Clinical, Laboratory and Lung Ultrasound Assessment of Congestion in Patients with Acute Heart Failure
Abstract
:1. Introduction
2. Methods
3. Physical Examination and Blood Tests
4. Echocardiography
5. Lung Ultrasound
5.1. Follow-Up
5.2. Statistical Analysis
6. Results
Baseline Characteristics
7. Predictors of Outcome at Admission
8. Congestion Differences between Admission and Discharge
9. Discussion
10. Study Limitations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boorsma, E.M.; Ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in heart failure: A contemporary look at physiology, diagnosis and treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef]
- Mullens, W.; Damman, K.; Harjola, V.P.; Mebazaa, A.; Brunner-La Rocca, H.P.; Martens, P.; Testani, J.M.; Tang, W.H.W.; Orso, F.; Rossignol, P.; et al. The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 137–155. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Filippatos, G.; De Luca, L.; Burnett, J. Congestion in acute heart failure syndromes: An essential target of evaluation and treatment. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Chioncel, O.; Mebazaa, A.; Maggioni, A.P.; Harjola, V.P.; Rosano, G.; Laroche, C.; Piepoli, M.F.; Crespo-Leiro, M.G.; Lainscak, M.; Ponikowski, P.; et al. ESC-EORP-HFA Heart Failure Long-Term Registry Investigators. Acute heart failure congestion and perfusion status—Impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2019, 21, 1338–1352. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Follath, F.; Ponikowski, P.; Barsuk, J.H.; Blair, J.E.; Cleland, J.G.; Dickstein, K.; Drazner, M.H.; Fonarow, G.C.; Jaarsma, T.; et al. European Society of Cardiology; European Society of Intensive Care Medicine. Assessing and grading congestion in acute heart failure: A scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur. J. Heart Fail. 2010, 12, 423–433. [Google Scholar] [CrossRef]
- Chakko, S.; Woska, D.; Martinez, H.; De Marchena, E.; Futterman, L.; Kessler, K.M.; Myerburg, R.J. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: Conflicting results may lead to inappropriate care. Am. J. Med. 1991, 90, 353–359. [Google Scholar] [CrossRef]
- Collins, S.P.; Lindsell, C.J.; Storrow, A.B.; Abraham, W.T. ADHERE Scientific Advisory Committee, Investigators and Study Group. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann. Emerg. Med. 2006, 47, 13–18. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Evangelista, I.; Nuti, R. Congestion occurrence and evaluation in acute heart failure scenario: Time to reconsider different pathways of volume overload. Heart Fail. Rev. 2020, 25, 119–131. [Google Scholar] [CrossRef]
- Stienen, S.; Salah, K.; Moons, A.H.; Bakx, A.L.; van Pol, P.; Kortz, R.A.M.; Ferreira, J.P.; Marques, I.; Schroeder-Tanka, J.M.; Keijer, J.T.; et al. NT-proBNP (N-Terminal pro-B-Type Natriuretic Peptide)-Guided Therapy in Acute Decompensated Heart Failure: PRIMA II Randomized Controlled Trial (Can NT-ProBNP-Guided Therapy During Hospital Admission for Acute Decompensated Heart Failure Reduce Mortality and Readmissions?). Circulation 2018, 137, 1671–1683. [Google Scholar] [CrossRef]
- Pfisterer, M.; Buser, P.; Rickli, H.; Gutmann, M.; Erne, P.; Rickenbacher, P.; Vuillomenet, A.; Jeker, U.; Dubach, P.; Beer, H.; et al. TIME-CHF Investigators. BNP-guided vs symptom-guided heart failure therapy: The Trial of Intensified vs Standard Medical Therapy in Elderly Patients with Congestive Heart Failure (TIME-CHF) randomized trial. JAMA 2009, 301, 383–392. [Google Scholar] [CrossRef]
- Gargani, L.; Ferre, R.M.; Pang, P.S. B-lines in heart failure: Will comets guide us? Eur. J. Heart Fail. 2019, 21, 1616–1618. [Google Scholar] [CrossRef] [PubMed]
- Öhman, J.; Harjola, V.P.; Karjalainen, P.; Lassus, J. Focused echocardiography and lung ultrasound protocol for guiding treatment in acute heart failure. ESC Heart Fail. 2018, 5, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Maw, A.M.; Hassanin, A.; Ho, P.M.; McInnes, M.D.; Moss, A.; Juarez-Colunga, E.; Soni, N.J.; Miglioranza, M.H.; Platz, E.; DeSanto, K.; et al. Diagnostic accuracy of point-of-care lung ultrasonography and chest radiography in adults with symptoms suggestive of acute decompensated heart failure: A systematic review and meta-analysis. JAMA Netw. Open. 2019, 2, e190703. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.; Campbell, R.T.; Claggett, B.; Lewis, E.F.; Groarke, J.D.; Docherty, K.F.; Lee, M.M.; Merz, A.A.; Silverman, M.; Swamy, V.; et al. Lung Ultrasound in Acute Heart Failure: Prevalence of Pulmonary Congestion and Short- and Long-Term Outcomes. JACC Heart Fail. 2019, 7, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.; Campbell, R.T.; Claggett, B.; Lewis, E.F.; Groarke, J.D.; Docherty, K.F.; Lee, M.M.; Merz, A.A.; Silverman, M.; Swamy, V.; et al. Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: A SIMEU multicenter study. Chest 2015, 148, 202–210. [Google Scholar]
- Felker, G.M.; Anstrom, K.J.; Adams, K.F.; Ezekowitz, J.A.; Fiuzat, M.; Houston-Miller, N.; Januzzi, J.L., Jr.; Mark, D.B.; Piña, I.L.; Passmore, G.; et al. Effect of Natriuretic Peptide-Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2017, 318, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Morvai-Illés, B.; Polestyuk-Németh, N.; Szabó, I.A.; Monoki, M.; Gargani, L.; Picano, E.; Varga, A.; Ágoston, G. The Prognostic Value of Lung Ultrasound in Patients with Newly Diagnosed Heart Failure with Preserved Ejection Fraction in the Ambulatory Setting. Front. Cardiovasc. Med. 2021, 8, 758147. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Pang, P.S.; Khan, S.; Konstam, M.A.; Fonarow, G.C.; Traver, B.; Maggioni, A.P.; Cook, T.; Swedberg, K.; Burnett, J.C., Jr.; et al. EVEREST Trial Investigators. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: Findings from the EVEREST trial. Eur. Heart J. 2013, 34, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogliati, C.; Casazza, G.; Ceriani, E.; Torzillo, D.; Furlotti, S.; Bossi, I.; Vago, T.; Costantino, G.; Montano, N. Lung ultrasound and short-term prognosis in heart failure patients. Int. J. Cardiol. 2016, 218, 104–108. [Google Scholar] [CrossRef]
- Pang, P.S.; Russell, F.M.; Ehrman, R.; Ferre, R.; Gargani, L.; Levy, P.D.; Noble, V.; Lane, K.A.; Li, X.; Collins, S.P. Lung Ultrasound-Guided Emergency Department Management of Acute Heart Failure (BLUSHED-AHF): A Randomized Controlled Pilot Trial. JACC Heart Fail. 2021, 9, 638–648. [Google Scholar] [CrossRef]
- Pellicori, P.; Platz, E.; Dauw, J.; Ter Maaten, J.M.; Martens, P.; Pivetta, E.; Cleland, J.G.F.; McMurray, J.J.V.; Mullens, W.; Solomon, S.D.; et al. Ultrasound imaging of congestion in heart failure: Examinations beyond the heart. Eur. J. Heart Fail. 2021, 23, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Binanay, C.; Califf, R.M.; Hasselblad, V.; O’Connor, C.M.; Shah, M.R.; Sopko, G.; Stevenson, L.W.; Francis, G.S.; Leier, C.V.; Miller, L.W. ESCAPE Investigators and ESCAPE Study Coordinators. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: The ESCAPE trial. JAMA 2005, 294, 1625–1633. [Google Scholar] [PubMed] [Green Version]
- Givertz, M.M.; Stevenson, L.W.; Costanzo, M.R.; Bourge, R.C.; Bauman, J.G.; Ginn, G.; Abraham, W.T. CHAMPION Trial Investigators. Pulmonary Artery Pressure-Guided Management of Patients with Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2017, 70, 1875–1886. [Google Scholar] [CrossRef] [PubMed]
- Gargani, L.; Pang, P.S.; Frassi, F.; Miglioranza, M.H.; Dini, F.L.; Landi, P.; Picano, E. Persistent pulmonary congestion before discharge predicts rehospitalization in heart failure: A lung ultrasound study. Cardiovasc. Ultrasound 2015, 13, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coiro, S.; Rossignol, P.; Ambrosio, G.; Carluccio, E.; Alunni, G.; Murrone, A.; Tritto, I.; Zannad, F.; Girerd, N. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur. J. Heart Fail. 2015, 17, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Ruocco, G.; Beltrami, M.; Nuti, R.; Cleland, J.G. Combined use of lung ultrasound, B-type natriuretic peptide, and echocardiography for outcome prediction in patients with acute HFrEF and HFpEF. Clin. Res. Cardiol. 2018, 107, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Platz, E.; Merz, A.A.; Jhund, P.S.; Vazir, A.; Campbell, R.; McMurray, J.J. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: A systematic review. Eur. J. Heart Fail. 2017, 19, 1154–1163. [Google Scholar] [CrossRef]
- Platz, E.; Jhund, P.S.; Girerd, N.; Pivetta, E.; McMurray, J.J.V.; Peacock, W.F.; Masip, J.; Martin Sanchez, F.J.; Miró, Ò.; Price, S.; et al. Study Group on Acute Heart Failure of the Acute Cardiovascular Care Association and the Heart Failure Association of the European Society of Cardiology. Expert consensus document: Reporting checklist for quantification of pulmonary congestion by lung ultrasound in heart failure. Eur. J. Heart Fail. 2019, 21, 844–851. [Google Scholar]
Characteristic | HFrEF n = 133 | HFpEF n = 83 | p-Value |
---|---|---|---|
Age (years) | 82 (77–87) | 79 (77–83) | 0.04 |
Men—n. (%) | 72 (54) | 30 (36) | 0.01 |
BMI (kg/m2) | 27.4 (24.5–29.7) | 28.7 (26.0–30.5) | 0.02 |
Risk factors—n. (%) | |||
CAD | 88 (66) | 19 (23) | <0.001 |
Diabetes | 66 (50) | 27 (32) | 0.01 |
Dyslipidaemia | 69 (52) | 37 (46) | 0.30 |
Hypertension | 68 (51) | 67 (81) | <0.001 |
Smoking | 38 (29) | 29 (35) | 0.32 |
AF | 38 (29) | 16 (19) | 0.12 |
LVEF | 33 (25–44) | 56 (50–62) | <0.01 |
Clinical examination & BNP | |||
Heart rate (beats/min) | 90 (87–97) | 89 (86–94) | 0.36 |
Systolic blood pressure (mmHg) | 125 (110–135) | 140 (130–150) | <0.001 |
Diastolic blood pressure (mmHg) | 70 (55–80) | 85 (80–95) | <0.001 |
Respiratory rate (n./min) | 29 (27–32) | 29 (26–33) | 0.58 |
Rales n./(%) | 103 (77) | 72 (86) | 0.09 |
Peripheral oedema n./(%) | 78 (58) | 44 (53) | 0.42 |
Hepatomegaly n./(%) | 50 (38) | 24 (29) | 0.19 |
Jugular vein distention n./(%) | 38 (28) | 24 (29) | 0.95 |
Third heart sound n./(%) | 42 (31) | 21 (25) | 0.32 |
BNP (pg/mL) | 1150 (812–1790) | 851 (694–1196) | 0.002 |
Echocardiography and LUS | |||
LVEDD (mm) | 61 (56–66) | 51 (45–55) | <0.001 |
LVESD (mm) | 46 (41–52) | 34 (29–37) | <0.001 |
LVEDVi (mL/min²) | 160 (140–190) | 115 (100–145) | <0.001 |
LVESVi (mL/min²) | 100 (80–130) | 55 (45–70) | <0.001 |
Left atrial Area (cm2) | 28 (24–31) | 25 (22–27) | <0.001 |
PASP (mmHg) | 45 (40–50) | 45 (40–55) | 0.92 |
Septal thickness (mm) | 11 (10–13) | 12 (11–14) | 0.001 |
Posterior wall (mm) | 11 (9–12) | 12 (11–13) | 0.002 |
TAPSE (mm) | 18 (16–21) | 20 (17–22) | 0.02 |
Inferior cave vein diameter (mm) | 23 (22–24) | 22 (21–25) | 0.95 |
E/e’ | 16 (14–18) | 16 (14–18) | 0.63 |
B-lines (n) | 32 (27–38) | 30 (25–36) | 0.07 |
Outcome | |||
60 days adverse events—n. (%) | 36 (27) | 17 (21) | 0.27 |
B-Lines Tertile 1 (Range: ≤27) n = 63 | B-Lines Tertile 2 (Range: 28–35) n = 83 | B-Lines Tertile 3 (Range: ≥36) n = 70 | p-Value | |
---|---|---|---|---|
Clinical congestion | ||||
Rales (yes)—n. (%) | 51 (81) | 64 (77) | 60 (86) | 0.40 |
Peripheral oedema—n. (%) | 31 (49) | 47 (57) | 44 (63) | 0.28 |
JV distention—n. (%) | 11 (17) | 21 (25) | 30 (43) | 0.004 |
Hepatomegaly—n. (%) | 13 (21) | 31 (37) | 30 (43) | 0.02 |
Third heart sound—n. (%) | 14 (22) | 19 (23) | 30 (43) | 0.009 |
Biochemical or ultrasound congestion | ||||
BNP—pg/mL | 822 (586–1130) | 890 (694–1354) | 1740 (982–2577) | <0.001 |
BNP—pg/mL (if in SR) | 836 (672–1131) | 974 (759–1383) | 1525 (915–2595) | <0.001 |
BNP—pg/mL (if in AF) | 586 (408–1110) | 681 (473–815) | 1900 (1410–2572) | <0.001 |
ICV—mm | 22 (21–24) | 22 (20–25) | 24 (22–26) | 0.002 |
Variables | Association with the Composite of First HFH or Death Multivariable Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | Model including LogBNP | Model Including B-Lines | Model Including LogBNP and B-Lines | |||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Admission Congestion score > 3 | 8.20 (4.74–14.16) | <0.001 | 9.83 (5.27–18.31) | <0.001 | 6.81 (3.82–12.13) | <0.001 | 8.26 (4.46–15.26) | <0.001 |
Admission Congestion score ≥ 2 | 2.11 (0.95–4.67) | 0.07 | 2.03 (0.91–4.50) | 0.08 | 1.81 (0.81–4.04) | 0.14 | 1.81 (0.81–4.03) | 0.15 |
LogBNP | 1.47 (0.95–2.29) | 0.08 | / | / | / | / | / | / |
B-lines | 1.07 (1.03–1.10) | <0.001 | / | / | / | / | / | / |
Variables | 60 Days | 180 Days | ||||||
---|---|---|---|---|---|---|---|---|
Univariate HR (CI) | p-Value | Multivariable HR (CI) * | p-Value | Univariate HR (CI) | p-Value | Multivariable HR (CI) * | p-Value | |
Persistent ΔB-lines (<−32.3%) | 12.36 (4.92–31.07) | <0.001 | 7.52 (2.16–26.21) | 0.002 | 6.54 (4.19–10.20) | <0.001 | 4.38 (2.64–7.29) | <0.001 |
Persistent ΔBNP (<−43.8%) | 4.26 (2.23–8.10) | <0.001 | 1.54 (0.69–3.41) | 0.29 | 2.48 (1.69–3.63) | <0.001 | 1.74 (1.11–2.74) | 0.016 |
Persistent ΔCC (<50%) | 12.13 (5.87–25.06) | <0.001 | 11.64 (4.65–29.10) | <0.001 | 4.25 (2.90–6.21) | <0.001 | 3.38 (2.10–5.44) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzuoli, A.; Evangelista, I.; Beltrami, M.; Pirrotta, F.; Tavera, M.C.; Gennari, L.; Ruocco, G. Clinical, Laboratory and Lung Ultrasound Assessment of Congestion in Patients with Acute Heart Failure. J. Clin. Med. 2022, 11, 1642. https://doi.org/10.3390/jcm11061642
Palazzuoli A, Evangelista I, Beltrami M, Pirrotta F, Tavera MC, Gennari L, Ruocco G. Clinical, Laboratory and Lung Ultrasound Assessment of Congestion in Patients with Acute Heart Failure. Journal of Clinical Medicine. 2022; 11(6):1642. https://doi.org/10.3390/jcm11061642
Chicago/Turabian StylePalazzuoli, Alberto, Isabella Evangelista, Matteo Beltrami, Filippo Pirrotta, Maria Cristina Tavera, Luigi Gennari, and Gaetano Ruocco. 2022. "Clinical, Laboratory and Lung Ultrasound Assessment of Congestion in Patients with Acute Heart Failure" Journal of Clinical Medicine 11, no. 6: 1642. https://doi.org/10.3390/jcm11061642
APA StylePalazzuoli, A., Evangelista, I., Beltrami, M., Pirrotta, F., Tavera, M. C., Gennari, L., & Ruocco, G. (2022). Clinical, Laboratory and Lung Ultrasound Assessment of Congestion in Patients with Acute Heart Failure. Journal of Clinical Medicine, 11(6), 1642. https://doi.org/10.3390/jcm11061642