The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S.
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Study Population and Variables
2.3. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Patients’ Characteristics and in-Hospital Outcomes in the Different BMI Groups
3.3. Predictors of in-Hospital Mortality
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Medical Condition. | ICD-10 CM Codes | Score |
---|---|---|
Myocardial infarction | I22.xx, I21.xx, I25.2 | 1 |
Congestive heart failure | I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0 | 1 |
Peripheral vascular disease | I70.x, I71.x, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, Z95.9 | 1 |
Cerebrovascular disease | G45.x, G46.x, H34.0, I60.x-I69.x | 1 |
Dementia | F00.x-F03.x, F05.1, G30.x, G31.1 | 1 |
Chronic pulmonary disease | I27.8, I27.9, J40.x-J47.x, J60.x-J67.x, J68.4, J70.1, J70.3 | 1 |
Rheumatologic disease | M05.x, M06.x, M31.5, M32.x-M34.x, M35.1, M35.3, M36.0 | 1 |
Peptic ulcer disease | K25.x-K28.x | 1 |
Mild liver disease | B18.x, K70.0-K70.3, K70.9, K71.3-K71.5, K71.7, K73.x, K74.x, K76.0, K76.2-K76.4, K76.8, K76.9, Z94.4 | 1 |
Diabetes | E10.0, E10.l, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, E14.9 | 1 |
Diabetes with chronic complications | E10.2-E10.5, E10.7, E11.2-E11.5, E11.7, E12.2-E12.5, E12.7, E13.2-E13.5, E13.7, E14.2-E14.5, E14.7 | 2 |
Hemiplegia or paraplegia | G04.1, G11.4, G80.1, G80.2, G81.x, G82.x, G83.0-G83.4, G83.9 | 2 |
Renal disease | I12.0, I13.1, N03.2-N03.7, N05.2-N05.7, N18.x, N19.x, N25.0, Z49.0-Z49.2, Z94.0, Z99.2 | 2 |
Any malignancy including leukemia and lymphoma | C00.x-C26.x, C30.x-C34.x, C37.x-C41.x, C43.x, C45.x-C58.x, C60.x-C76.x, C81.x-C85.x, C88.x, C90.x-C97.x | 2 |
Moderate or severe liver disease | I85.0, I85.9, I86.4, I98.2, K70.4, K71.1, K72.1, K72.9, K76.5, K76.6, K76.7 | 3 |
Metastatic solid tumor | C77.x-C80.x | 6 |
Acquired Immunodeficiency syndrome (AIDS) | B20.x-B22.x, B24.x | 6 |
References
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 November 2021).
- Bhattacharya, J.; Bundorf, M.K. The incidence of the healthcare costs of obesity. J. Health Econ. 2009, 28, 649–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Carroll, M.D.; Kuczmarski, R.J.; Johnson, C.L. Overweight and obesity in the United States: Prevalence and trends, 1960–1994. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010, 303, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA 2016, 315, 2284–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gortmaker, S.L.; Must, A.; Perrin, J.M.; Sobol, A.M.; Dietz, W.H. Social and economic consequences of overweight in adolescence and young adulthood. N. Engl. J. Med. 1993, 329, 1008–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; et al.; GBD 2016 Lifetime Risk of Stroke Collaborators Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Stroke Collaborators. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Oesch, L.; Tatlisumak, T.; Arnold, M.; Sarikaya, H. Obesity paradox in stroke—Myth or reality? A systematic review. PLoS ONE 2017, 12, e0171334. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Gu, D.; Whelton, M.R.; Wu, X.; Chen, C.S.; Duan, X.; Chen, J.; Chen, J.C.; He, J. Body mass index and risk of stroke among Chinese men and women. Ann. Neurol. 2010, 67, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Tuomilehto, J.; Silventoinen, K.; Sarti, C.; Mannisto, S.; Jousilahti, P. Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch. Intern. Med. 2007, 167, 1420–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, T.; Gaziano, J.M.; Berger, K.; Kase, C.S.; Rexrode, K.M.; Cook, N.R.; Buring, J.E.; Manson, J.E. Body mass index and the risk of stroke in men. Arch. Intern. Med. 2002, 162, 2557–2562. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Sung, J.; Davey Smith, G.; Ebrahim, S. Body mass index and ischemic and hemorrhagic stroke: A prospective study in Korean men. Stroke 2004, 35, 831–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strazzullo, P.; D’Elia, L.; Cairella, G.; Garbagnati, F.; Cappuccio, F.P.; Scalfi, L. Excess body weight and incidence of stroke: Meta-analysis of prospective studies with 2 million participants. Stroke 2010, 41, e418–e426. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.K.; Olsen, T.S. The obesity paradox in stroke: Lower mortality and lower risk of readmission for recurrent stroke in obese stroke patients. Int. J. Stroke 2015, 10, 99–104. [Google Scholar] [CrossRef]
- Doehner, W.; Schenkel, J.; Anker, S.D.; Springer, J.; Audebert, H.J. Overweight and obesity are associated with improved survival, functional outcome, and stroke recurrence after acute stroke or transient ischaemic attack: Observations from the TEMPiS trial. Eur. Heart J. 2013, 34, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.E.; Chaudhry, S.A.; Jani, V.; Grigoryan, M.; Khan, A.A.; Adil, M.M.; Qureshi, A.I. Is there a decreased risk of intracerebral hemorrhage and mortality in obese patients treated with intravenous thrombolysis in acute ischemic stroke? J. Stroke Cerebrovasc. Dis. 2013, 22, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T.S.; Dehlendorff, C.; Petersen, H.G.; Andersen, K.K. Body mass index and poststroke mortality. Neuroepidemiology 2008, 30, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Vemmos, K.; Ntaios, G.; Spengos, K.; Savvari, P.; Vemmou, A.; Pappa, T.; Manios, E.; Georgiopoulos, G.; Alevizaki, M. Association between obesity and mortality after acute first-ever stroke: The obesity-stroke paradox. Stroke 2011, 42, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, H.; Jalal, M.S.; Furst, T.; Chin, L.S. The Obesity Paradox in Spontaneous Intracerebral Hemorrhage: Results from a Retrospective Analysis of the Nationwide Inpatient Sample. Neurocrit. Care 2020, 32, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Lee, S.H.; Ryu, W.S.; Kim, C.K.; Lee, J.; Yoon, B.W. Paradoxical longevity in obese patients with intracerebral hemorrhage. Neurology 2011, 76, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Persaud, S.R.; Lieber, A.C.; Donath, E.; Stingone, J.A.; Dangayach, N.S.; Zhang, X.; Mocco, J.; Kellner, C.P. Obesity Paradox in Intracerebral Hemorrhage. Stroke 2019, 50, 999–1002. [Google Scholar] [CrossRef]
- Funada, S.; Shimazu, T.; Kakizaki, M.; Kuriyama, S.; Sato, Y.; Matsuda-Ohmori, K.; Nishino, Y.; Tsuji, I. Body mass index and cardiovascular disease mortality in Japan: The Ohsaki Study. Prev. Med. 2008, 47, 66–70. [Google Scholar] [CrossRef]
- Towfighi, A.; Ovbiagele, B. The impact of body mass index on mortality after stroke. Stroke 2009, 40, 2704–2708. [Google Scholar] [CrossRef] [PubMed]
- Rozen, G.; Elbaz-Greener, G.; Marai, I.; Heist, E.K.; Ruskin, J.N.; Carasso, S.; Birati, E.Y.; Amir, O. The relationship between the body mass index and in-hospital mortality in patients admitted for sudden cardiac death in the United States. Clin. Cardiol. 2021, 44, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- HCUP National Inpatient Sample (NIS). Healthcare Cost and Utilization Project (HCUP). In 2012–2013. Agency for Healthcare Research and Quality. Available online: www.hcup-us.ahrq.gov/nisoverview.jsp (accessed on 7 January 2022).
- Healthcare Cost and Utilization Project (HCUP). 2000–2011. In Agency for Healthcare Research and Quality. Available online: www.hcup-us.ahrq.gov/nisoverview.jsp (accessed on 7 January 2022).
- Steiner, C.; Elixhauser, A.; Schnaier, J. The healthcare cost and utilization project: An overview. Eff. Clin. Pract. 2002, 5, 143–151. [Google Scholar] [PubMed]
- Deyo, R.A.; Cherkin, D.C.; Ciol, M.A. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J. Clin. Epidemiol. 1992, 45, 613–619. [Google Scholar] [CrossRef]
- Chu, Y.T.; Ng, Y.Y.; Wu, S.C. Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC Health Serv. Res. 2010, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Radovanovic, D.; Seifert, B.; Urban, P.; Eberli, F.R.; Rickli, H.; Bertel, O.; Puhan, M.A.; Erne, P.; Investigators, A.p. Validity of Charlson Comorbidity Index in patients hospitalised with acute coronary syndrome. Insights from the nationwide AMIS Plus registry 2002–2012. Heart 2014, 100, 288–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, S.M.; Moazzami, K.; Rozen, G.; Vaid, J.; Saleh, A.; Heist, K.E.; Vangel, M.; Ruskin, J.N. Utilization and in-hospital complications of cardiac resynchronization therapy: Trends in the United States from 2003 to 2013. Eur. Heart J. 2017, 38, 2122–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niedziela, J.; Hudzik, B.; Niedziela, N.; Gasior, M.; Gierlotka, M.; Wasilewski, J.; Myrda, K.; Lekston, A.; Polonski, L.; Rozentryt, P. The obesity paradox in acute coronary syndrome: A meta-analysis. Eur. J. Epidemiol. 2014, 29, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Horwich, T.B.; Oreopoulos, A.; Kovesdy, C.P.; Younessi, H.; Anker, S.D.; Morley, J.E. Risk factor paradox in wasting diseases. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 433–442. [Google Scholar] [CrossRef]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveros, H.; Villamor, E. Obesity and mortality in critically ill adults: A systematic review and meta-analysis. Obesity 2008, 16, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, S.R.; Licinio, J.; Tauchnitz, R.; Engelmann, L.; Negrao, A.B.; Gold, P.; Chrousos, G.P. Plasma leptin levels are increased in survivors of acute sepsis: Associated loss of diurnal rhythm, in cortisol and leptin secretion. J. Clin. Endocrinol. Metab. 1998, 83, 280–283. [Google Scholar] [CrossRef] [PubMed]
- DeLany, J. Leptin hormone and other biochemical influences on systemic inflammation. J. Bodyw. Mov. Ther. 2008, 12, 121–132. [Google Scholar] [CrossRef]
- Noriko, I.; Lam, Q.L.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.J.; Braun, W.; Enderle, J.; Bosy-Westphal, A. Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients. Obes. Facts 2016, 9, 193–205. [Google Scholar] [CrossRef] [PubMed]
Total | <20 | 20–25 | 26–30 | 31–35 | 36–39 | ≥40 | p-Value | |
---|---|---|---|---|---|---|---|---|
BMI, n | ||||||||
Unweighted | 16,837 | 1745 | 1217 | 2307 | 4032 | 2721 | 4815 | |
Weighted | 84,185 | 8725 | 6085 | 11,535 | 20,160 | 13,605 | 24,075 | |
Age Group, % | <0.001 | |||||||
18–44 years | 7 | 2 | 2 | 4.8 | 6.5 | 9.3 | 11 | |
45–59 years | 26 | 9 | 11 | 20 | 27 | 31.8 | 34 | |
60–74 years | 39 | 28 | 31 | 39.7 | 42 | 41.4 | 41 | |
≥75 years | 28 | 61 | 57 | 35.8 | 24.1 | 17.5 | 14 | |
Gender, % | <0.001 | |||||||
Female | 55 | 63 | 53 | 48.2 | 48.9 | 51.4 | 64 | |
Male | 45 | 37 | 47 | 52 | 51 | 48.5 | 36 | |
Missing | 0 | 0 | 0 | 0.3 | 0.1 | 0 | 0 | |
Race, % | <0.001 | |||||||
White | 63 | 67 | 61 | 62.1 | 62.9 | 63.3 | 63 | |
Non-white | 31 | 27 | 31 | 32 | 31 | 31.3 | 31 | |
Other/Missing | 6 | 6 | 8 | 5.7 | 6.2 | 5.4 | 6 | |
Hypertension | 67 | 58 | 60 | 65.5 | 70.2 | 70 | 68 | <0.001 |
Congestive Heart Failure | 15 | 16 | 15 | 13 | 13 | 13.7 | 17 | <0.001 |
Diabetes Mellitus | 38 | 15 | 25 | 36.1 | 40.5 | 42.4 | 46 | <0.001 |
Renal Failure | 20 | 20 | 21 | 22 | 18 | 18.9 | 20 | <0.001 |
Chronic Pulmonary Disease | 20 | 26 | 17 | 15.7 | 16.5 | 19.7 | 22 | <0.001 |
Peripheral Vascular Disorders | 10 | 15 | 12 | 11.9 | 10 | 8.9 | 8 | <0.001 |
Atrial Fibrillation/Flutter | 23 | 31 | 31 | 23 | 20 | 20.3 | 22 | <0.001 |
Prior MI | 7.9 | 7.7 | 7.5 | 8.2 | 8.5 | 7.6 | 7.5 | 0.002 |
VT/VF | 1.7 | 2.2 | 2.1 | 1.7 | 1.7 | 1.8 | 1.4 | <0.001 |
Deyo-CCI, % | <0.001 | |||||||
1 | 8.4 | 7.6 | 6.2 | 7.9 | 9.1 | 9 | 8.6 | |
2 or higher | 91.6 | 92.4 | 93.8 | 92.1 | 90.9 | 91 | 91.4 | |
Primary Payer, % | <0.001 | |||||||
Medicare | 57 | 80 | 74 | 62.1 | 52.7 | 49 | 50 | |
Private insurance | 24 | 8 | 12 | 22 | 27 | 30.1 | 29 | |
Medicaid | 12 | 8 | 9 | 9.5 | 12.1 | 12.7 | 14 | |
Self-pay | 4 | 2 | 3 | 4 | 5.4 | 5.1 | 5 | |
No charge | 0 | 0 | 0 | 0.4 | 0.3 | 0.5 | 0 | |
Other/Missing | 3 | 2 | 3 | 2 | 3 | 2.5 | 3 | |
Income Percentile, % | <0.001 | |||||||
0 to 25th percentile | 33 | 32 | 33 | 31.7 | 32.1 | 33.5 | 35 | |
26th to 50th percentile | 26 | 24 | 24 | 25 | 27 | 25.5 | 26 | |
51st to 75th percentile | 23 | 21 | 23 | 23.5 | 22.6 | 23.5 | 23 | |
76th to 100th percentile | 17 | 21 | 19 | 18.1 | 16.5 | 16.3 | 14 | |
Missing | 2 | 1 | 2 | 2 | 1.6 | 1.2 | 2 | |
Hospital Status, % | <0.001 | |||||||
Urban teaching | 68 | 67 | 68 | 68.1 | 66.4 | 67.1 | 69 | |
Urban non-teaching | 25 | 24 | 26 | 25.3 | 26.9 | 25.9 | 25 | |
Rural | 7 | 9 | 7 | 7 | 7 | 6.9 | 7 | |
Hospital Region, % | <0.001 | |||||||
South | 42.3 | 40.5 | 42.4 | 43.9 | 43 | 40.9 | 42.3 | |
Midwest | 23.7 | 21.4 | 22.7 | 21.2 | 24 | 24.4 | 25.4 | |
West | 17.9 | 19.3 | 19.5 | 20.3 | 18.3 | 17.4 | 15.8 | |
Northeast | 16.1 | 18.9 | 15.4 | 14.6 | 14.8 | 17.3 | 16.5 | |
Hospital Bed Size, % | 0.033 | |||||||
Large | 56 | 57 | 56 | 56.2 | 55.5 | 56.1 | 57 | |
Small/Medium | 44 | 43 | 44 | 43.8 | 44.5 | 43.9 | 43 |
Predictor | Probability (95% CI) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|
Age Group, years | <0.001 | ||
18–44 years | 2.09% (1.75, 2.48) | 1.00 (reference) | n/A |
45–59 years | 2.15% (1.96, 2.35) | 1.03 (0.84, 1.26) | 0.771 |
60–74 years | 3.51% (3.32, 3.72) | 1.71 (1.42, 2.06) | <0.001 |
≥75 years | 5.59% (5.31, 5.90) | 2.78 (2.31, 3.35) | <0.001 |
Race | <0.001 | ||
Non-white | 3.14% (2.94, 3.36) | 1.00 (reference) | n/A |
White | 3.81% (3.65, 3.98) | 1.22 (1.12, 1.33) | <0.001 |
Gender | 0.546 | ||
Male | 3.59% (3.41, 3.79) | 1.00 (reference) | n/A |
Female | 3.67% (3.51, 3.85) | 1.02 (0.95, 1.10) | 0.546 |
BMI Group | <0.001 | ||
20–25 | 5.75% (5.19, 6.37) | 1.00 (reference) | n/A |
Below 20 | 8.54% (7.97, 9.14) | 1.53 (1.34, 1.74) | <0.001 |
26–30 | 3.38% (3.07, 3.73) | 0.57 (0.49, 0.66) | <0.001 |
31–35 | 2.38% (2.18, 2.60) | 0.40 (0.35, 0.46) | <0.001 |
36–39 | 2.21% (1.97, 2.47) | 0.37 (0.32, 0.43) | <0.001 |
40 and Above | 3.30% (3.08, 3.54) | 0.56 (0.49, 0.64) | <0.001 |
Atrial Fibrillation/Flutter | <0.001 | ||
No | 2.78% (2.65, 2.91) | 1.00 (reference) | n/A |
Yes | 6.50% (6.16, 6.86) | 2.43 (2.26, 2.62) | <0.001 |
Chronic pulmonary disease | <0.001 | ||
No | 3.39% (3.26, 3.53) | 1.00 (reference) | n/A |
Yes | 4.64% (4.33, 4.97) | 1.39 (1.27, 1.51) | <0.001 |
Congestive heart failure | <0.001 | ||
No | 3.39% (3.26, 3.52) | 1.00 (reference) | n/A |
Yes | 5.07% (4.70, 5.47) | 1.52 (1.39, 1.67) | <0.001 |
Diabetes Mellitus | <0.001 | ||
No | 4.05% (3.89, 4.23) | 1.00 (reference) | n/A |
Yes | 2.95% (2.77, 3.14) | 0.72 (0.67, 0.78) | <0.001 |
Hypertension | <0.001 | ||
No | 5.06% (4.81, 5.33) | 1.00 (reference) | n/A |
Yes | 2.92% (2.79, 3.06) | 0.56 (0.52, 0.61) | <0.001 |
Peripheral vascular disorders | <0.001 | ||
No | 3.52% (3.40, 3.66) | 1.00 (reference) | n/A |
Yes | 4.61% (4.19, 5.08) | 1.32 (1.19, 1.47) | <0.001 |
Renal failure | <0.001 | ||
No | 3.29% (3.16, 3.42) | 1.00 (reference) | n/A |
Yes | 5.06% (4.73, 5.40) | 1.57 (1.44, 1.70) | <0.001 |
Deyo-CCI | <0.001 | ||
1 | 1.48% (1.23, 1.79) | 1.00 (reference) | n/A |
2 or higher | 3.83% (3.70, 3.97) | 2.65 (2.18, 3.22) | <0.001 |
Income Percentile | 0.342 | ||
0 to 25th percentile | 3.68% (3.46, 3.90) | 1.00 (reference) | n/A |
51st to 75th percentile | 3.68% (3.42, 3.96) | 1.00 (0.91, 1.10) | 0.977 |
26th to 50th percentile | 3.58% (3.34, 3.83) | 0.97 (0.88, 1.07) | 0.565 |
76th to 100th percentile | 3.35% (3.07, 3.66) | 0.91 (0.81, 1.02) | 0.092 |
Predictor | Probability (95% CI) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|
Age Group, years | <0.001 | ||
18–44 years | 1.41% (1.14, 1.74) | 1.00 (reference) | n/A |
45–59 years | 1.32% (1.14, 1.53) | 0.93 (0.76, 1.15) | 0.514 |
60–74 years | 1.95% (1.71, 2.21) | 1.39 (1.14, 1.69) | 0.001 |
≥75 years | 2.67% (2.35, 3.04) | 1.92 (1.57, 2.35) | <0.001 |
Gender | 0.023 | ||
Male | 1.85% (1.62, 2.10) | 1.00 (reference) | n/A |
Female | 1.69% (1.48, 1.92) | 0.91 (0.84, 0.99) | 0.023 |
Race | <0.001 | ||
Non-white | 1.63% (1.42, 1.87) | 1.00 (reference) | n/A |
White | 1.91% (1.69, 2.16) | 1.18 (1.08, 1.29) | <0.001 |
BMI Group | <0.001 | ||
20–25 | 2.55% (2.17, 3.00) | 1.00 (reference) | n/A |
Below 20 | 3.85% (3.35, 4.43) | 1.53 (1.34, 1.75) | <0.001 |
26–30 | 1.44% (1.23, 1.69) | 0.56 (0.48, 0.65) | <0.001 |
31–35 | 1.14% (0.98, 1.32) | 0.44 (0.38, 0.51) | <0.001 |
36–39 | 1.07% (0.90, 1.26) | 0.41 (0.35, 0.49) | <0.001 |
40 and Above | 1.73% (1.51, 1.99) | 0.67 (0.58, 0.78) | <0.001 |
Atrial Fibrillation/Flutter | <0.001 | ||
No | 1.58% (1.39, 1.79) | 1.00 (reference) | n/A |
Yes | 2.91% (2.53, 3.33) | 1.86 (1.71, 2.02) | <0.001 |
Congestive heart failure | <0.001 | ||
No | 1.73% (1.53, 1.96) | 1.00 (reference) | n/A |
Yes | 2.20% (1.90, 2.56) | 1.28 (1.16, 1.41) | <0.001 |
Chronic pulmonary disease | 0.002 | ||
No | 1.75% (1.54, 1.98) | 1.00 (reference) | n/A |
Yes | 2.00% (1.73, 2.32) | 1.15 (1.05, 1.26) | 0.002 |
Diabetes Mellitus | <0.001 | ||
No | 1.84% (1.63, 2.08) | 1.00 (reference) | n/A |
Yes | 1.40% (1.21, 1.62) | 0.76 (0.69, 0.83) | <0.001 |
Hypertension | <0.001 | ||
No | 2.27% (1.99, 2.59) | 1.00 (reference) | n/A |
Yes | 1.53% (1.34, 1.73) | 0.67 (0.62, 0.72) | <0.001 |
Obesity | <0.001 | ||
No | 3.15% (2.76, 3.61) | 1.00 (reference) | n/A |
Yes | 1.11% (0.96, 1.27) | 0.34 (0.31, 0.39) | <0.001 |
Peripheral vascular disorders | 0.392 | ||
No | 1.76% (1.56, 1.99) | 1.00 (reference) | n/A |
Yes | 1.85% (1.57, 2.18) | 1.05 (0.94, 1.18) | 0.392 |
Renal failure | <0.001 | ||
No | 1.71% (1.51, 1.93) | 1.00 (reference) | n/A |
Yes | 2.32% (2.01, 2.68) | 1.37 (1.25, 1.49) | <0.001 |
Income Percentile | 0.011 | ||
0 to 25th percentile | 1.86% (1.63, 2.12) | 1.00 (reference) | n/A |
26th to 50th percentile | 1.86% (1.62, 2.13) | 1.00 (0.90, 1.11) | 0.995 |
51st to 75th percentile | 1.81% (1.57, 2.09) | 0.97 (0.88, 1.08) | 0.608 |
76th to 100th percentile | 1.55% (1.33, 1.81) | 0.83 (0.74, 0.94) | 0.002 |
Deyo-CCI | <0.001 | ||
1 | 1.15% (0.93, 1.42) | 1.00 (reference) | n/A |
2 or higher | 2.70% (2.48, 2.93) | 2.39 (1.94, 2.94) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozen, G.; Elbaz-Greener, G.; Margolis, G.; Marai, I.; Heist, E.K.; Ruskin, J.N.; Carasso, S.; Roguin, A.; Birati, E.Y.; Amir, O. The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S. J. Clin. Med. 2022, 11, 1678. https://doi.org/10.3390/jcm11061678
Rozen G, Elbaz-Greener G, Margolis G, Marai I, Heist EK, Ruskin JN, Carasso S, Roguin A, Birati EY, Amir O. The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S. Journal of Clinical Medicine. 2022; 11(6):1678. https://doi.org/10.3390/jcm11061678
Chicago/Turabian StyleRozen, Guy, Gabby Elbaz-Greener, Gilad Margolis, Ibrahim Marai, Edwin K. Heist, Jeremy N. Ruskin, Shemy Carasso, Ariel Roguin, Edo Y. Birati, and Offer Amir. 2022. "The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S." Journal of Clinical Medicine 11, no. 6: 1678. https://doi.org/10.3390/jcm11061678
APA StyleRozen, G., Elbaz-Greener, G., Margolis, G., Marai, I., Heist, E. K., Ruskin, J. N., Carasso, S., Roguin, A., Birati, E. Y., & Amir, O. (2022). The Obesity Paradox in Real-World Nation-Wide Cohort of Patients Admitted for a Stroke in the U.S. Journal of Clinical Medicine, 11(6), 1678. https://doi.org/10.3390/jcm11061678