; Doucette, S.; Fergusson, D.; Ramsay, T.; Hussain, N.; Dinh, L.; Filler, G.; Lepage, N.; Knoll, G.A. Effect of Clinical Variables and Immunosuppression on Serum Cystatin C and Beta-Trace Protein in Kidney Transplant Recipients. Am. J. Kidney Dis. 2009, 54, 922–930. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An Estimated Glomerular Filtration Rate Equation for the Full Age Spectrum. Nephrol. Dial. Transplant. 2016, 31, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Pottel, H.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Development and Validation of a Modified Full Age Spectrum Creatinine-Based Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2021, 174, 183–191. [Google Scholar] [CrossRef] [PubMed]
- den Bakker, E.; Gemke, R.; van Wijk, J.A.E.; Hubeek, I.; Stoffel-Wagner, B.; Bökenkamp, A. Combining GFR Estimates from Cystatin C and Creatinine—What Is the Optimal Mix? Pediatric Nephrol. 2018, 33, 1553–1563. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Schneider, M.F.; Maier, P.S.; Moxey-Mims, M.; Dharnidharka, V.R.; Warady, B.A.; Furth, S.L.; Mũoz, A. Improved Equations Estimating GFR in Children with Chronic Kidney Disease Using an Immunonephelometric Determination of Cystatin C. Kidney Int. 2012, 82, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porrini, E.; Ruggenenti, P.; Luis-Lima, S.; Carrara, F.; Jiménez, A.; de Vries, A.P.J.; Torres, A.; Gaspari, F.; Remuzzi, G. Estimated GFR: Time for a Critical Appraisal. Nat. Rev. Nephrol. 2019, 15, 177–190. [Google Scholar] [CrossRef]
- Delanaye, P.; Mariat, C.; Cavalier, E.; Maillard, N.; Krzesinski, J.-M.; White, C.A. Trimethoprim, Creatinine and Creatinine-Based Equations. Nephron Clin. Pract. 2011, 119, c187–c193. [Google Scholar] [CrossRef]
- Onopiuk, A.; Tokarzewicz, A.; Gorodkiewicz, E. Cystatin C: A Kidney Function Biomarker. In Advances in Clinical Chemistry; Academic Press Inc.: Cambridge, MA, USA, 2015; Volume 68, pp. 57–69. [Google Scholar]
- Lamb, E.J.; Stevens, P.E. Estimating and Measuring Glomerular Filtration Rate: Methods of Measurement and Markers for Estimation. Curr. Opin. Nephrol. Hypertens. 2014, 23, 258–266. [Google Scholar] [CrossRef]
- Filler, G.; Lee, M. Educational Review: Measurement of GFR in Special Populations. Pediatric Nephrol. 2018, 33, 2037–2046. [Google Scholar] [CrossRef]
- Risch, L.; Huber, A.R. Assessing Glomerular Filtration Rate in Renal Transplant Recipients by Estimates Derived from Serum Measurements of Creatinine and Cystatin C. Clin. Chim. Acta 2005, 356, 204–211. [Google Scholar] [CrossRef]
- Pricker, M.; Wiesli, P.; Brändle, M.; Schwegler, B.; Schmid, C. Impact of Thyroid Dysfunction on Serum Cystatin C. Kidney Int. 2003, 63, 1944–1947. [Google Scholar] [CrossRef] [Green Version]
- Wiesli, P.; Schwegler, B.; Spinas, G.A.; Schmid, C. Serum Cystatin C Is Sensitive to Small Changes in Thyroid Function. Clin. Chim. Acta 2003, 338, 87–90. [Google Scholar] [CrossRef]
- Schairer, B.; Jungreithmayr, V.; Schuster, M.; Reiter, T.; Herkner, H.; Gessl, A.; Sengölge, G.; Winnicki, W. Effect of Thyroid Hormones on Kidney Function in Patients after Kidney Transplantation. Sci. Rep. 2020, 10, 2156. [Google Scholar] [CrossRef] [Green Version]
- Chancharoenthana, W.; Wattanatorn, S.; Vadcharavivad, S.; Eiam-Ong, S.; Leelahavanichkul, A. Agreement and Precision Analyses of Various Estimated Glomerular Filtration Rate Formulae in Cancer Patients. Sci. Rep. 2019, 9, 19356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, M.P.; Lodding, I.P.; Mocroft, A.; Sørensen, S.S.; Perch, M.; Rasmussen, A.; Gustafsson, F.; Lundgren, J.D. Risk Factors for Failure of Primary (Val)Ganciclovir Prophylaxis Against Cytomegalovirus Infection and Disease in Solid Organ Transplant Recipients. Open Forum Infect. Dis. 2019, 6, ofz215. [Google Scholar] [CrossRef] [PubMed]
- Hayek, S.S.; Sever, S.; Ko, Y.-A.; Trachtman, H.; Awad, M.; Wadhwani, S.; Altintas, M.M.; Wei, C.; Hotton, A.L.; French, A.L.; et al. Soluble Urokinase Receptor and Chronic Kidney Disease. N. Engl. J. Med. 2015, 373, 1916–1925. [Google Scholar] [CrossRef]
- Iversen, E.; Houlind, M.B.; Kallemose, T.; Rasmussen, L.J.H.; Hornum, M.; Feldt-Rasmussen, B.; Hayek, S.S.; Andersen, O.; Eugen-Olsen, J. Elevated SuPAR Is an Independent Risk Marker for Incident Kidney Disease in Acute Medical Patients. Front. Cell Dev. Biol. 2020, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.B.; Bengaard, A.K.; Iversen, E.; Nguyen, C.N.; Kallemose, T.; Juul-Larsen, H.G.; Jawad, B.N.; Hornum, M.; Andersen, O.; Eugen-Olsen, J.; et al. Utility of SuPAR and NGAL for AKI Risk Stratification and Early Optimization of Renal Risk Medications among Older Patients in the Emergency Department. Pharmaceuticals 2021, 14, 843. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Petersen, J.E.V.; Eugen-Olsen, J. Soluble Urokinase Plasminogen Activator Receptor (SuPAR) as a Biomarker of Systemic Chronic Inflammation. Front. Immunol. 2021, 12, 780641. [Google Scholar] [CrossRef]
- Gaspari, F.; Perico, N.; Ruggenenti, P.; Mosconi, L.; Amuchastegui, C.S.; Guerini, E.; Daina, E.; Remuzzi, G. Plasma Clearance of Nonradioactive Iohexol as a Measure of Glomerular Filtration Rate. J. Am. Soc. Nephrol. 1995, 6, 257–263. [Google Scholar] [CrossRef]
- Luis-Lima, S.; Gaspari, F.; Negrín-Mena, N.; Carrara, F.; Díaz-Martín, L.; Jiménez-Sosa, A.; González-Rinne, F.; Torres, A.; Porrini, E. Iohexol Plasma Clearance Simplified by Dried Blood Spot Testing. Nephrol. Dial. Transplant. 2018, 33, 1597–1603. [Google Scholar] [CrossRef]
- Bjornstad, P.; Karger, A.B.; Maahs, D.M. Measured GFR in Routine Clinical Practice-The Promise of Dried Blood Spots. Adv. Chronic. Kidney Dis. 2018, 25, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Bröchner-Mortensen, J. A Simple Method for the Determination of Glomerular Filtration Rate. Scand. J. Clin. Lab. Investig. 1972, 30, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Jødal, L.; Brøchner-Mortensen, J. Reassessment of a Classical Single Injection 51Cr-EDTA Clearance Method for Determination of Renal Function in Children and Adults. Part I: Analytically Correct Relationship between Total and One-Pool Clearance. Scand. J. Clin. Lab. Investig. 2009, 69, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Groth, S.; Aasted, M. 51Cr-EDTA Clearance Determined by One Plasma Sample. Clin. Physiol. 1981, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Du Bois, D.; Du Bois, E.F. A Formula to Estimate the Approximate Surface Area If Height and Weight Be Known. Nutrition 1989, 5, 303–311; discussion 312. [Google Scholar]
- KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease Clinical Practice Guidelines. Available online: https://www.guidelinecentral.com/summaries/kdigo-2012-clinical-practice-guideline-for-the-evaluation-and-management-of-chronic-kidney-disease/#section-society (accessed on 23 January 2020).
Characteristic | |
---|---|
Female, n (%) | 13 (40.6) |
Age, median (IQR), years | 53.4 (46.7–58.9) |
Body mass index, median (IQR), kg/m2 | 20.9 (19.2–27.2) |
P-Creatinine, median (IQR), mg/dL | 0.81 (0.69–1.02) |
P-Cystatin C, median (IQR), mg/L | 0.90 (0.77–0.98) |
Cr-EDTA clearance, ml/min/1.73 m2 | 98.0 (89.0–110.0) |
Plasma cholesterol, median (IQR), mmol/L | 5.22 (4.48–5.65) |
Plasma TSH, median (IQR), IU/L | 1.71 (0.99–2.16) |
Pre-LTx (n = 32) | 1-Week Post-LTx (n = 30) | 3-Week Post-LTx (n = 29) | 12-Week Post-LTx (n = 28) | |
---|---|---|---|---|
Filtration marker | ||||
P-Creatinine, mg/dL | 0.81 (0.69–1.02) | 0.89 (0.71–1.15) | 0.98 (0.83–1.49) | 1.20 (1.07–1.57) |
P-Cystatin C, mg/dL | 0.90 (0.77–0.98) | 1.25 (1/07–1.70) | 1.37 (1.10–1.70) | 1.42 (1.12–1.69) |
Measured GFR | 98.0 (89.0–110.0) | 74.2 (55.3–96.2) | 62.3 (48.2–80.5) | 54.1 (48.3–72.3) |
Creatinine-based eGFR | ||||
CKD-EPI_crea2009 | 90.6 (74.9–105.5) | 96.4 (54.9–104.3) | 71.4 (58.7–95.4) | 58.6 (46.5–78.0) |
CKD-EPI_crea2021 | 96.6 (79.3–110.2) | 101.8 (58.5–109.2) | 75.4 (62.9–101.3) | 61.7 (49.7–81.6) |
FAS_crea | 82.9 (73.3–108.0) | 91.5 (54.4–104.3) | 70.5 (58.3–91.8) | 60.0 (47.6–77.2) |
EKFC_crea | 84.3 (75.0–103.3) | 91.5 (53.1–99.1) | 69.6 (57.5–92.0) | 58.9 (45.8–75.8) |
Cystatin C-based eGFR | ||||
CKD-EPI_cys | 94.2 (78.3–106.4) | 56.6 (35.2–69.8) | 55.0 (39.4–67.3) | 49.2 (38.4–67.1) |
FAS_cys | 88.5 (68.9–96.3) | 61.1 (38.6–72.0) | 60.0 (45.3–66.6) | 54.4 (44.6–65.0) |
Creatinine-Cystatin C combined eGFR | ||||
CKD-EPI_comb2012 | 89.4 (76.3–107.6) | 72.1 (42.9–85.2) | 68.8 (45.1–78.5) | 51.8 (38.8–68.1) |
CKD-EPI_comb2021 | 94.9 (78.7–112.0) | 73.1 (44.3–86.8) | 69.6 (46.4–77.9) | 53.6 (39.9–71.5) |
FAS_comb | 83.4 (71.3–105.4) | 72.4 (44.4–87.6) | 69.5 (50.4–77.3) | 57.5 (44.0–67.7) |
(A) | ||||
Equation | Pre-LTx (n = 32) | 1-Week Post-LTx (n = 30) | 3-Week Post-LTx (n = 29) | 12-Week Post-LTx (n = 28) |
Creatinine-based eGFR | ||||
CKD-EPI_crea2009 | 11.8 (5.1 to 15.4) | −5.9 (−19.4 to –3.2) | −8.1 (−21.3 to −0.5) | −2.2 (−7.1 to 6.5) |
CKD-EPI_crea2021 | 7.5 (0.3 to 10.9) | −10.5 (−22.9 to −6.4) | −13.8 (−25.0 to −3.6) | −5.0 (−11.6 to 2.3) |
FAS_crea | 6.1 (−1.3 to 15.9) | −9.2 (−17.3 to −1.2) | −4.2 (−23.2 to −1.6) | −3.6 (−9.2 to 3.7) |
EKFC_crea | 16.4 (8.3 to 20.3) | −2.7 (−12.3 to 0.2) | −4.7 (−16.7 to −0.2) | −2.6 (−6.3 to 6.6) |
Cystatin C-based eGFR | ||||
CKD-EPI_cys | 9.4 (−0.8 to 15.4) | 15.7 (8.6 to 25.1) | 8.7 (4.5 to 14.0) | 7.2 (1.1 to 13.7) |
FAS_cys | 12.3 (5.7 to 22.8) | 12.5 (6.0 to 23.6) | 7.2 (−0.7 to 14.4) | 1.2 (−2.4 to 11.3) |
Creatinine-Cystatin C combined eGFR | ||||
CKD-EPI_comb2012 | 9.5 (3.4 to 18.0) | 4.8 (−2.2 to 16.8) | 3.1 (−2.6 to 5.9) | 4.1 (0.1 to 8.1) |
CKD-EPI_comb2021 | 5.4 (−1.0 to 14.0) | 2.6 (−4.0 to 15.4) | 0.4 (−4.4 to 2.1) | 2.8 (−2.1 to 7.7) |
FAS_comb | 14.1 (3.4 to 19.6) | 4.5 (−4.6 to 13.7) | 2.3 (−4.3 to 6.3) | 0.9 (−4.1 to 4.1) |
(B) | ||||
Equation | Pre-LTx (n = 32) | 1-Week Post-LTx (n = 30) | 3-Week Post-LTx (n = 29) | 12-Week Post-LTx (n = 28) |
Creatinine-based eGFR | ||||
CKD-EPI_crea2009 | 84.4 (71.9 to 96.9) | 80.0 (63.3 to 93.3) | 72.4 (55.2 to 86.2) | 78.6 (64.3 to 92.9) |
CKD-EPI_crea2021 | 93.8 (84.4 to 100) | 66.7 (50.0 to 83.3) | 62.1 (44.8 to 79.3) | 82.1 (67.9 to 96.4) |
FAS_crea | 87.5 (75.0 to 96.9) | 76.7 (60.0 to 90.0) | 65.5 (48.3 to 82.8) | 82.1 (67.9 to 96.4) |
EKFC_crea | 90.6 (78.1 to 100) | 83.3 (70.0 to 96.7) | 79.3 (65.5 to 93.1) | 82.1 (67.9 to 96.4) |
Cystatin C-based eGFR | ||||
CKD-EPI_cys | 81.3 (65.6 to 93.8) | 60.0 (43.3 to 76.7) | 75.9 (58.6 to 89.7) | 82.1 (67.9 to 96.4) |
FAS_cys | 75.0 (59.4 to 87.5) | 60.0 (43.3 to 76.7) | 89.7 (75.9 to 100) | 85.7 (71.4 to 96.4) |
Creatinine-Cystatin C combined eGFR | ||||
CKD-EPI_comb2012 | 87.5 (75.0 to 96.9) | 76.7 (60.0 to 90.0) | 86.2 (72.4 to 96.6) | 89.3 (75.0 to 100) |
CKD-EPI_comb2021 | 96.9 (90.6 to 100) | 80.0 (63.3 to 93.3) | 86.2 (72.4 to 96.6) | 92.9 (82.1 to 100) |
FAS_comb | 87.5 (75.0 to 96.9) | 76.7 (60.0 to 90.0) | 86.2 (72.4 to 96.6) | 96.4 (89.3 to 100) |
(C) | ||||
Equation | Pre-LTx (n = 32) | 1-Week Post-LTx (n = 30) | 3-Week Post-LTx (n = 29) | 12-Week Post-LTx (n = 28) |
Creatinine-based eGFR | ||||
CKD-EPI_crea2009 | 46.9 (31.2 to 65.6) | 43.3 (26.7 to 60.0) | 44.8 (27.6 to 62.1) | 42.9 (25.0 to 60.7) |
CKD-EPI_crea2021 | 50.0 (31.2 to 65.6) | 46.7 (30.0 to 63.3) | 37.9 (20.7 to 55.2) | 42.9 (25.0 to 60.7) |
FAS_crea | 56.2 (37.5 to 71.9) | 50.0 (33.3 to 66.7) | 44.8 (27.6 to 62.1) | 46.4 (28.6 to 64.3) |
EKFC_crea | 53.1 (34.4 to 68.8) | 53.3 (36.7 to 70.0) | 44.8 (27.6 to 62.1) | 46.4 (28.6 to 64.3) |
Cystatin C-based eGFR | ||||
CKD-EPI_cys | 56.2 (40.6 to 71.9) | 30.0 (13.3 to 46.7) | 55.2 (37.9 to 72.4) | 50.0 (32.1 to 67.9) |
FAS_cys | 46.9 (28.1 to 65.6) | 43.3 (26.7 to 60.0) | 41.4 (24.1 to 58.6) | 39.3 (21.4 to 57.1) |
Creatinine-Cystatin C combined eGFR | ||||
CKD-EPI_comb2012 | 53.1 (34.4 to 68.8) | 46.7 (30.0 to 63.3) | 51.7 (34.5 to 69.0) | 53.6 (35.7 to 71.4) |
CKD-EPI_ comb2021 | 53.1 (34.4 to 68.8) | 43.3 (26.7 to 60.0) | 48.3 (31.0 to 65.5) | 53.6 (35.7 to 71.4) |
FAS_comb | 43.8 (28.1 to 62.5) | 46.7 (30.0 to 63.3) | 48.3 (31.0 to 65.5) | 64.3 (46.4 to 82.1) |
(D) | ||||
Equation | Pre-LTx (n = 32) | 1-Week Post-LTx (n = 30) | 3-Week Post-LTx (n = 29) | 12-Week Post-LTx (n = 28) |
Creatinine-based eGFR | ||||
CKD-EPI_crea2009 | 65.6 (50.0 to 81.2) | 50.0 (33.3 to 66.7) | 41.4 (24.1 to 58.6) | 57.1 (39.3 to 75.0) |
CKD-EPI_crea2021 | 59.4 (43.8 to 75.0) | 53.3 (36.7 to 70.0) | 24.1 (10.3 to 41.4) | 50.0 (32.1 to 67.9) |
FAS_crea | 68.8 (53.1 to 84.4) | 56.7 (40.0 to 73.3) | 51.7 (34.5 to 69.0) | 53.6 (35.7 to 71.4) |
EKFC_crea | 65.6 (50.0 to 81.2) | 50.0 (33.3 to 66.7) | 51.7 (34.5 to 69.0) | 53.6 (35.7 to 71.4) |
Cystatin C-based eGFR | ||||
CKD-EPI_cys | 65.6 (50.0 to 81.2) | 36.7 (20.0 to 53.3) | 51.7 (34.5 to 69.0) | 53.6 (35.7 to 71.4) |
FAS_cys | 53.1 (37.5 to 68.8) | 40.0 (23.3 to 56.7) | 62.1 (44.8 to 79.3) | 53.6 (35.7 to 71.4) |
Creatinine–Cystatin C combined eGFR | ||||
CKD-EPI_comb2012 | 62.5 (46.9 to 78.1) | 50.0 (33.3 to 66.7) | 69.0 (51.7 to 86.2) | 60.7 (42.9 to 78.6) |
CKD-EPI_ comb2021 | 68.8 (53.1 to 84.4) | 50.0 (33.3 to 66.7) | 69.0 (51.7 to 86.2) | 57.1 (39.3 to 75.0) |
FAS_comb | 62.5 (46.9 to 78.1) | 36.7 (20.0 to 53.3) | 65.5 (48.3 to 82.8) | 57.1 (39.3 to 75.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hornum, M.; Houlind, M.B.; Iversen, E.; Porrini, E.; Luis-Lima, S.; Oturai, P.; Iversen, M.; Bredahl, P.; Carlsen, J.; Møller, C.H.; et al. Estimating Renal Function Following Lung Transplantation. J. Clin. Med. 2022, 11, 1496. https://doi.org/10.3390/jcm11061496
Hornum M, Houlind MB, Iversen E, Porrini E, Luis-Lima S, Oturai P, Iversen M, Bredahl P, Carlsen J, Møller CH, et al. Estimating Renal Function Following Lung Transplantation. Journal of Clinical Medicine. 2022; 11(6):1496. https://doi.org/10.3390/jcm11061496
Chicago/Turabian StyleHornum, Mads, Morten Baltzer Houlind, Esben Iversen, Esteban Porrini, Sergio Luis-Lima, Peter Oturai, Martin Iversen, Pia Bredahl, Jørn Carlsen, Christian Holdflood Møller, and et al. 2022. "Estimating Renal Function Following Lung Transplantation" Journal of Clinical Medicine 11, no. 6: 1496. https://doi.org/10.3390/jcm11061496
APA StyleHornum, M., Houlind, M. B., Iversen, E., Porrini, E., Luis-Lima, S., Oturai, P., Iversen, M., Bredahl, P., Carlsen, J., Møller, C. H., Andersen, M. J., Feldt-Rasmussen, B., & Perch, M. (2022). Estimating Renal Function Following Lung Transplantation. Journal of Clinical Medicine, 11(6), 1496. https://doi.org/10.3390/jcm11061496