Current Treatment of Myasthenia Gravis
Abstract
:1. Introduction
2. Non-Immunosuppressive Treatments
2.1. Acetylcholinesterase (AChE) Inhibitors
2.2. β-Adrenergic Agonists
3. Immunosuppressive Treatments
3.1. Corticosteroids
3.2. Azathioprine
3.3. Tacrolimus
3.4. Mycophenolate Mofetil
3.5. Cyclosporine
3.6. Methotrexate
3.7. Cyclophosphamide
3.8. Hematopoietic Stem Cell Transplantation (HSCT)
4. Biologicals: Monoclonal Antibodies Targeting Immune System
4.1. Rituximab
4.2. Eculizumab
4.3. Efgartigimod
5. Treatments Used in Severe MG Exacerbation or Crisis
5.1. Intravenous Immunoglobulin (IVIg)
5.2. Plasma Exchange (PLEX)
6. Thymectomy
7. Treatment Strategy of MG
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dresser, L.; Wlodarski, R.; Rezania, K.; Soliven, B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J. Clin. Med. 2021, 10, 2235. [Google Scholar] [CrossRef] [PubMed]
- Campbell, H.B.E. Myasthenia gravis pseudoparalytica: Review of 70 case reports, including nine new patients. Brain 1900, 23, 277–336. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, F.S.; Moersch, F.P. Myasthenia Gravis: A Clinical Review of Eighty-Seven Cases Observed between 1915 and the Early Part of 1932. Can. Med. Assoc. J. 1937, 37, 216–223. [Google Scholar] [PubMed]
- Grob, D. Course and management of myasthenia gravis. J. Am. Med. Assoc. 1953, 153, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Blalock, A.; Mason, M.F.; Morgan, H.J.; Riven, S.S. Myasthenia Gravis and Tumors of the Thymic Region: Report of a Case in Which the Tumor Was Removed. Ann. Surg. 1939, 110, 544–561. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.M.; Lilienthal, J.L.; Talbot, S.A. Observations on the Nature of Myasthenia Gravis. The Effect of Thymectomy on Neuro-Muscular Transmission. J. Clin. Investig. 1942, 21, 579–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, G.I.; Kaminski, H.; Aban, I.B.; Minisman, G.; Kuo, H.C.; Marx, A.; Ströbel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. Randomized Trial of Thymectomy in Myasthenia Gravis. N. Engl. J. Med. 2016, 375, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Grob, D.; Namba, T. Corticotropin in generalized myasthenia gravis. Effect of short, intensive courses. JAMA 1966, 198, 703–707. [Google Scholar] [CrossRef]
- Engel, W.K.; Warmolts, J.R. Myasthenia gravis: A new hypothesis of the pathogenesis and a new form of treatment. Ann. N. Y. Acad. Sci. 1971, 183, 72–87. [Google Scholar] [CrossRef]
- Mertens, H.G.; Balzereit, F.; Leipert, M. The Treatment of Severe Myasthenia Gravis with Immunosuppressive Agents. Eur. Neurol. 1969, 2, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Dau, P.C.; Lindstrom, J.M.; Cassel, C.K.; Denys, E.H.; Shev, E.E.; Spitler, L.E. Plasmapheresis and Immunosuppressive Drug Therapy in Myasthenia Gravis. N. Engl. J. Med. 1977, 297, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Outin, H.; Elkharrat, D.; Brunel, D.; de Rohan-Chabot, P.; Raphael, J.; Goulon, M.; Goulon-Goeau, C.; Morel, E. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet 1984, 323, 406–407. [Google Scholar] [CrossRef]
- Fateh-Moghadam, A.; Wick, M.; Besinger, U.; Geursen, R.G. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet 1984, 323, 848–849. [Google Scholar] [CrossRef]
- Ippoliti, G.; Cosi, V.; Piccolo, G.; Lombardi, M.; Mantegaz, R.; Devathasan, G.; Kueh, Y.; Chong, P. High-dose intravenous gammaglobulin for myasthenia gravis. Lancet 1984, 324, 809–810. [Google Scholar] [CrossRef]
- Newsom-Davis, J.; Wilson, S.; Vincent, A.; Ward, C. Long-term effects of repeated plasma exchange in myasthenia gravis. Lancet 1979, 313, 464–468. [Google Scholar] [CrossRef]
- Pinching, A.J.; Peters, D.K. Remission of myasthenia gravis following plasma-exchange. Lancet 1976, 2, 1373–1376. [Google Scholar] [CrossRef]
- Grob, D.; Brunner, N.; Namba, T.; Pagala, M. Lifetime course of myasthenia gravis. Muscle Nerve 2008, 37, 141–149. [Google Scholar] [CrossRef]
- Drachman, D.B.; Adams, R.N.; Hu, R.; Jones, R.J.; Brodsky, R.A. Rebooting the Immune System with High-Dose Cyclophosphamide for Treatment of Refractory Myasthenia Gravis. Ann. N. Y. Acad. Sci. 2008, 1132, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, A.; Atkins, H.; Pringle, C.E.; Allan, D.; Anstee, G.; Bence-Bruckler, I.; Hamelin, L.; Hodgins, M.; Hopkins, H.; Huebsch, L.; et al. Myasthenia Gravis Treated with Autologous Hematopoietic Stem Cell Transplantation. JAMA Neurol. 2016, 73, 652–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and toxicology of cholinesterase inhibitors: Uses and misuses of a common mechanism of action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef]
- Walker, M.B. Treatment of myasthenia gravis with physostigmine. Lancet 1934, 223, 1200–1201. [Google Scholar] [CrossRef]
- Walker, M.B. Case showing the Effect of Prostigmin on Myasthenia Gravis. Proc. R. Soc. Med. 1935, 28, 759–761. [Google Scholar] [CrossRef]
- Laurent, L.P.E. Clinical Observations on the Use of Prostigmin in the Treatment of Myasthenia Gravis. Br. Med. J. 1935, 1, 463–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Haidar, M.; Benatar, M.; Kaminski, H.J. Ocular myasthenia. Neurol. Clin. 2018, 36, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Schlezinger, N.S.; Fairfax, W.A. Evaluation of Ocular Signs and Symptoms in Myasthenia Gravis. Arch. Ophthalmol. 1959, 62, 985–990. [Google Scholar] [CrossRef]
- Osserman, K.E. Progress report on mestinon bromide (pyridostigmine bromide). Am. J. Med. 1955, 19, 737–739. [Google Scholar] [CrossRef]
- Osserman, K.E.; Teng, P.; Kaplan, L.I. Studies in myasthenia gravis; preliminary report on therapy with mestinon bromide. J. Am. Med. Assoc. 1954, 155, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Randall, L.O.; Conroy, C.E.; Ferruggia, T.M.; Kappell, B.H.; Knoeppel, C.R. Pharmacology of the anticholinesterase drugs; mestinon, prostigmin, tensilon and TEPP. Am. J. Med. 1955, 19, 673–678. [Google Scholar] [CrossRef]
- Westerberg, M.R.; Magee, K.R. Mestinon in the Treatment of Myasthenia Gravis. Neurology 1954, 4, 762–772. [Google Scholar] [CrossRef]
- Osserman, K.E.; Kornfeld, P.; Cohen, E.; Genkins, G.; Mendelow, H.; Goldberg, H.; Windsley, H.; Kaplan, L.I. Studies in myasthenia gravis; review of two hundred eighty-two cases at the Mount Sinai Hospital, New York City. AMA Arch. Intern. Med. 1958, 102, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Tether, J.E. Treatment of myasthenia gravis with mestinon bromide. J. Am. Med. Assoc. 1956, 160, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Prinscott, J. The Patient with Myasthenia Gravis. In Preanesthetic Assessment 1; Birkhäuser: Boston, MA, USA, 1988; pp. 109–116. [Google Scholar]
- Mayer, S.A.; Thomas, C.E. Therapy of Myasthenic Crisis. Crit. Care Med. 1998, 26, 1136–1137. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.B., Jr.; Adiao, K.J. Acetylcholinesterase Inhibitors in Myasthenic Crisis: A Systematic Review of Observational Studies. Neurocritical Care 2021, 35, 528–544. [Google Scholar] [CrossRef]
- Sussman, J.; Farrugia, M.E.; Maddison, P.; Hill, M.; Leite, M.I.; Hilton-Jones, D. Myasthenia gravis: Association of British Neurologists’ management guidelines. Pract. Neurol. 2015, 15, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, S.; Alvi, U.; Soliven, B.; Rezania, K. Drugs That Induce or Cause Deterioration of Myasthenia Gravis: An Update. J. Clin. Med. 2021, 10, 1537. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, J.W. Myasthenia Gravis: Its Treatment by a Combination of Prostigmin and Glycine-Ephedrine Therapy. Glasg. Med. J. 1937, 128, 7–11. [Google Scholar]
- Vrinten, C.; Van Der Zwaag, A.M.; Weinreich, S.S.; Scholten, R.J.; Verschuuren, J.J. Ephedrine for myasthenia gravis, neonatal myasthenia and the congenital myasthenic syndromes. Cochrane Database Syst. Rev. 2014, 2014, CD010028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chelmicka-Schorr, E.; Checinski, M.E.; Arnason, B.G. Sympathetic nervous system and PC12 pheochromocytoma-derived factors suppress stimulation of lymphocytes. Brain Behav. Immun. 1990, 4, 23–29. [Google Scholar] [CrossRef]
- Kohm, A.P.; Sanders, V.M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev. 2001, 53, 487–525. [Google Scholar]
- Chelmicka-Schorr, E.; Wollmann, R.L.; Kwasniewski, M.N.; Kim, D.H.; Dupont, B.L. The beta 2-adrenergic agonist terbutaline suppresses acute passive transfer experimental autoimmune myasthenia gravis (EAMG). Int. J. Immunopharmacol. 1993, 15, 19–24. [Google Scholar] [CrossRef]
- Soliven, B.; Rezania, K.; Gundogdu, B.; Harding-Clay, B.; Oger, J.; Arnason, B.G. Terbutaline in myasthenia gravis: A pilot study. J. Neurol. Sci. 2009, 277, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Vanhaesebrouck, A.E.; Webster, R.; Maxwell, S.; Rodriguez Cruz, P.M.; Cossins, J.; Wickens, J.; Liu, W.W.; Cetin, H.; Cheung, J.; Ramjattan, H.; et al. Beta2-Adrenergic receptor agonists ameliorate the adverse effect of long-term pyridostigmine on neuromuscular junction structure. Brain 2019, 142, 3713–3727. [Google Scholar] [CrossRef] [PubMed]
- Kupersmith, M.J.; Moster, M.; Bhuiyan, S.; Warren, F.; Weinberg, H. Beneficial Effects of Corticosteroids on Ocular Myasthenia Gravis. Arch. Neurol. 1996, 53, 802–804. [Google Scholar] [CrossRef]
- Kupersmith, M.J.; Latkany, R.; Homel, P. Development of Generalized Disease at 2 Years in Patients with Ocular Myasthenia Gravis. Arch. Neurol. 2003, 60, 243–248. [Google Scholar] [CrossRef]
- Sommer, N.; Sigg, B.; Melms, A.; Weller, M.; Schepelmann, K.; Herzau, V.; Dichgans, J. Ocular myasthenia gravis: Response to long-term immunosuppressive treatment. J. Neurol. Neurosurg. Psychiatry 1997, 62, 156–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsul, N.T.; Patwa, H.S.; Knorr, A.M.; Lesser, R.L.; Goldstein, J.M. The effect of prednisone on the progression from ocular to generalized myasthenia gravis. J. Neurol. Sci. 2004, 217, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Benatar, M.; McDermott, M.P.; Sanders, D.B.; Wolfe, G.I.; Barohn, R.J.; Nowak, R.J.; Hehir, M.; Juel, V.C.; Katzberg, H.; Tawil, R.; et al. Efficacy of prednisone for the treatment of ocular myasthenia (EPITOME): A randomized, controlled trial. Muscle Nerve 2016, 53, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Evoli, A.; Batocchi, A.P.; Palmisani, M.T.; Monaco, M.L.; Tonali, P. Long-Term Results of Corticosteroid Therapy in Patients with Myasthenia Gravis. Eur. Neurol. 1992, 32, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Pascuzzi, R.M.; Coslett, H.B.; Johns, T.R. Long-term corticosteroid treatment of myasthenia gravis: Report of 116 patients. Ann. Neurol. 1984, 15, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Sghirlanzoni, A.; Peluchetti, D.; Mantegazza, R.; Fiacchino, F.; Cornelio, F. Myasthenia gravis: Prolonged treatment with steroids. Neurology 1984, 34, 170–174. [Google Scholar] [CrossRef]
- Bae, J.S.; Go, S.M.; Kim, B.J. Clinical predictors of steroid-induced exacerbation in myasthenia gravis. J. Clin. Neurosci. 2006, 13, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Uzawa, A.; Kawaguchi, N.; Oda, F.; Ozawa, Y.; Himuro, K.; Kuwabara, S. Predictive score for oral corticosteroid-induced initial worsening of seropositive generalized myasthenia gravis. J. Neurol. Sci. 2019, 396, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Seybold, M.E.; Drachman, D.B. Gradually Increasing Doses of Prednisone in Myasthenia Gravis. Reducing the hazards of treatment. N. Engl. J. Med. 1974, 290, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Díez-Porras, L.; Homedes, C.; Alberti, M.A.; Vélez-Santamaría, V.; Casasnovas, C. Intravenous immunoglobulins may prevent prednisone-exacerbation in myasthenia gravis. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of Myasthenia Gravis. Neurol. Clin. 2018, 36, 311–337. [Google Scholar] [CrossRef] [PubMed]
- Elion, G.B. The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. Ann. N. Y. Acad. Sci. 1993, 685, 400–407. [Google Scholar] [PubMed]
- Anstey, A.; Lear, J.T. Azathioprine: Clinical pharmacology and current indications in autoimmune disorders. BioDrugs 1998, 9, 33–47. [Google Scholar] [CrossRef] [PubMed]
- McWilliam, M.; Khan, U. Azathioprine and the neurologist. Pract. Neurol. 2019, 20, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, V.; Havard, C.W. Long term treatment of myasthenia gravis with azathioprine. Postgrad. Med. J. 1990, 66, 102–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witte, A.S.; Cornblath, D.R.; Parry, G.J.; Lisak, R.P.; Schatz, N.J. Azathioprine in the treatment of myasthenia gravis. Ann. Neurol. 1984, 15, 602–605. [Google Scholar] [CrossRef]
- Bromberg, M.B.; Wald, J.J.; Forshew, D.A.; Feldman, E.L.; Albers, J.W. Randomized trial of azathioprine or prednisone for initial immunosuppressive treatment of myasthenia gravis. J. Neurol. Sci. 1997, 150, 59–62. [Google Scholar] [CrossRef]
- Myasthenia Gravis Clinical Study Group. A randomized clinical trial comparing prednisone and azathioprine in myasthenia gravis. Results of the second interim analysis. J. Neurol. Neurosurg. Psychiatry 1993, 56, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, R.; Antozzi, C.; Peluchetti, D.; Sghirlanzoni, A.; Cornelio, F. Azathioprine as a single drug or in combination with steroids in the treatment of myasthenia gravis. J. Neurol. 1988, 235, 449–453. [Google Scholar] [CrossRef]
- Dube, M.; Sodani, A.; Chouksey, D. Outcome of Myasthenia gravis treated with high-dose prednisolone and azathioprine: A single centre ambispective study from India. Acta Neurol. Taiwanica 2017, 26, 106–119. [Google Scholar]
- Mertens, H.G.; Hertel, G.; Reuther, P.; Ricker, K. Effect of immunosuppressive drugs (azathioprine). Ann. N. Y. Acad. Sci. 1981, 377, 691–699. [Google Scholar] [CrossRef]
- Kuks, J.B.; Djojoatmodjo, S.; Oosterhuis, H.J. Azathioprine in myasthenia gravis: Observations in 41 patients and a review of literature. Neuromuscul. Disord. 1991, 1, 423–431. [Google Scholar] [CrossRef]
- Palace, J.; Newsom-Davis, J.; Lecky, B.; Myasthenia Gravis Study Group. A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis. Neurology 1998, 50, 1778–1783. [Google Scholar] [CrossRef]
- Sharshar, T.; Porcher, R.; Demeret, S.; Tranchant, C.; Gueguen, A.; Eymard, B.; Nadaj-Pakleza, A.; Spinazzi, M.; Grimaldi, L.; Birnbaum, S.; et al. Comparison of Corticosteroid Tapering Regimens in Myasthenia Gravis: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Goyal, V.; Srivastava, A.K.; Shukla, G.; Behari, M. Remission And relapse of myasthenia gravis on long-term azathioprine: An ambispective study. Muscle Nerve 2016, 54, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Kissel, J.T.; Levy, R.J.; Mendell, J.R.; Griggs, R.C. Azathioprine toxicity in neuromuscular disease. Neurology 1986, 36, 35. [Google Scholar] [CrossRef] [PubMed]
- Hohlfeld, R.; Michels, M.; Heininger, K.; Besinger, U.; Toyka, K.V. Azathioprine toxicity during long-term immunosuppression of generalized myasthenia gravis. Neurology 1988, 38, 258. [Google Scholar] [CrossRef] [PubMed]
- Eskazan, T.; Bozcan, S.; Atay, K.; Yildirim, S.; Demir, N.; Celik, S.; Tuncer, M.; Hatemi, I.; Celik, A.F.; Erzin, Y. Frequency, Predisposing Factors, and Clinical Outcome of Azathioprine-Induced Pancreatitis Among Patients with Inflammatory Bowel Disease: Results from a Tertiary Referral Center. Pancreas 2021, 50, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Ledingham, J.; Gullick, N.; Irving, K.; Gorodkin, R.; Aris, M.; Burke, J.; Gordon, P.; Christidis, D.; Galloway, S.; Hayes, E.; et al. BSR and BHPR guideline for the prescription and monitoring of non-biologic disease-modifying anti-rheumatic drugs. Rheumatology 2017, 56, 2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohlfeld, R.; Toyka, K.V.; Besinger, U.A.; Gerhold, B.; Heininger, K. Myasthenia gravis: Reactivation of clinical disease and of autoimmune factors after discontinuation of long-term azathioprine. Ann. Neurol. 1985, 17, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Koyasu, S. Mechanisms of action of cyclosporine. Immunopharmacology 2000, 47, 119–125. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Iwasa, K.; Satoh, K.; Takamori, M. FK506 Prevents Induction of Rat Experimental Autoimmune Myasthenia Gravis. J. Autoimmun. 1997, 10, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Kino, T.; Hatanaka, H.; Hashimoto, M.; Nishiyama, M.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; Imanaka, H. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J. Antibiot. 1987, 40, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Kino, T.; Hatanaka, H.; Miyata, S.; Inamura, N.; Nishiyama, M.; Yajima, T.; Goto, T.; Okuhara, M.; Kohsaka, M.; Aoki, H.; et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J. Antibiot. 1987, 40, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Kapturczak, M.H.; Meier-Kriesche, H.U.; Kaplan, B. Pharmacology of calcineurin antagonists. Transplant. Proc. 2004, 36, S25–S32. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, Z.; Shen, F.; Zhang, X.; Lei, L.; Su, S.; Lu, Y.; Di, L.; Wang, M.; Xu, M.; et al. Favorable Effects of Tacrolimus Monotherapy on Myasthenia Gravis Patients. Front. Neurol. 2020, 11, 594152. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-B.; Zhang, X.; Zhang, H.; Hu, X.-Q.; Lu, J.-H.; Lu, C.-Z.; Xiao, B.-G. Clinical efficacy and immunological impact of tacrolimus in Chinese patients with generalized myasthenia gravis. Int. Immunopharmacol. 2011, 11, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Ponseti, J.M.; Azem, J.; Fort, J.M.; López-Cano, M.; Vilallonga, R.; Buera, M.; Cervera, C.; Armengol, M. Long-term results of tacrolimus in cyclosporine- and prednisone-dependent myasthenia gravis. Neurology 2005, 64, 1641–1643. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Yoshiyama, Y.; Takamori, M.; Yagi, K.; Mukai, E.; Saida, T. Clinical study of fk506 in patients with myasthenia gravis. Muscle Nerve 2003, 28, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Konishi, T.; Yoshiyama, Y.; Takamori, M.; Saida, T. Long-term treatment of generalised myasthenia gravis with FK506 (tacrolimus). J. Neurol. Neurosurg. Psychiatry 2005, 76, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.-W.; Joo, I.S.; Kim, B.-J.; Sung, J.-J.; Kang, S.-Y.; Oh, J.; Minn, Y.-K.; Suh, B.C.; Oh, S.-Y.; Hong, Y.-H.; et al. A multicenter prospective observational study on the safety and efficacy of tacrolimus in patients with myasthenia gravis. J. Neurol. Sci. 2017, 379, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Nagane, Y.; Utsugisawa, K.; Obara, D.; Kondoh, R.; Terayama, Y. Efficacy of Low-Dose FK506 in the Treatment of Myasthenia gravis—A Randomized Pilot Study. Eur. Neurol. 2005, 53, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Nagaishi, A.; Yukitake, M.; Kuroda, Y. Long-term Treatment of Steroid-dependent Myasthenia Gravis Patients with Low-dose Tacrolimus. Intern. Med. 2008, 47, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Nagane, Y.; Suzuki, S.; Suzuki, N.; Utsugisawa, K. Factors associated with response to calcineurin inhibitors in myasthenia gravis. Muscle Nerve 2010, 41, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Xi, J.; Li, W.; Zhou, L.; Lu, J.; Lu, J.; Zhang, T.; Zhao, C. Efficacy and safety of tacrolimus for myasthenia gravis: A systematic review and meta-analysis. J. Neurol. 2017, 264, 2191–2200. [Google Scholar] [CrossRef] [PubMed]
- Kanai, T.; Uzawa, A.; Kawaguchi, N.; Himuro, K.; Oda, F.; Ozawa, Y.; Kuwabara, S. Adequate tacrolimus concentration for myasthenia gravis treatment. Eur. J. Neurol. 2017, 24, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xi, J.; Zhang, S.; Wu, H.; Zhou, L.; Lu, J.; Zhang, T.; Zhao, C. Effectiveness and safety of tacrolimus therapy for myasthenia gravis: A single arm meta-analysis. J. Clin. Neurosci. 2019, 63, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C.; Eugui, E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000, 47, 85–118. [Google Scholar] [CrossRef]
- Hauser, R.A.; Malek, A.R.; Rosen, R. Successful treatment of a patient with severe refractory myasthenia gravis using mycophenolate mofetil. Neurology 1998, 51, 912.2–913. [Google Scholar] [CrossRef]
- Meriggioli, M.N.; Rowin, J. Treatment of myasthenia gravis with mycophenolate mofetil: A case report. Muscle Nerve 2000, 23, 1287–1289. [Google Scholar] [CrossRef]
- Caponnetto, C.; Rossi, E.; Primavera, A. Mycophenolate Mofetil: A New Immunosuppressive Approach Successful Treatment in a Case of Myasthenia gravis Associated with Incomplete Lupus erythematosus Syndrome and Hepatitis C Virus Infection. Eur. Neurol. 2001, 46, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, V.; Cornblath, D.R.; Griffin, J.W.; O’Brien, R.; Drachman, D.B. Mycophenolate mofetil: A safe and promising immunosuppressant in neuromuscular diseases. Neurology 2001, 56, 94–96. [Google Scholar] [CrossRef] [Green Version]
- Ciafaloni, E.; Massey, J.M.; Tucker–Lipscomb, B.; Sanders, D.B. Mycophenolate mofetil for myasthenia gravis: An open-label pilot study. Neurology 2001, 56, 97–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mowzoon, N.; Sussman, A.; Bradley, W.G. Mycophenolate (CellCept) treatment of myasthenia gravis, chronic inflammatory polyneuropathy and inclusion body myositis. J. Neurol. Sci. 2001, 185, 119–122. [Google Scholar] [CrossRef]
- Schneider, C.; Gold, R.; Reiners, K.; Toyka, K.V. Mycophenolate mofetil in the therapy of severe myasthenia gravis. Eur. Neurol. 2001, 46, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Meriggioli, M.N.; Ciafaloni, E.; Al-Hayk, K.A.; Rowin, J.; Tucker-Lipscomb, B.; Massey, J.M.; Sanders, D.B. Mycophenolate mofetil for myasthenia gravis: An analysis of efficacy, safety, and tolerability. Neurology 2003, 61, 1438–1440. [Google Scholar] [CrossRef]
- Hehir, M.K.; Burns, T.M.; Alpers, J.; Conaway, M.R.; Sawa, M.; Sanders, D.B. Mycophenolate mofetil in AChR-antibody-positive myasthenia gravis: Outcomes in 102 patients. Muscle Nerve 2010, 41, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.W. Mycophenolate mofetil for ocular myasthenia. J. Neurol. 2008, 255, 510–513. [Google Scholar] [CrossRef]
- Sanders, D.B.; Hart, I.K.; Mantegazza, R.; Shukla, S.S.; Siddiqi, Z.A.; De Baets, M.; Melms, A.; Nicolle, M.W.; Solomons, N.; Richman, D.P. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology 2008, 71, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology 2008, 71, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.B.; Siddiqi, Z.A. Lessons from Two Trials of Mycophenolate Mofetil in Myasthenia Gravis. Ann. N. Y. Acad. Sci. 2008, 1132, 249–253. [Google Scholar] [CrossRef]
- Burns, T.M.; Sanders, D.B.; Kaminski, H.J.; Wolfe, G.I.; Narayanaswami, P.; Venitz, J. Two steps forward, one step back: Mycophenolate mofetil treatment for myasthenia gravis in the united states. Muscle Nerve 2015, 51, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Hobson-Webb, L.D.; Hehir, M.; Crum, B.; Visser, A.; Sanders, D.; Burns, T.M. Can mycophenolate mofetil be tapered safely in myasthenia gravis? A retrospective, multicenter analysis. Muscle Nerve 2015, 52, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Bullingham, R.E.S.; Nicholls, A.J.; Kamm, B.R. Clinical Pharmacokinetics of Mycophenolate Mofetil. Clin. Pharmacokinet. 1998, 34, 429–455. [Google Scholar] [CrossRef] [PubMed]
- Gummert, J.F.; Ikonen, T.; Morris, R.E. Newer immunosuppressive drugs: A review. J. Am. Soc. Nephrol. 1999, 10, 1366–1380. [Google Scholar] [CrossRef] [PubMed]
- Tindall, R.S.; Phillips, J.T.; Rollins, J.A.; Wells, L.; Hall, K. A Clinical Therapeutic Trial of Cyclosporine in Myasthenia Gravis. Ann. N. Y. Acad. Sci. 1993, 681, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Tindall, R.S.; Rollins, J.A.; Phillips, J.T.; Greenlee, R.G.; Wells, L.; Belendiuk, G. Preliminary Results of a Double-Blind, Randomized, Placebo-Controlled Trial of Cyclosporine in Myasthenia Gravis. N. Engl. J. Med. 1987, 316, 719–724. [Google Scholar] [CrossRef]
- Bonifati, D.M.; Angelini, C. Long-term cyclosporine treatment in a group of severe myasthenia gravis patients. J. Neurol. 1997, 244, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Ciafaloni, E.; Nikhar, N.K.; Massey, J.M.; Sanders, D.B. Retrospective analysis of the use of cyclosporine in myasthenia gravis. Neurology 2000, 55, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Lavrnic, D.; Vujic, A.; Rakocevic-Stojanovic, V.; Stevic, Z.; Basta, I.; Pavlovic, S.; Trikic, R.; Apostolski, S. Cyclosporine in the treatment of myasthenia gravis. Acta Neurol. Scand. 2005, 111, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Gijtenbeek, J.M.M.; van den Bent, M.; Vecht, C.J. Cyclosporine neurotoxicity: A review. J. Neurol. 1999, 246, 339–346. [Google Scholar] [CrossRef]
- Akagi, T.; Manabe, S.; Ishigooka, H. A case of cyclosporine-induced optic neuropathy with a normal therapeutic level of cyclosporine. Jpn. J. Ophthalmol. 2010, 54, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N.; Aune, T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020, 16, 145–154. [Google Scholar] [CrossRef]
- Pasnoor, M.; He, J.; Herbelin, L.; Burns, T.M.; Nations, S.; Bril, V.; Wang, A.K.; Elsheikh, B.H.; Kissel, J.T.; Saperstein, D.; et al. A randomized controlled trial of methotrexate for patients with generalized myasthenia gravis. Neurology 2016, 87, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Rodolico, C.; Bonanno, C.; Brizzi, T.; Nicocia, G.; Trimarchi, G.; Lupica, A.; Pugliese, A.; Musumeci, O.; Toscano, A. Methotrexate as a Steroid-Sparing Agent in Myasthenia Gravis: A Preliminary Retrospective Study. J. Clin. Neuromuscul. Dis. 2021, 23, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.; Müller-Ladner, U. Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clin. Exp. Rheumatol. 2010, 28 (Suppl. S61), S95–S101. [Google Scholar]
- de Jonge, M.E.; Huitema, A.D.; Rodenhuis, S.; Beijnen, J.H. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005, 44, 1135–1164. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.C.; Buot, W.L.; Mercado-Danguilan, C.; Bagabaldo, Z.G.; Renales, L.D. Stable remissions in myasthenia grams. Neurology 1981, 31, 32. [Google Scholar] [CrossRef] [PubMed]
- Niakan, E.; Harati, Y.; Rolak, L.A. Immunosuppressive Drug Therapy in Myasthenia Gravis. Arch. Neurol. 1986, 43, 155–156. [Google Scholar] [CrossRef]
- Gladstone, D.E.; Brannagan, T.H., 3rd; Schwartzman, R.J.; Prestrud, A.A.; Brodsky, I. High dose cyclophosphamide for severe refractory myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2004, 75, 789–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustavo De Feo, L.; Schottlender, J.; Martelli, N.A.; Molfino, N.A. Use of intravenous pulsed cyclophosphamide in severe, generalized myasthenia gravis. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2002, 26, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.B.; Jones, R.J.; Brodsky, R.A. Treatment of refractory myasthenia: “Rebooting” with high-dose cyclophosphamide. Ann. Neurol. 2003, 53, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Nagappa, M.; Netravathi, M.; Taly, A.B.; Sinha, S.; Bindu, P.S.; Mahadevan, A. Long-term efficacy and limitations of cyclophosphamide in myasthenia gravis. J. Clin. Neurosci. 2014, 21, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Strober, J.; Cowan, M.J.; Horn, B.N. Allogeneic Hematopoietic Cell Transplantation for Refractory Myasthenia Gravis. Arch. Neurol. 2009, 66, 659–661. [Google Scholar] [CrossRef] [PubMed]
- Daikeler, T.; Tichelli, A.; Passweg, J. Complications of autologous hematopoietic stem cell transplantation for patients with autoimmune diseases. Pediatr. Res. 2012, 71, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerny, T.; Borisch, B.; Introna, M.; Johnson, P.; Rose, A.L. Mechanism of action of rituximab. Anti-Cancer Drugs 2002, 13 (Suppl. S2), S3–S10. [Google Scholar] [CrossRef] [PubMed]
- Wylam, M.E.; Anderson, P.M.; Kuntz, N.L.; Rodriguez, V. Successful treatment of refractory myasthenia gravis using rituximab: A pediatric case report. J. Pediatr. 2003, 143, 674–677. [Google Scholar] [CrossRef]
- Gajra, A.; Vajpayee, N.; Grethlein, S.J. Response of myasthenia gravis to rituximab in a patient with non-Hodgkin lymphoma. Am. J. Hematol. 2004, 77, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Hain, B.; Jordan, K.; Deschauer, M.; Zierz, S. Successful treatment of MuSK antibody–positive myasthenia gravis with rituximab. Muscle Nerve 2006, 33, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Zaja, F.; Russo, D.; Fuga, G.; Perella, G.; Baccarani, M. Rituximab for myasthenia gravis developing after bone marrow transplant. Neurology 2000, 55, 1062–1063. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Yoshida, A.; Iwasaki, H.; Inoue, H.; Ueda, T. Anti-CD20 antibody (Rituximab) therapy in a myasthenia gravis patient with follicular lymphoma. Ann. Hematol. 2005, 84, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Baek, W.S.; Bashey, A.; Sheean, G.L. Complete remission induced by rituximab in refractory, seronegative, muscle-specific, kinase-positive myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2007, 78, 771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, F.; Swayne, A.; Gillis, D.; Walsh, M.; Henderson, R.D.; McCombe, P.A.; Wong, R.C.; Blum, S. Long-term follow-up of patients with myasthenia gravis treated with low-dose rituximab. J. Neurol. Neurosurg. Psychiatry 2019, 90, 955–956. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Goyal, V. Rituximab as induction therapy in refractory myasthenia gravis: 18 month follow-up study. J. Neurol. 2019, 266, 1596–1600. [Google Scholar] [CrossRef]
- Tandan, R.; Hehir, M.K., 2nd; Waheed, W.; Howard, D.B. Rituximab treatment of myasthenia gravis: A systematic review. Muscle Nerve 2017, 56, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G.; Anderson, D.; Siddiqi, Z.A. Rituximab in refractory myasthenia gravis: Extended prospective study results. Muscle Nerve 2018, 58, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Topakian, R.; Zimprich, F.; Iglseder, S.; Embacher, N.; Guger, M.; Stieglbauer, K.; Langenscheidt, D.; Rath, J.; Quasthoff, S.; Simschitz, P.; et al. High efficacy of rituximab for myasthenia gravis: A comprehensive nationwide study in Austria. J. Neurol. 2019, 266, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Hehir, M.K.; Hobson-Webb, L.D.; Benatar, M.; Barnett, C.; Silvestri, N.J.; Howard, J.F.; Howard, D.; Visser, A.; Crum, B.A.; Nowak, R.; et al. Rituximab as treatment for anti-MuSK myasthenia gravis: Multicenter blinded prospective review. Neurology 2017, 89, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sahai, S.K.; Maghzi, A.H.; Lewis, R.A. Rituximab in late-onset myasthenia gravis is safe and effective. Muscle Nerve 2020, 62, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.J.; Coffey, C.S.; Goldstein, J.M.; Dimachkie, M.M.; Benatar, M.; Kissel, J.T.; Wolfe, G.I.; Burns, T.M.; Freimer, M.L.; Nations, S.; et al. Phase 2 Trial of Rituximab in Acetylcholine Receptor Antibody-Positive Generalized Myasthenia Gravis: The BeatMG Study. Neurology 2021, 98, e376–e389. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.; Song, Y.; Song, J.; Pang, S.; Quan, C.; Zhou, L.; Huang, Y.; Lu, J.; Xi, J.; Zhao, C. Responsiveness to low-dose rituximab in refractory generalized myasthenia gravis. J. Neuroimmunol. 2017, 311, 14–21. [Google Scholar] [CrossRef]
- Dos Santos, A.; Noury, J.B.; Genestet, S.; Nadaj-Pakleza, A.; Cassereau, J.; Baron, C.; Videt, D.; Michel, L.; Pereon, Y.; Wiertlewski, S.; et al. Efficacy and safety of rituximab in myasthenia gravis: A French multicentre real-life study. Eur. J. Neurol. 2020, 27, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, C.; Bourg, V.; Bresch, S.; Cohen, M.; Rosenthal-Allieri, M.A.; Desnuelle, C.; Ticchioni, M. Therapeutic target of memory B cells depletion helps to tailor administration frequency of rituximab in myasthenia gravis. J. Neuroimmunol. 2016, 298, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Pu, M.; Chen, D.; Shi, J.; Li, Z.; Guo, J.; Zhang, G. Effectiveness and Safety of Rituximab for Refractory Myasthenia Gravis: A Systematic Review and Single-Arm Meta-Analysis. Front. Neurol. 2021, 12, 736190. [Google Scholar] [CrossRef]
- Nowak, R.J.; DiCapua, D.B.; Zebardast, N.; Goldstein, J.M. Response of patients with refractory myasthenia gravis to rituximab: A retrospective study. Ther. Adv. Neurol. Disord. 2011, 4, 259–266. [Google Scholar] [CrossRef]
- Roche, B.; Samuel, D. The difficulties of managing severe hepatitis B virus reactivation. Liver Int. 2011, 31 (Suppl. S1), 104–110. [Google Scholar] [CrossRef]
- Cholongitas, E.; Haidich, A.B.; Apostolidou-Kiouti, F.; Chalevas, P.; Papatheodoridis, G.V. Hepatitis B virus reactivation in HBsAg-negative, anti-HBc-positive patients receiving immunosuppressive therapy: A systematic review. Ann. Gastroenterol. 2018, 31, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Lanini, S.; Gudiol, C.; Drgona, L.; Ippolito, G.; Fernández-Ruiz, M.; Salzberger, B. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: An infectious diseases perspective (Agents targeting lymphoid cells surface antigens [I]: CD19, CD20 and CD52). Clin. Microbiol. Infect. 2018, 24 (Suppl. S2), S71–S82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteleone, J.P.R.; Gao, X.; Kleijn, H.J.; Bellanti, F.; Pelto, R. Eculizumab Pharmacokinetics and Pharmacodynamics in Patients with Generalized Myasthenia Gravis. Front. Neurol. 2021, 12, 696385. [Google Scholar] [CrossRef]
- Howard, J.F., Jr.; Utsugisawa, K.; Benatar, M.; Murai, H.; Barohn, R.J.; Illa, I.; Jacob, S.; Vissing, J.; Burns, T.M.; Kissel, J.T.; et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): A phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017, 16, 976–986. [Google Scholar] [CrossRef]
- Mantegazza, R.; Wolfe, G.I.; Muppidi, S.; Wiendl, H.; Fujita, K.P.; O’Brien, F.L.; Booth, H.D.; Howard, J.F. Post-intervention Status in Patients with Refractory Myasthenia Gravis Treated with Eculizumab During REGAIN and Its Open-Label Extension. Neurology 2021, 96, e610–e618. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, S.; Utsugisawa, K.; Benatar, M.; Murai, H.; Barohn, R.J.; Illa, I.; Jacob, S.; Vissing, J.; Burns, T.M.; Kissel, J.T.; et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve 2019, 60, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, U.; Chrisman, C.; Houston, D.; Haws, C.C.; Wang, A.; Muley, S. The use of eculizumab in ventilator-dependent myasthenia gravis patients. Muscle Nerve 2021, 64, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Jr, J.F.H.; Karam, C.; Yountz, M.; O’Brien, F.L.; Mozaffar, T.; for the REGAIN Study Group. Long-term efficacy of eculizumab in refractory generalized myasthenia gravis: Responder analyses. Ann. Clin. Transl. Neurol. 2021, 8, 1398–1407. [Google Scholar] [CrossRef]
- Narayanaswami, P.; Sanders, D.B.; Wolfe, G.; Benatar, M.; Cea, G.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.L.; Massey, J.; et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 2021, 96, 114–122. [Google Scholar] [CrossRef]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, 1540. [Google Scholar] [CrossRef]
- Peter, H.-H.; Ochs, H.D.; Cunningham-Rundles, C.; Vinh, D.C.; Kiessling, P.; Greve, B.; Jolles, S. Targeting FcRn for immunomodulation: Benefits, risks, and practical considerations. J. Allergy Clin. Immunol. 2020, 146, 479–491.e5. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, C.; Zhou, J.; Ober, R.J.; Ward, E.S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol. 2005, 23, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.F., Jr.; Bril, V.; Burns, T.M.; Mantegazza, R.; Bilinska, M.; Szczudlik, A.; Beydoun, S.; Garrido, F.J.R.D.R.; Piehl, F.; Rottoli, M.; et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology 2019, 92, e2661–e2673. [Google Scholar] [CrossRef] [PubMed]
- Arsura, E.L.; Bick, A.; Brunner, N.G.; Namba, T.; Grob, D. High-dose intravenous immunoglobulin in the management of myasthenia gravis. Arch. Intern. Med. 1986, 146, 1365–1368. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Clair, B.; Tranchant, C.; Chastang, C.; for the Myasthenia Gravis Clinical Study Group. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Ann. Neurol. 1997, 41, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Barth, D.; Nabavi Nouri, M.; Ng, E.; Nwe, P.; Bril, V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 2011, 76, 2017–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achiron, A.; Barak, Y.; Miron, S.; Sarova-Pinhas, I. Immunoglobulin treatment in refractory myasthenia gravis. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2000, 23, 551–555. [Google Scholar] [CrossRef]
- Wilf-Yarkoni, A.; Lotan, I.; Steiner, I.; Hellmann, M.A. Chronic low-dose intravenous immunoglobulins as steroid-sparing therapy in myasthenia gravis. J. Neurol. 2021, 268, 3871–3877. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.; Mosberg-Galili, R.; Lotan, I.; Steiner, I. Maintenance IVIg therapy in myasthenia gravis does not affect disease activity. J. Neurol. Sci. 2014, 338, 39–42. [Google Scholar] [CrossRef]
- Edan, G.; Landgraf, F. Experience with intravenous immunoglobulin in myasthenia gravis: A review. J. Neurol. Neurosurg. Psychiatry 1994, 57, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Evoli, A.; Palmisani, M.T.; Bartoccioni, E.; Padua, L.; Tonali, P. High-dose intravenous immunoglobulin in myasthenia gravis. Ital. J. Neurol. Sci. 1993, 14, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Cosi, V.; Lombardi, M.; Piccolo, G.; Erbetta, A. Treatment of myasthenia gravis with high-dose intravenous immunoglobulin. Acta Neurol. Scand. 1991, 84, 81–84. [Google Scholar] [CrossRef]
- Hilkevich, O.; Drory, V.E.; Chapman, J.; Korczyn, A.D. The Use of Intravenous Immunoglobulin as Maintenance Therapy in Myasthenia Gravis. Clin. Neuropharmacol. 2001, 24, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Gajdos, P.; Chevret, S.; Toyka, K.V. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Brannagan, T.H.; Nagle, K.J.; Lange, D.J.; Rowland, L.P. Complications of intravenous immune globulin treatment in neurologic disease. Neurology 1996, 47, 674–677. [Google Scholar] [CrossRef]
- Meiner, Z.; Ben-Hur, T.; River, Y.; Reches, A. Aseptic meningitis as complication of intravenous immunoglobulin therapy for myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 1993, 56, 830–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vucic, S.; Chong, P.S.T.; Dawson, K.; Cudkowicz, M.; Cros, D. Thromboembolic Complications of Intravenous Immunoglobulin Treatment. Eur. Neurol. 2004, 52, 141–144. [Google Scholar] [CrossRef]
- Ahsan, N. Intravenous immunoglobulin induced-nephropathy: A complication of IVIG therapy. J. Nephrol. 1998, 11, 157–161. [Google Scholar]
- Ahsan, N.; Wiegand, L.A.; Abendroth, C.S.; Manning, E.C. Acute Renal Failure following Immunoglobulin Therapy. Am. J. Nephrol. 1996, 16, 532–536. [Google Scholar] [CrossRef]
- Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 2016, 87, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.I.; Suri, M.F. Plasma Exchange for Treatment of Myasthenia Gravis: Pathophysiologic Basis and Clinical Experience. Ther. Apher. 2000, 4, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Guptill, J.T.; Juel, V.C.; Massey, J.M.; Anderson, A.C.; Chopra, M.; Yi, J.S.; Esfandiari, E.; Buchanan, T.; Smith, B.; Atherfold, P.; et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity 2016, 49, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, J.H.; Wang, S.H.; Chien, P.J.; Shih, C.M.; Chiu, H.C. Changes in serum cytokine levels during plasmapheresis in patients with myasthenia gravis. Eur. J. Neurol. 2009, 16, 1318–1322. [Google Scholar] [CrossRef]
- Rønager, J.; Ravnborg, M.; Hermansen, I.; Vorstrup, S. Immunoglobulin Treatment Versus Plasma Exchange in Patients with Chronic Moderate to Severe Myasthenia Gravis. Artif. Organs 2001, 25, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.-H.; Chen, W.-H.; Chiu, H.-C.; Bai, C.-H. MuSK antibody clearance during serial sessions of plasmapheresis for myasthenia gravis. J. Neurol. Sci. 2007, 263, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.M.; Howard, J.F., Jr.; Juel, V.C.; Massey, J.M.; Chopra, M.; Guptill, J.T. Clinical outcome measures following plasma exchange for MG exacerbation. Ann. Clin. Transl. Neurol. 2019, 6, 2114–2119. [Google Scholar] [CrossRef] [Green Version]
- Usmani, A.; Kwan, L.; Wahib-Khalil, D.; Trivedi, J.; Nations, S.; Sarode, R. Excellent response to therapeutic plasma exchange in myasthenia gravis patients irrespective of antibody status. J. Clin. Apher. 2019, 34, 416–422. [Google Scholar] [CrossRef]
- Liew, W.K.; Powell, C.A.; Sloan, S.R.; Shamberger, R.C.; Weldon, C.B.; Darras, B.T.; Kang, P.B. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014, 71, 575–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantafyllou, N.I.; Grapsa, E.I.; Kararizou, E.; Psimenou, E.; Lagguranis, A.; Dimopoulos, A. Periodic Therapeutic Plasma Exchange in Patients with Moderate to Severe Chronic Myasthenia Gravis Non-Responsive to Immunosuppressive Agents: An Eight Year Follow-Up. Ther. Apher. Dial. 2009, 13, 174–178. [Google Scholar] [CrossRef]
- Ebadi, H.; Barth, D.; Bril, V. Safety of plasma exchange therapy in patients with myasthenia gravis. Muscle Nerve 2013, 47, 510–514. [Google Scholar] [CrossRef]
- Ipe, T.S.; Marques, M.B. Vascular access for therapeutic plasma exchange. Transfusion 2018, 58 (Suppl. S1), 580–589. [Google Scholar] [CrossRef] [Green Version]
- Gera, A.; Jacobsen, J.; Mokhlesi, B.; Rezania, K. Bilateral pneumothorax: A rare complication of central venous catheter placement for plasmapheresis years after thymectomy. J. Clin. Apher. 2016, 31, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, S.C.; Deng, Y.; Chen, A.; Collard, C.D. Perioperative Therapeutic Plasmapheresis. Anesthesiology 2013, 118, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blalock, A.; Harvey, A.M.; Ford, F.R.; Lilienthal, J.L. The treatment of myasthenia gravis by removal of the thymus gland—Preliminary report. J. Am. Med. Assoc. 1941, 117, 1529–1533. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Kaminski, H.J.; Aban, I.B.; Minisman, G.; Kuo, H.-C.; Marx, A.; Ströbel, P.; Mazia, C.; Oger, J.; Cea, J.G.; et al. Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurol. 2019, 18, 259–268. [Google Scholar] [CrossRef]
- Raza, B.; Dhamija, A.; Abbas, G.; Toker, A. Robotic thymectomy for myasthenia gravis surgical techniques and outcomes. J. Thorac. Dis. 2021, 13, 6187–6194. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.M.; Guptill, J.T.; McConnell, A.; Al-Khalidi, H.R.; Hartwig, M.G.; Klapper, J.A. Perioperative Outcomes of Thymectomy in Myasthenia Gravis: A Thoracic Surgery Database Analysis. Ann. Thorac. Surg. 2021, 113, 904–910. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Li, T.; Li, C. Prognosis of thymectomy in myasthenia gravis patients with thymus hyperplasia. Int. J. Neurosci. 2017, 127, 785–789. [Google Scholar] [CrossRef]
- Ba, K.M.C.; Hobson-Webb, L.D.; Benatar, M.; Burns, T.M.; Barnett, C.; Silvestri, N.J.; Jr, J.F.H.; Visser, A.; Crum, B.A.; Nowak, R.; et al. Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve 2019, 59, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Howard, F.M., Jr.; Duane, D.D.; Lambert, E.H.; Daube, J.R. Alternate-day prednisone: Preliminary report of a double-blind controlled study. Ann. N. Y. Acad. Sci. 1976, 274, 596–607. [Google Scholar] [CrossRef]
- Verma, R.; Wolfe, G.I.; Kupersmith, M.J. Ocular myasthenia gravis—How effective is low dose prednisone long term? J. Neurol. Sci. 2021, 420, 117274. [Google Scholar] [CrossRef] [PubMed]
- Meriggioli, M.N.; Rowin, J.; Richman, J.G.; Leurgans, S. Mycophenolate mofetil for myasthenia gravis: A double-blind, placebo-controlled pilot study. Ann. N. Y. Acad. Sci. 2003, 998, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Rezania, K.; Soliven, B.; Baron, J.; Lin, H.; Penumalli, V.; Van Besien, K. Myasthenia gravis, an autoimmune manifestation of lymphoma and lymphoproliferative disorders: Case reports and review of literature. Leuk. Lymphoma 2012, 53, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, R.; O’Brien, F.L.; Yountz, M.; Howard, J.F., Jr.; Mazia, C.G.; Wilken, M.; Barroso, F.; Saba, J.; Rugiero, M.; Bettini, M.; et al. Consistent improvement with eculizumab across muscle groups in myasthenia gravis. Ann. Clin. Transl. Neurol. 2020, 7, 1327–1339. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.F.; Bril, V.; Vu, T.; Karam, C.; Peric, S.; Margania, T.; Murai, H.; Bilinska, M.; Shakarishvili, R.; Smilowski, M.; et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): A multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021, 20, 526–536. [Google Scholar] [CrossRef]
- Arsura, E.; Brunner, N.G.; Namba, T.; Grob, D. High-Dose Intravenous Methylprednisolone in Myasthenia Gravis. Arch. Neurol. 1985, 42, 1149–1153. [Google Scholar] [CrossRef]
- Arsura, E.L.; Bick, A.; Brunner, N.G.; Grob, D. Effects of Repeated Doses of Intravenous Immunoglobulin in Myasthenia Gravis. Am. J. Med. Sci. 1988, 295, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Barnett, C.; Wilson, G.; Barth, D.; Katzberg, H.D.; Bril, V. Changes in quality of life scores with intravenous immunoglobulin or plasmapheresis in patients with myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2012, 84, 94–97. [Google Scholar] [CrossRef]
- Wolfe, G.I.; Barohn, R.J.; Foster, B.M.; Jackson, C.E.; Kissel, J.T.; Day, J.W.; Thornton, C.A.; Nations, S.P.; Bryan, W.W.; Amato, A.A.; et al. Randomized, controlled trial of intravenous immunoglobulin in myasthenia gravis. Muscle Nerve 2002, 26, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Gronseth, G.S.; Cox, J.; Gloss, D.; Merillat, S.; Dittman, J.; Armstrong, M.J.; Getchius, T.S.D. 2017 AAN Clinical Practice Guideline Process Manual. Available online: https://www.aan.com/siteassets/home-page/policy-and-guidelines/guidelines/about-guidelines/17guidelineprocman_pg.pdf (accessed on 9 March 2022).
- Patwa, H.S.; Chaudhry, V.; Katzberg, H.; Rae-Grant, A.D.; So, Y.T. Evidence-based guideline: Intravenous immunoglobulin in the treatment of neuromuscular disorders: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2012, 78, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.A.; Johnston, K.C. Levels of evidence: Taking Neurology to the next level. Neurology 2009, 72, 8–10. [Google Scholar] [CrossRef]
- Oosterhuis, H.J. The natural course of myasthenia gravis: A long term follow up study. J. Neurol. Neurosurg. Psychiatry 1989, 52, 1121–1127. [Google Scholar] [CrossRef] [Green Version]
- Mantegazza, R.; Antozzi, C. When myasthenia gravis is deemed refractory: Clinical signposts and treatment strategies. Ther. Adv. Neurol. Disord. 2018, 11, 1756285617749134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, J.; Goldstein, J.M.; Nowak, R.J. Clinical characteristics of refractory myasthenia gravis patients. Yale J. Biol. Med. 2013, 86, 255–260. [Google Scholar]
- Buzzard, K.A.; Meyer, N.J.; Hardy, T.A.; Riminton, D.S.; Reddel, S.W. Induction intravenous cyclophosphamide followed by maintenance oral immunosuppression in refractory myasthenia gravis. Muscle Nerve 2015, 52, 204–210. [Google Scholar] [CrossRef]
- Zebardast, N.; Patwa, H.S.; Novella, S.P.; Goldstein, J.M. Rituximab in the management of refractory myasthenia gravis. Muscle Nerve 2010, 41, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, A.; Arai, H.; Kijima, M.; Hirayama, K. Extraocular muscle responses to high dose intravenous methylprednisolone in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 2000, 68, 214–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haines, S.R.; Thurtell, M.J. Treatment of ocular myasthenia gravis. Curr. Treat. Options Neurol. 2012, 14, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, Y.; Hemmi, S.; Morgan, M.B.; Scheufele, M.L.; Claussen, G.C.; Wolfe, G.I.; Oh, S.J. Nonresponsiveness to anticholinesterase agents in patients with MuSK-antibody-positive MG. Neurology 2005, 65, 1508–1509. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, C.; Andersen, O.; Lefvert, A.K. Treatment of myasthenia gravis with methylprednisolone pulse: A double blind study. Acta Neurol. Scand. 1998, 97, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Munakata, R.; Utsugisawa, K.; Nagane, Y.; Yamagata, M.; Oikawa, M.; Obara, D.; Tohgi, H. The effect of combined therapy with immunoadsorption and high-dose intravenous methylprednisolone on myasthenia gravis. Eur. Neurol. 2002, 48, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, Y.; Uzawa, A.; Kanai, T.; Oda, F.; Yasuda, M.; Kawaguchi, N.; Himuro, K.; Kuwabara, S. Efficacy of high-dose intravenous methylprednisolone therapy for ocular myasthenia gravis. J. Neurol. Sci. 2019, 402, 12–15. [Google Scholar] [CrossRef] [PubMed]
Class of Evidence (Supportive Studies) | Overall Outcome | Adverse Effects | Level of Recommendations | |
---|---|---|---|---|
Prednisone | II [48,49,50,51,54,65,68,201,202] | Generally effective in ocular and generalized MG | Weight gain, edema, hypertension, hyperglycemia, osteoporosis, cataracts, infections, neuropsychiatric symptoms | Ocular and generalized MG who do not respond to pyridostigmine (level B). Monotherapy in selected patients if they are controlled by a low dose (level B) |
Azathioprine | II [60,61,62,63,64,65,67,68,69,70] | Effective as a steroid-sparing agent | Leukopenia, hepatotoxicity, pancreatitis, sepsis like idiosyncratic reaction | MG not controlled with low steroid dose (level B) |
Tacrolimus | II [81,82,83,84,85,86,87,88,90,92] | Effective as a steroid-sparing agent | Well tolerated in doses used for MG. Hypertension, nephrotoxicity, hyperglycemia, hypomagnesemia, tremors, diarrhea, nausea | MG not controlled with low steroid dose (level B) |
Mycophenolate mofetil | II [94,95,97,98,99,100,101,102,103,104,105,203] | Although earlier results were promising, a subsequent large RCT did not prove steroid-sparing effects, which was attributed by some to issues with the study design, such as inadequate length of the study | Leukopenia, diarrhea, nausea, vomiting, hyperglycemia, headaches | MG not controlled with low steroid dose (level C) |
Cyclosporine | II [111,112,113,114] | RCT supports the use of cyclosporine, but toxicity more frequent than for tacrolimus. | Nephrotoxicity, hepatotoxicity, hypertension, hypertrichosis, gingival hyperplasia, tremor, optic neuropathy | Level B recommendation, but use is limited by toxicity |
Methotrexate | II [56,119,120] | Although a large RCT did not prove a steroid-sparing effect, a post hoc analysis suggested some efficacy in secondary endpoints | Hepatotoxicity, pulmonary fibrosis, infection | Insufficient evidence to recommend use (level U) |
Cyclophosphamide | II [18,124,125,126] | Effective in patients with refractory generalized MG, including steroid-sparing effects | Bone marrow suppression, hemorrhagic cystitis, alopecia, infections, infertility, nausea and vomiting, neoplasia | MG refractory to other treatments (Level C), concern regarding severe adverse effects, studies conducted before the introduction of newer targeted therapies |
Rituximab | II [132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,204] | Efficacy more pronounced in MuSK Ab+, but also has shown efficacy and steroid-sparing effects in treatment refractory AChR Ab+ MG. A double blind RCT of rituximab did not prove steroid-sparing effect in AChR Ab+ MG but some have attributed the negative results to the design of the study | Well-tolerated in MG cases. Infusion-related reactions, hypotension, infections, leukopenia, thrombocytopenia, alopecia areata | MuSK Ab+ MG (level B), treatment refractory AChR Ab+ MG (level C) |
Eculizumab | I [155,156,157,205] | Effective in refractory AChR Ab+ generalized MG, with long term steroid-sparing effects | Well-tolerated. Infusion-related reactions, severe meningococcal infection, other infections, headaches, musculoskeletal pain | Treatment refractory, highly symptomatic AChR Ab+ MG (level B), widespread use limited because of the price. |
Efgartigimod | I [164,206] | Effective in generalized MG patients who remain highly symptomatic after treatment with pyridostigmine, steroids or NSI | Well-tolerated. Allergic reactions, headache, infections, leukopenia, myalgia | Level B recommendation for patients still symptomatic on pyridostigmine, steroids or NSI. Only approved for AChR Ab + MG, but may work for other MG subtypes, widespread use may be limited because of the price |
IVIG | II [12,13,14,55,165,166,167,168,169,172,173,174,175,207,208,209,210] | Effective in MG exacerbation and crisis, and in refractory generalized MG, including long term steroid-sparing effects | Headache, urticaria, nephrotoxicity, thrombotic events, myalgia, fever, flu like symptoms | MG exacerbation or crisis (level B); maintenance therapy in refractory generalized MG (level C); in association with starting steroids or NSI (level C); widespread use limited because of the price |
PLEX | II [16,166,167,185,187,188,190,209] | Effective in MG exacerbation and crisis, and in refractory generalized MG | Line infection, pneumothorax, hypocalcemia, hypotension, fever, coagulopathy, allergic reactions | MG exacerbation or crisis, (level B), maintenance therapy in refractory generalized MG (level C); use could be limited by availability of expertise and sometimes by need for central venous access |
Thymectomy | II [7,196,199,200] | Effective in AChR Ab+ patients 18–65 years of age, including steroid-sparing efficacy. Not effective in MuSK Ab+ MG | Surgical complications, postoperative MG exacerbation | Must be carried out in MG with thymoma (level A); Recommended for 18–50-year-old, non-thymomatous AChR Ab + (level B), Not recommended in MuSK Ab + MG; inadequate evidence in double seronegative MG (level U) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaidar, M.K.; Abumurad, S.; Soliven, B.; Rezania, K. Current Treatment of Myasthenia Gravis. J. Clin. Med. 2022, 11, 1597. https://doi.org/10.3390/jcm11061597
Alhaidar MK, Abumurad S, Soliven B, Rezania K. Current Treatment of Myasthenia Gravis. Journal of Clinical Medicine. 2022; 11(6):1597. https://doi.org/10.3390/jcm11061597
Chicago/Turabian StyleAlhaidar, Mohammed K., Sumayyah Abumurad, Betty Soliven, and Kourosh Rezania. 2022. "Current Treatment of Myasthenia Gravis" Journal of Clinical Medicine 11, no. 6: 1597. https://doi.org/10.3390/jcm11061597
APA StyleAlhaidar, M. K., Abumurad, S., Soliven, B., & Rezania, K. (2022). Current Treatment of Myasthenia Gravis. Journal of Clinical Medicine, 11(6), 1597. https://doi.org/10.3390/jcm11061597