A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Criteria of Patient Selection
2.2. Randomization Methods
2.3. Protocol of Preoxygenation
2.4. Study Outcomes
2.5. Sample Size Estimation
2.6. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Oxygenation Efficacy
3.3. Subgroup Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Fact Sheets: Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 13 March 2022).
- Ri, M.; Aikou, S.; Seto, Y. Obesity as a surgical risk factor. Ann. Gastroenterol. Surg. 2017, 2, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, D.M. Anesthesia for bariatric surgery. In Miller’s Anesthesia; Miller, R.D., Eriksson, L.I., Fleisher, L.A., Wiener-Kronish, J.P., Cohen, N.H., Young, W.L., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015; p. 2202. [Google Scholar]
- Kamble, P.S.; Hayden, J.; Collins, J.; Harvey, R.A.; Suehs, B.; Renda, A.; Hammer, M.; Huang, J.; Bouchard, J. Association of obesity with healthcare resource utilization and costs in a commercial population. Curr. Med. Res. Opin. 2018, 34, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Nørtoft, E.; Chubb, B.; Borglykke, A. Obesity and healthcare resource utilization: Comparative results from the UK and the USA. Obes. Sci. Pract. 2017, 4, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotia, S.; Bellamy, M.C. Anaesthesia and morbid obesity. BJA Educ. 2008, 8, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Behazin, N.; Jones, S.B.; Cohen, R.I.; Loring, S.H. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J. Appl. Physiol. 2010, 108, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, T.; Patterson, E.J. Evidence supporting routine polysomnography before bariatric surgery. Obes. Surg. 2004, 14, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.S.; Fox, P.E.; Somasundaram, A.; Minhajuddin, A.; Gonzales, M.X.; Pak, T.J.; Ogunnaike, B. The influence of morbid obesity on difficult intubation and difficult mask ventilation. J. Anesth. 2019, 33, 96–102. [Google Scholar] [CrossRef]
- Jense, H.G.; Dubin, S.A.; Silverstein, P.I.; O’Leary-Escolas, U. Effect of obesity on safe duration of apnea in anesthetized humans. Anesth. Analg. 1991, 72, 89–93. [Google Scholar] [CrossRef]
- Helviz, Y.; Einav, S. A systematic review of the high-flow nasal cannula for adult patients. Crit. Care 2018, 22, 71. [Google Scholar] [CrossRef] [Green Version]
- Riccio, C.A.; Sarmiento, S.; Minhajuddin, A.; Nasir, D.; Fox, A.A. High-flow versus standard nasal cannula in morbidly obese patients during colonoscopy: A prospective, randomized clinical trial. J. Clin. Anesth. 2019, 54, 19–24. [Google Scholar] [CrossRef]
- Douglas, N.; Ng, I.; Nazeem, F.; Lee, K.; Mezzavia, P.; Krieser, R.; Steinfort, D.; Irving, L.; Segal, R. A randomised controlled trial comparing high-flow nasal oxygen with standard management for conscious sedation during bronchoscopy. Anaesthesia 2018, 73, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, S.; Horbach, T.; Stubner, B.; Prottengeier, J.; Irouschek, A.; Schmidt, J. Benefits of heated and humidified high flow nasal oxygen for preoxygenation in morbidly obese patients undergoing bariatric surgery: A randomized controlled study. J. Obes. Bariatr. 2014, 1, 7. [Google Scholar]
- Wong, D.T.; Dallaire, A.; Singh, K.P.; Madhusudan, P.; Jackson, T.; Singh, M.; Wong, J.; Chung, F. High-flow nasal oxygen improves safe apnea time in morbidly obese patients undergoing general anesthesia: A randomized controlled trial. Anesth. Analg. 2019, 129, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Vourc’h, M.; Baud, G.; Feuillet, F.; Blanchard, C.; Mirallie, E.; Guitton, C.; Jaber, S.; Asehnoune, K. High-flow nasal cannulae versus non-invasive ventilation for preoxygenation of obese patients: The PREOPTIPOP randomized trial. EClinicalMedicine 2019, 13, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Ragot, S.; Coudroy, R.; Quenot, J.P.; Vignon, P.; Forel, J.M.; Demoule, A.; Mira, J.P.; Ricard, J.D.; Nseir, S.; et al. Noninvasive ventilation vs. high-flow nasal cannula oxygen for preoxygenation before intubation in patients with obesity: A post hoc analysis of a randomized controlled trial. Ann. Intensive Care 2021, 11, 114. [Google Scholar] [CrossRef]
- Schutzer-Weissmann, J.; Wojcikiewicz, T.; Karmali, A.; Lukosiute, A.; Sun, R.; Kanji, R.; Ahmed, A.R.; Purkayastha, S.; Brett, S.J.; Cousins, J. Apnoeic oxygenation in morbid obesity: A randomised controlled trial comparing facemask and high-flow nasal oxygen delivery. Br. J. Anaesth. 2022. [Google Scholar] [CrossRef]
- Ishigaki, S.; Masui, K.; Kazama, T. Saline flush after rocuronium bolus reduces onset time and prolongs duration of effect: A randomized clinical trial. Anesth. Analg. 2016, 122, 706–711. [Google Scholar] [CrossRef]
- Guy, L.; Christensen, R.; Dodd, B.; Pelecanos, A.; Wyssusek, K.; Van Zundert, A.; Eley, V.A. The effect of transnasal humidified rapid-insufflation ventilator exchange (THRIVE) versus nasal prongs on safe apnoea time in paralysed obese patients: A randomised controlled trial. Br. J. Anaesth. 2022, 128, 375–381. [Google Scholar] [CrossRef]
- Kuo, H.C.; Liu, W.C.; Li, C.C.; Cherng, Y.G.; Chen, J.T.; Wu, H.L.; Tai, Y.H. A comparison of high-flow nasal cannula and standard facemask as pre-oxygenation technique for general anesthesia: A PRISMA-compliant systemic review and meta-analysis. Medicine 2022, 101, e28903. [Google Scholar]
- Spence, E.A.; Rajaleelan, W.; Wong, J.; Chung, F.; Wong, D.T. The effectiveness of high-flow nasal oxygen during the intraoperative period: A systematic review and meta-analysis. Anesth. Analg. 2020, 131, 1102–1110. [Google Scholar] [CrossRef]
- Armitage, P.; Berry, G.; Matthews, J.N.S. (Eds.) Sample-size determination. In Statistical Methods in Medical Research; Blackwell Science: Malden, MA, USA, 2002; pp. 137–146. [Google Scholar]
- Ferrando, C.; Puig, J.; Serralta, F.; Carrizo, J.; Pozo, N.; Arocas, B.; Gutierrez, A.; Villar, J.; Belda, F.J.; Soro, M. High-flow nasal cannula oxygenation reduces postoperative hypoxemia in morbidly obese patients: A randomized controlled trial. Minerva Anestesiol. 2019, 85, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Shiga, T.; Wajima, Z.; Inoue, T.; Sakamoto, A. Predicting difficult intubation in apparently normal patients: A meta-analysis of bedside screening test performance. Anesthesiology 2005, 103, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Frerk, C.; Mitchell, V.S.; McNarry, A.F.; Mendonca, C.; Bhagrath, R.; Patel, A.; O’Sullivan, E.P.; Woodall, N.M.; Ahmad, I. Difficult Airway Society intubation guidelines working group. Difficult Airway Society 2015 guidelines for management of unanticipated difficult intubation in adults. Br. J. Anaesth. 2015, 115, 827–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apfelbaum, J.L.; Hagberg, C.A.; Connis, R.T.; Abdelmalak, B.B.; Agarkar, M.; Dutton, R.P.; Fiadjoe, J.E.; Greif, R.; Klock, P.A.; Mercier, D.; et al. 2022 American Society of Anesthesiologists practice guidelines for management of the difficult airway. Anesthesiology 2022, 136, 31–81. [Google Scholar] [CrossRef]
- Taha, S.K.; Siddik-Sayyid, S.M.; El-Khatib, M.F.; Dagher, C.M.; Hakki, M.A.; Baraka, A.S. Nasopharyngeal oxygen insufflation following pre-oxygenation using the four deep breath technique. Anaesthesia 2006, 61, 427–430. [Google Scholar] [CrossRef]
- Ramachandran, S.K.; Cosnowski, A.; Shanks, A.; Turner, C.R. Apneic oxygenation during prolonged laryngoscopy in obese patients: A randomized, controlled trial of nasal oxygen administration. J. Clin. Anesth. 2010, 22, 164–168. [Google Scholar] [CrossRef]
- Ahmad, I.; El-Boghdadly, K.; Bhagrath, R.; Hodzovic, I.; McNarry, A.F.; Mir, F.; O’Sullivan, E.P.; Patel, A.; Stacey, M.; Vaughan, D. Difficult Airway Society guidelines for awake tracheal intubation (ATI) in adults. Anaesthesia 2020, 75, 509–528. [Google Scholar] [CrossRef] [Green Version]
- Lodenius, Å.; Piehl, J.; Östlund, A.; Ullman, J.; Jonsson Fagerlund, M. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) vs. facemask breathing pre-oxygenation for rapid sequence induction in adults: A prospective randomised non-blinded clinical trial. Anaesthesia 2018, 73, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Mir, F.; Patel, A.; Iqbal, R.; Cecconi, M.; Nouraei, S.A. A randomised controlled trial comparing transnasal humidified rapid insufflation ventilatory exchange (THRIVE) pre-oxygenation with facemask pre-oxygenation in patients undergoing rapid sequence induction of anaesthesia. Anaesthesia 2017, 72, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Parke, R.; McGuinness, S.; Eccleston, M. Nasal high-flow therapy delivers low level positive airway pressure. Br. J. Anaesth. 2009, 103, 886–890. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Nouraei, S.A. Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE): A physiological method of increasing apnoea time in patients with difficult airways. Anaesthesia 2015, 70, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Hermez, L.A.; Spence, C.J.; Payton, M.J.; Nouraei, S.A.R.; Patel, A.; Barnes, T.H. A physiological study to determine the mechanism of carbon dioxide clearance during apnoea when using transnasal humidified rapid insufflation ventilatory exchange (THRIVE). Anaesthesia 2019, 74, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Gander, S.; Frascarolo, P.; Suter, M.; Spahn, D.R.; Magnusson, L. Positive end-expiratory pressure during induction of general anesthesia increases duration of nonhypoxic apnea in morbidly obese patients. Anesth. Analg. 2005, 100, 580–584. [Google Scholar] [CrossRef] [PubMed]
HFNO n = 40 | FMO n = 40 | p | |||
---|---|---|---|---|---|
Age, years | 36.7 | 9.2 | 36.7 | 9.1 | 0.9806 |
Sex, male | 20 | 50.0 | 18 | 45.0 | 0.6543 |
Body mass index, linear, kg·m−2 | 40.3 | 36.6–43.8 (30.9–51.6) | 40.0 | 35.1–47.1 (31.9–59.2) | 0.5572 |
Body mass index, binary, kg·m−2 | 0.8230 | ||||
<40 | 19 | 47.5 | 20 | 50.0 | |
≥40 | 21 | 52.5 | 20 | 50.0 | |
Waist circumference, cm | 124.0 | 13.0 | 126.5 | 15.4 | 0.4468 |
ASA physical status | 0.8230 | ||||
Class II | 19 | 47.5 | 20 | 50.0 | |
Class III | 21 | 52.5 | 20 | 50.0 | |
Modified Mallampati score | 0.4144 | ||||
Class I | 11 | 27.5 | 7 | 17.5 | |
Class II | 7 | 17.5 | 13 | 32.5 | |
Class III | 13 | 32.5 | 11 | 27.5 | |
Class IV | 9 | 22.5 | 9 | 22.5 | |
Current cigarette smoking | 20 | 50.0 | 14 | 35.0 | 0.1748 |
Current alcohol drinking | 7 | 17.5 | 7 | 17.5 | >0.9999 |
Coexisting disease | |||||
Hypertension | 14 | 35.0 | 13 | 32.5 | 0.8131 |
Diabetes mellitus | 8 | 20.0 | 6 | 15.0 | 0.5562 |
Chronic kidney disease | 2 | 5.0 | 0 | 0 | 0.4937 |
Fatty liver | 34 | 85.0 | 30 | 75.0 | 0.2636 |
Obstructive sleep apnea | 13 | 32.5 | 19 | 47.5 | 0.1709 |
Preoperative blood test | |||||
Hemoglobin, g·dL−1 | 14.4 | 13.7–15.6 (10.8–17.8) | 14.7 | 13.8–15.4 (8.7–17.4) | 0.9654 |
Creatinine, mg·dL−1 | 0.74 | 0.61–0.88 (0.40–1.51) | 0.74 | 0.61–0.87 (0.47–1.11) | 0.9424 |
eGFR, mL·min·1.73 m−2 | 110.7 | 92.6–129.6 (53.9–189.9) | 115.1 | 92.3–125.4 (74.5–166.5) | 0.8211 |
Sodium, mmol·L−1 | 139 | 137–140 (134–144) | 138 | 137–140 (130–145) | 0.7187 |
Potassium, mmol·L−1 | 3.9 | 3.8–4.1 (3.3–4.4) | 3.9 | 3.6–4.1 (3.4–4.4) | 0.8130 |
Alanine aminotransferase, U·L−1 | 30 | 24–54 (15–242) | 32 | 25–41 (12–159) | 0.9501 |
Aspartate aminotransferase, U·L−1 | 36 | 24–47 (12–91) | 31 | 22–48 (16–305) | 0.5410 |
HFNO n = 40 | FMO n = 40 | p | |||
---|---|---|---|---|---|
SpO2 in room air, % | 97 | 96–98 (95–100) | 97 | 96–98 (93–99) | 0.8244 |
PaO2 in room air, mm Hg | 90 | 81–97 (65–133) | 84 | 76–93 (61–181) | 0.1104 |
PaCO2 in room air, mm Hg | 39.1 | 37.3–42.1 (30.1–49.6) | 41.6 | 38.1–43.9 (33.4–55.2) | 0.0604 |
Intravenous anesthetics | |||||
Lidocaine, mg | 80 | 80–100 (60–100) | 80 | 80–100 (60–100) | 0.6614 |
Dexamethasone, mg | 5 | 5–5 (5–5) | 5 | 5–5 (5–5) | >0.9999 |
Glycopyrrolate, mg | 0.2 | 0.2–0.2 (0.2–0.2) | 0.2 | 0.2–0.2 (0.2–0.2) | >0.9999 |
Fentanyl, μg | 200 | 150–200 (150–250) | 200 | 150–200 (100–250) | 0.2038 |
Propofol, mg | 200 | 150–200 (120–200) | 200 | 150–200 (130–200) | 0.7685 |
Rocuronium, mg | 98 | 83–125 (60–200) | 98 | 90–100 (60–160) | 0.8428 |
First-attempt success of intubation | 40 | 100.0 | 38 | 95.0 | 0.4937 |
Time to successful intubation, s | 23 | 18–31 (11–62) | 24 | 19–34 (12–130) | 0.5470 |
Need to use a video laryngoscope | 0 | 0 | 0 | 0 | NA |
HFNO n = 40 | FMO n = 40 | p | |||
---|---|---|---|---|---|
Desaturation (lowest SpO2 < 92%) | 2 | (5.0) | 10 | (25.0) | 0.0122 |
Lowest SpO2 during intubation, % | 99 | 97–100 (81–100) | 96 | 92–100 (80–100) | 0.0150 |
PaO2 after preoxygenation, mm Hg | 476 | 390–541 (260–620) | 397 | 351–456 (210–632) | 0.0010 |
PaCO2 after preoxygenation, mm Hg | 41.5 | 36.0–43.9 (22.7–53.1) | 42.2 | 35.9–47.3 (26.3–58.1) | 0.2076 |
SpO2 after preoxygenation, % | 100 | 100–100 (98–100) | 100 | 100–100 (97–100) | 0.9933 |
Comfort level on 10-point Likert scale | 8 | 7–10 (2–10) | 8 | 8–9 (6–10) | 0.7118 |
HFNO n = 40 | FMO n = 40 | p | |||
---|---|---|---|---|---|
Desaturation (lowest SpO2 < 92%) | 2 | 5.0 | 10 | 25.0 | 0.0122 |
Desaturation (lowest SpO2 < 95%) | 7 | 17.5 | 15 | 37.5 | 0.0452 |
Desaturation (lowest SpO2 < 90%) | 1 | 2.5 | 7 | 17.5 | 0.0568 |
Desaturation (lowest SpO2 < 92%), excluding patients requiring more than one intubation attempt | 2 | 5.0 | 8 | 21.1 | 0.0448 |
HFNO n = 40 | FMO n = 40 | p | |||
---|---|---|---|---|---|
Desaturation (lowest SpO2 < 92%) | |||||
All | 2 | 5.0 | 10 | 25.0 | 0.0122 |
Body mass index ≥40 kg·m−2 | 1 | 4.8 | 7 | 35.0 | 0.0205 |
Body mass index <40 kg·m−2 | 1 | 5.3 | 3 | 15.0 | 0.6050 |
Obstructive sleep apnea | 1 | 7.7 | 4 | 21.1 | 0.6247 |
No obstructive sleep apnea | 1 | 3.7 | 6 | 28.6 | 0.0335 |
Lowest SpO2 during intubation, % | |||||
All | 99 | 97–100 (81–100) | 96 | 92–100 (80–100) | 0.0150 |
Body mass index ≥40 kg·m−2 | 99 | 96–100 (81–100) | 95 | 89–99 (80–100) | 0.0475 |
Body mass index <40 kg·m−2 | 98 | 98–100 (90–100) | 96 | 95–100 (85–100) | 0.1222 |
Obstructive sleep apnea | 98 | 96–99 (81–100) | 97 | 92–100 (80–100) | 0.5106 |
No obstructive sleep apnea | 99 | 97–100 (90–100) | 95 | 91–99 (81–100) | 0.0146 |
PaO2 after preoxygenation, mmHg | |||||
All | 476 | 390–541 (260–620) | 397 | 351–456 (210–632) | 0.0010 |
Body mass index ≥40 kg·m−2 | 468 | 395–546 (260–605) | 394 | 329–480 (210–632) | 0.0696 |
Body mass index <40 kg·m−2 | 505 | 385–537 (278–620) | 399 | 360–422 (237–495) | 0.0090 |
Obstructive sleep apnea | 470 | 395–536 (341–559) | 402 | 357–433 (210–632) | 0.0445 |
No obstructive sleep apnea | 482 | 385–544 (260–620) | 383 | 351–467 (237–540) | 0.0091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-M.; Li, C.-C.; Huang, S.-Y.; Su, Y.-H.; Wang, C.-W.; Chen, J.-T.; Shen, S.-C.; Lo, P.-H.; Yang, Y.-L.; Cherng, Y.-G.; et al. A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 1700. https://doi.org/10.3390/jcm11061700
Wu Y-M, Li C-C, Huang S-Y, Su Y-H, Wang C-W, Chen J-T, Shen S-C, Lo P-H, Yang Y-L, Cherng Y-G, et al. A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial. Journal of Clinical Medicine. 2022; 11(6):1700. https://doi.org/10.3390/jcm11061700
Chicago/Turabian StyleWu, Yu-Ming, Chun-Cheng Li, Shih-Yu Huang, Yen-Hao Su, Chien-Wun Wang, Jui-Tai Chen, Shih-Chiang Shen, Po-Han Lo, Yun-Ling Yang, Yih-Giun Cherng, and et al. 2022. "A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial" Journal of Clinical Medicine 11, no. 6: 1700. https://doi.org/10.3390/jcm11061700
APA StyleWu, Y. -M., Li, C. -C., Huang, S. -Y., Su, Y. -H., Wang, C. -W., Chen, J. -T., Shen, S. -C., Lo, P. -H., Yang, Y. -L., Cherng, Y. -G., Wu, H. -L., & Tai, Y. -H. (2022). A Comparison of Oxygenation Efficacy between High-Flow Nasal Cannulas and Standard Facemasks during Elective Tracheal Intubation for Patients with Obesity: A Randomized Controlled Trial. Journal of Clinical Medicine, 11(6), 1700. https://doi.org/10.3390/jcm11061700