Placental Pathology as a Tool to Identify Women for Postpartum Cardiovascular Risk Screening following Preeclampsia: A Preliminary Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment at the Kingston Site
2.2. Recruitment at the Ottawa Site
2.3. Inclusion and Exclusion Criteria
2.4. Placenta Pathology
2.5. Cardiovascular Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Histopathology Findings in Low- and High-Risk Women
3.3. Association of Placental Lesions and CVD Risk
4. Discussion
4.1. Main Findings
4.2. Interpretation
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Bellamy, L.; Casas, J.-P.; Hingorani, A.D.; Williams, D.J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta-analysis. BMJ 2007, 335, 974. [Google Scholar] [CrossRef] [Green Version]
- Okoth, K.; Chandan, J.S.; Marshall, T.; Thangaratinam, S.; Thomas, G.N.; Nirantharakumar, K.; Adderley, N.J. Association between the re-productive health of young women and cardiovascular disease in later life: Umbrella review. BMJ 2020, 371, m3502. [Google Scholar] [CrossRef]
- Brown, M.C.; Best, K.E.; Pearce, M.S.; Waugh, J.; Robson, S.C.; Bell, R. Cardiovascular disease risk in women with pre-eclampsia: Systematic review and meta-analysis. Eur. J. Epidemiol. 2013, 28, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.N.; Pudwell, J.; Walker, M.; Wen, S.-W. Ten-Year, Thirty-Year, and Lifetime Cardiovascular Disease Risk Estimates Following a Pregnancy Complicated by Preeclampsia. J. Obstet. Gynaecol. Can. 2012, 34, 830–835. [Google Scholar] [CrossRef]
- McDonald, S.D.; Malinowski, A.; Zhou, Q.; Yusuf, S.; Devereaux, P.J. Cardiovascular sequelae of preeclampsia/eclampsia: A systematic review and meta-analyses. Am. Heart J. 2008, 156, 918–930. [Google Scholar] [CrossRef]
- Mongraw-Chaffin, M.L.; Cirillo, P.M.; Cohn, B.A. Preeclampsia and cardiovascular disease death: Prospective evidence from the child health and development studies cohort. Hypertension 2010, 56, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Ray, J.G.; Vermeulen, M.J.; Schull, M.; Redelmeier, D.A. Cardiovascular health after maternal placental syndromes (CHAMPS): Population-based retrospective cohort study. Lancet 2005, 366, 1797–1803. [Google Scholar] [CrossRef]
- Smith, G.C.; Pell, J.; Walsh, D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129 290 births. Lancet 2001, 357, 2002–2006. [Google Scholar] [CrossRef]
- Smith, G.N.; Walker, M.C.; Liu, A.; Wen, S.W.; Swansburg, M.; Ramshaw, H.; White, R.R.; Roddy, M.; Hladunewich, M.; Pre-Eclampsia New Emerging Team (PE-NET). A history of preeclampsia identifies women who have underlying cardiovascular risk factors. Am. J. Obstet. Gynecol. 2009, 200, 58.e1–58.e8. [Google Scholar] [CrossRef]
- Heidema, W.M.; Scholten, R.R.; Lotgering, F.K.; Spaanderman, M.E. History of preeclampsia is more predictive of cardiometabolic and cardiovascular risk factors than obesity. Eur. J. Obstet. Gynecol. Reprod. Biol. 2015, 194, 189–193. [Google Scholar] [CrossRef]
- Yinon, Y.; Kingdom, J.C.P.; Odutayo, A.; Moineddin, R.; Drewlo, S.; Lai, V.; Cherney, D.Z.I.; Hladunewich, M.A. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: Insights into future vascular risk. Circulation 2010, 122, 1846–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvehaugen, A.S.; Dechend, R.; Ramstad, H.B.; Troisi, R.; Fugelseth, D.; Staff, A.C. Endothelial Function and Circulating Biomarkers Are Disturbed in Women and Children After Preeclampsia. Hypertension 2011, 58, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillion, A.; Guerby, P.; Menzies, D.; Lachance, C.; Comeau, M.-P.; Bussières, M.-C.; Doucet-Gingras, F.-A.; Zérounian, S.; Bujold, E. Pathological investigation of placentas in preeclampsia (the PEARL study). Hypertens. Pregnancy 2021, 40, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Weiner, E.; Feldstein, O.; Tamayev, L.; Grinstein, E.; Barber, E.; Bar, J.; Schreiber, L.; Kovo, M. Placental histopathological lesions in correlation with neonatal outcome in preeclampsia with and without severe features. Pregnancy Hypertens. 2018, 12, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kovo, M.; Schreiber, L.; Ben-Haroush, A.; Gold, E.; Golan, A.; Bar, J. The placental component in early-onset and late-onset preeclampsia in relation to fetal growth restriction. Prenat. Diagn. 2012, 32, 632–637. [Google Scholar] [CrossRef]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, H. Placental Dysfunction as a Key Element in the Pathogenesis of Preeclampsia. Dev. Period Med. 2018, 21, 309–316. [Google Scholar]
- Benton, S.J.; Leavey, K.; Grynspan, D.; Cox, B.J.; Bainbridge, S.A. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Am. J. Obstet. Gynecol. 2018, 219, 604.e1. [Google Scholar] [CrossRef] [Green Version]
- Falco, M.L.; Sivanathan, J.; Laoreti, A.; Thilaganathan, B.; Khalil, A. Placental histopathology associated with pre-eclampsia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 295–301. [Google Scholar] [CrossRef]
- Catov, J.M.; Muldoon, M.F.; Reis, S.; Ness, R.B.; Nguyen, L.; Yamal, J.-M.; Hwang, H.; Parks, W.T. Preterm birth with placental evidence of malperfusion is associated with cardiovascular risk factors after pregnancy: A prospective cohort study. BJOG 2018, 125, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Brosens, I.; Benagiano, M.; Puttemans, P.; D’Elios, M.M.; Benagiano, G. The placental bed vascular pathology revisited: A risk indicator for cardiovascular disease. J. Matern. Fetal Neonatal Med. 2019, 32, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.U.; Smits, M.P.; Bulten, J.; Spaanderman, M.E.A.; Van Vugt, J.M.G.; Al-Nasiry, S. Prevalence of hypertensive disorders in women after preeclamptic pregnancy associated with decidual vasculopathy. Hypertens. Pregnancy 2015, 34, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.U.; Al-Nasiry, S.; Fajta, M.M.; Bulten, J.; van Dijk, A.P.; van der Vlugt, M.J.; Oyen, W.J.; van Vugt, J.M.; Spaanderman, M.E. Cardiovascular and thrombogenic risk of decidual vasculopathy in preeclampsia. Am. J. Obstet. Gynecol. 2014, 210, 545.e1. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.H.W.; Smit, J.G.; Koster, M.P.; Uiterweer, E.D.P.; Van Rijn, B.B.; Koenen, S.V.; Franx, A. Maternal Cardiovascular Risk Profile After Placental Abruption. Hypertension 2013, 61, 1297–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catov, J.M.; Muldoon, M.F.; Gandley, R.E.; Brands, J.; Hauspurg, A.; Hubel, C.A.; Tuft, M.; Schmella, M.; Tang, G.; Parks, W.T. Maternal Vascular Lesions in the Placenta Predict Vascular Impairments a Decade After Delivery. Hypertension 2022, 79, 424–434. [Google Scholar] [CrossRef]
- Parks, W.T.; Catov, J.M. The Placenta as a Window to Maternal Vascular Health. Obstet. Gynecol. Clin. N. Am. 2020, 47, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Minissian, M.B.; Wei, J.; Saade, G.R.; Smith, G.N. Contemporary clinical updates on the prevention of future cardiovascular disease in women who experience adverse pregnancy outcomes. Clin. Cardiol. 2020, 43, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Cusimano, M.; Pudwell, J.; Roddy, M.; Cho, C.-K.J.; Smith, G. The maternal health clinic: An initiative for cardiovascular risk identification in women with pregnancy-related complications. Am. J. Obstet. Gynecol. 2014, 210, 438.e1. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.N. The Maternal Health Clinic: Improving women’s cardiovascular health. Semin. Perinatol. 2015, 39, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Magee, L.A.; Pels, A.; Helewa, M.; Rey, E.; von Dadelszen, P.; Audibert, F.; Bujold, E.; Côté, A.-M.; Douglas, M.J.; Eastabrook, G.; et al. Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary. J. Obstet. Gynaecol. Can. 2014, 36, 416–438. [Google Scholar] [CrossRef]
- Kramer, M.S.; Platt, R.W.; Wen, S.W.; Joseph, K.S.; Allen, A.; Abrahamowicz, M.; Blondel, B.; Breart, G.; for the Fetal/Infant Health Study Group of the Canadian Perinatal Surveillance System. A New and Improved Population-Based Canadian Reference for Birth Weight for Gestational Age. Pediatrics 2001, 108, e35. [Google Scholar] [CrossRef] [Green Version]
- Warrander, L.; Batra, G.; Bernatavicius, G.; Greenwood, S.; Dutton, P.; Jones, R.; Sibley, C.P.; Heazell, A.E.P. Maternal Perception of Reduced Fetal Movements Is Associated with Altered Placental Structure and Function. PLoS ONE 2012, 7, e34851. [Google Scholar] [CrossRef] [Green Version]
- Benton, S.J.; Lafreniere, A.J.; Grynspan, D.; Bainbridge, S.A. A synoptic framework and future directions for placental pathology reporting. Placenta 2019, 77, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Leip, E.P.; Larson, M.; D’Agostino, R.B.; Beiser, A.; Wilson, P.W.; Wolf, P.A.; Levy, D. Prediction of Lifetime Risk for Cardiovascular Disease by Risk Factor Burden at 50 Years of Age. Circulation 2006, 113, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Holzman, C.B.; Senagore, P.; Xu, J.; Dunietz, G.L.; Strutz, K.L.; Tian, Y.; Bullen, B.L.; Eagle, M.; Catov, J.M. Maternal risk of hypertension 7–15 years after pregnancy: Clues from the placenta. BJOG 2021, 128, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The Uterine Spiral Arteries in Human Pregnancy: Facts and Controversies. Placenta 2006, 27, 939–958. [Google Scholar] [CrossRef] [PubMed]
- Bustamante Helfrich, B.; Chilukuri, N.; He, H.; Cerda, S.R.; Hong, X.; Wang, G.; Pearson, C.; Burd, I.; Wang, X. Maternal vascular malperfusion of the placental bed associated with hypertensive disorders in the Boston Birth Cohort. Placenta 2017, 52, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnussen, E.B.; Vatten, L.J.; Lund-Nilsen, T.I.; Salvesen, K.Å.; Smith, G.D.; Romundstad, P.R. Prepregnancy cardiovascular risk factors as predictors of pre-eclampsia: Population based cohort study. BMJ 2007, 335, 978. [Google Scholar] [CrossRef] [Green Version]
- Pavan, L.; Tsatsaris, V.; Hermouet, A.; Therond, P.; Evain-Brion, D.; Fournier, T. Oxidized low-density lipoproteins inhibit trophoblastic cell invasion. J. Clin. Endocrinol. Metab. 2004, 89, 1969–1972. [Google Scholar] [CrossRef]
- Pavan, L.; Hermouet, A.; Tsatsaris, V.; Thérond, P.; Sawamura, T.; Evain-Brion, D.; Fournier, T. Lipids from Oxidized Low-Density Lipoprotein Modulate Human Trophoblast Invasion: Involvement of Nuclear Liver X Receptors. Endocrinology 2004, 145, 4583–4591. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Kettyle, E.; Sandler, L.; Ecker, J.L.; Roberts, J.; Thadhani, R. Obesity and preeclampsia: The potential role of inflammation. Obstet. Gynecol. 2001, 98 Pt 1, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Ness, R.B.; Harger, G.F.; Roberts, J.M. Inflammation and Triglycerides Partially Mediate the Effect of Prepregnancy Body Mass Index on the Risk of Preeclampsia. Am. J. Epidemiol. 2005, 162, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Otun, H.A.; Lash, G.E.; Innes, B.A.; Bulmer, J.N.; Naruse, K.; Hannon, T.; Searle, R.F.; Robson, S.C. Effect of tumour necrosis factor-α in combination with interferon-γ on first trimester extravillous trophoblast invasion. J. Reprod. Immunol. 2011, 88, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.J.; McManus, F.; Brown, E.A.; Cherry, L.; Norrie, J.; Ramsay, J.E.; Clark, P.; Walker, I.D.; Sattar, N.; Greer, I.A. Short- and long-term changes in plasma inflam-matory markers associated with preeclampsia. Hypertension 2004, 44, 708–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumbers, E.R.; Delforce, S.J.; Arthurs, A.; Pringle, K. Causes and Consequences of the Dysregulated Maternal Renin-Angiotensin System in Preeclampsia. Front. Endocrinol. 2019, 10, 563. [Google Scholar] [CrossRef]
- Spaan, J.J.; Brown, M.A. Renin-angiotensin system in pre-eclampsia: Everything old is new again. Obstet. Med. 2012, 5, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gimenez, C.; Mendoza, M.; Cruz-Lemini, M.; Galian-Gay, L.; Sanchez-Garcia, O.; Granato, C.; Rodriguez-Sureda, V.; Rodriguez-Palomares, J.; Carreras-Moratonas, E.; Cabero-Roura, L.; et al. Angiogenic Factors and Long-Term Cardiovascular Risk in Women That Developed Preeclampsia During Pregnancy. Hypertension 2020, 76, 1808–1816. [Google Scholar] [CrossRef]
- Benschop, L.; Schalekamp-Timmermans, S.; Broere-Brown, Z.A.; Roeters van Lennep, J.E.; Jaddoe, V.W.V.; Roos-Hesselink, J.W.; Ikram, M.K.; Steegers, E.A.P.; Roberts, J.M.; Gandley, R.E. Placental growth factor as an indicator of maternal cardiovascular risk after pregnancy. Circulation 2019, 139, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Akhter, T.; Wikström, A.; Larsson, M.; Larsson, A.; Wikström, G.; Naessen, T. Association between angiogenic factors and signs of arterial aging in women with pre-eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Osol, G.; Celia, G.; Gokina, N.; Barron, C.; Chien, E.; Mandala, M.; Luksha, L.; Kublickiene, K. Placental growth factor is a potent vasodilator of rat and human resistance arteries. Am. J. Physiol. Circ. Physiol. 2008, 294, H1381–H1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amraoui, F.; Spijkers, L.; Lahsinoui, H.H.; Vogt, L.; Van Der Post, J.; Peters, S.; Afink, G.; Ris-Stalpers, C.; Born, B.-J.V.D. SFlt-1 Elevates Blood Pressure by Augmenting Endothelin-1-Mediated Vasoconstriction in Mice. PLoS ONE 2014, 9, e91897. [Google Scholar] [CrossRef] [PubMed]
- Magann, E.; Sills, A.; Steigman, C.; Ounpraseuth, S.T.; Odibo, I.; Sandlin, A. Pathologic examination of the placenta: Recommended versus observed practice in a university hospital. Int. J. Women’s Health 2013, 5, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, R.; Kim, Y.M.; Pacora, P.; Kim, C.J.; Benshalom-Tirosh, N.; Jaiman, S.; Bhatti, G.; Kim, J.S.; Qureshi, F.; Jacques, S.M.; et al. The frequency and type of placental histologic lesions in term pregnancies with normal outcome. J. Perinat. Med. 2018, 46, 613–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Combined (n = 85) | Ottawa (n = 35) | Kingston (n = 50) | p-Value § (t-Test, KW, X2) | |
---|---|---|---|---|
Maternal Characteristics | ||||
Maternal age at delivery (y) | 31.9 ± 6.0 | 33.9 ± 5.6 | 30.7 ± 5.9 | 0.015 |
Postsecondary education (%) | 74 (88.1) a | 31 (91.2) a | 43 (86.0) | 0.520 |
Married or common law | 80 (95.2) a | 35 (100) | 45 (91.8) a | 0.137 |
Nulliparous (%) | 59 (69.4) | 22 (62.9) | 37 (74.0) | 0.341 |
Pre-pregnancy BMI | 24.5 (22.1, 31.0) | 28.2 (23.0, 35.5) | 24.4 (21.9, 28.5) | 0.024 |
Smoking (%) | 6 (7.1) | 1 (2.9) | 5 (10.0) | 0.393 |
Previous history of HDPs (%) | 11 (12.9) | 7 (20.0) | 4 (8.0) | 0.187 |
Family history of CVD * (%) | 44 (52.4) a | 16 (47.1) a | 28 (56.0) | 0.506 |
Family history of PE (%) | 12 (15.0) (n = 80) | 6 (20.0) (n = 30) | 6 (12.0) | 0.520 |
Combined (n = 85) | Ottawa (n = 35) | Kingston (n = 50) | p-Value § (t-Test, KW, X2) | |
---|---|---|---|---|
At delivery | ||||
Systolic BP *(mmHg) | 152 ± 25 | 136 ± 17 | 164 ± 22 | <0.0001 |
Diastolic BP *(mmHg) | 93 ± 13 | 85 ± 10 | 98 ± 13 | <0.0001 |
Antihypertensive medication ** (%) | 38 (44.7) | 28 (80.0) | 6 (12.0) | <0.0001 |
Pregnancy weight gain (kg) | 14.0 ± 7.1 | 13.2 ± 7.1 | 14.6 ± 7.1 | 0.393 |
Gestational age delivery | 36.0 (32.2, 38.0) | 37.5 (34.4, 39.4) | 34.0 (31.0, 38.0) | <0.001 |
Delivery before 37 weeks gestation (%) | 48 (56.5) | 11 (31.4) | 37 (74.0) | <0.001 |
Cesarean section (%) | 44 (51.8) | 14 (40.0) | 30 (60.0) | 0.081 |
Female infant (%) | 42 (49.4) | 13 (37.1) | 29 (58.0) | 0.078 |
Birth weight (g) | 2200 (1495, 3098) | 2655 (2075, 3280) | 1920 (1285, 2351) | 0.0003 |
Small for gestational age (<5th percentile) | 15 (17.6) | 5 (14.3) | 10 (20.0) | 0.573 |
Admission to NICU (%) | 59 (69.4) | 15 (42.9) | 44 (88.0) | <0.001 |
Placental weight (g) | 334 (274, 443) | 382 (326, 516) | 312 (236, 431) | 0.057 |
At 6 months postpartum | ||||
Systolic BP (mmHg) | 119 ± 18 | 116 ± 23 | 121 ± 13 | 0.164 |
Diastolic BP (mmHg) | 81 ± 10 | 78 ± 9 | 82 ± 10 | 0.081 |
Antihypertensive medication use (%) | 13 (15.3) | 5 (14.3) | 8 (16.0) | 1.00 |
Breastfeeding (%) | 44 (52.4) | 22 (64.7) | 22 (44.0) | 0.077 |
Total cholesterol | 4.8 ± 1.0 | 4.9 ± 1.0 | 4.7 ± 1.0 | 0.292 |
Fasting glucose | 4.8 ± 0.5 | 4.7 ± 0.5 | 4.8 ± 0.5 | 0.397 |
HDL | 1.5 ± 0.4 | 1.5 ± 0.4 | 1.5 ± 0.4 | 0.541 |
LDL | 2.8 (2.2, 3.4) | 3.0 (2.2, 3.5) | 2.6 (2.1, 3.3) | 0.231 |
hsCRP | 2.6 (1.0, 7.4) | 2.6 (0.9, 8.4) | 2.0 (0.98, 5.9) | 0.443 |
Triglycerides | 0.98 (0.67, 1.69) | 0.98 (0.72, 1.88) | 0.96 (0.65, 1.60) | 0.500 |
Screen high-risk for lifetime CVD (%) | 53 (62.4) | 18 (51.4) | 35 (70.0) | 0.112 |
Placental Lesion | High CVD Risk (n = 53) | Low CVD Risk (n = 32) | p-Value (Pearson X2) |
---|---|---|---|
Evidence of maternal vascular malperfusion | |||
Placental infarction | 16 (30.2) | 7 (21.9) | 0.403 |
Distal villous hypoplasia | 15 (28.3) | 8 (25.0) | 0.740 |
Accelerated villous maturation | 31 (58.5) | 12 (37.5) | 0.061 |
Syncytial knots | 34 (64.2) | 17 (53.1) | 0.315 |
Perivillous fibrin deposition | 5 (9.4) | 6 (18.8) | 0.215 |
Villous agglutination | 7 (13.2) | 1 (3.1) | 0.123 |
Presence of retroplacental hematoma | 0 (0) | 2 (6.3) | 0.066 |
MVM Score of 0 | 8 (15.1) | 9 (28.1) | 0.146 |
MVM Score 2 or more | 29 (54.7) | 9 (28.1) | 0.017 |
Evidence of maternal decidual arteriopathy | |||
Insufficient vessel remodeling | 7 (13.2) | 2 (6.3) | 0.312 |
Fibrinoid necrosis | 4 (7.5) | 2 (6.3) | 0.821 |
Decidual arteriopathy present | 9 (17.0) | 3 (10.3) | 0.416 |
Evidence of ascending intrauterine infection | |||
Maternal inflammatory response | 2 (3.8) | 4 (4.7) | 0.128 |
Fetal inflammatory response | 2 (3.8) | 2 (6.3) | 0.601 |
Ascending intrauterine infection present | 3 (5.7) | 5 (15.6) | 0.127 |
Evidence of placenta villous maldevelopment | |||
Chorangiosis | 0 (0) | 0 (0) | -- |
Chorangiomas | 0 (0) | 0 (0) | -- |
Delayed villous maturation | 1 (1.9) | 2 (6.3) | 0.291 |
Evidence of fetal vascular malperfusion | |||
Avascular fibrotic villi | 2 (3.8) | 0 (0) | 0.266 |
Thrombosis | 1 (1.9) | 1 (3.1) | 0.715 |
Intramural fibrin deposition | 0 (0) | 3 (9.4) | 0.023 |
Karyorrhexis | 0 (0) | 0 (0) | -- |
High-grade fetal vascular malperfusion | 2 (3.8) | 0 (0) | 0.266 |
Fetal vascular malperfusion present | 4 (7.5) | 5 (15.6) | 0.241 |
Fibrinoid | |||
Massive Perivillous fibrin deposition pattern | 1 (1.9) | 0 (0) | 0.434 |
Maternal floor infarction pattern | 0 (0) | 0 (0) | -- |
Intervillous thrombi | |||
Intervillous thrombi | 5 (9.4) | 1 (3.1) | 0.271 |
Evidence of chronic inflammation | |||
Villitis of unknown etiology | 5 (9.4) | 3 (9.4) | 0.993 |
Chronic intervillositis | 0 (0) | 0 (0) | -- |
Chronic plasma cell deciduitis | 5 (9.4) | 3 (9.4) | 0.993 |
Chronic inflammation present | 7 (13.2) | 6 (18.8) | 0.492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benton, S.J.; Mery, E.E.; Grynspan, D.; Gaudet, L.M.; Smith, G.N.; Bainbridge, S.A. Placental Pathology as a Tool to Identify Women for Postpartum Cardiovascular Risk Screening following Preeclampsia: A Preliminary Investigation. J. Clin. Med. 2022, 11, 1576. https://doi.org/10.3390/jcm11061576
Benton SJ, Mery EE, Grynspan D, Gaudet LM, Smith GN, Bainbridge SA. Placental Pathology as a Tool to Identify Women for Postpartum Cardiovascular Risk Screening following Preeclampsia: A Preliminary Investigation. Journal of Clinical Medicine. 2022; 11(6):1576. https://doi.org/10.3390/jcm11061576
Chicago/Turabian StyleBenton, Samantha J., Erika E. Mery, David Grynspan, Laura M. Gaudet, Graeme N. Smith, and Shannon A. Bainbridge. 2022. "Placental Pathology as a Tool to Identify Women for Postpartum Cardiovascular Risk Screening following Preeclampsia: A Preliminary Investigation" Journal of Clinical Medicine 11, no. 6: 1576. https://doi.org/10.3390/jcm11061576
APA StyleBenton, S. J., Mery, E. E., Grynspan, D., Gaudet, L. M., Smith, G. N., & Bainbridge, S. A. (2022). Placental Pathology as a Tool to Identify Women for Postpartum Cardiovascular Risk Screening following Preeclampsia: A Preliminary Investigation. Journal of Clinical Medicine, 11(6), 1576. https://doi.org/10.3390/jcm11061576