The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Literature Search Strategy
2.2. Selection of Studies
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Quality Analysis
3.2. Non-Small Cell Lung Cancer
3.3. Other Tumors
Author | Pts | Cancer | Design | Imaging | Timing | ICI | Outcomes | Combination with Non-Radiomics Predictors |
---|---|---|---|---|---|---|---|---|
Mu [49] | 194 | NSCLC | Retro-, prospective | PET/CT, CT | Pre-ICI | Anti-PD-(L)1 | DCB, PFS, OS | Histology, ECOG, metastases |
Ravanelli [23] | 104 | NSCLC | Retrospective | CT | Pre-ICI | Nivolumab | PFS, OS | NR |
Polverari [25] | 57 | NSCLC | Retrospective | PET/CT | Pre-ICI | Anti-PD-(L)1 | RECIST, PFS, OS | NR |
Ladwa [26] | 47 | NSCLC | Retrospective | CT | Pre-ICI | Nivolumab | TTP, PFS, OS | NR |
Shen [27] | 63 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | iRECIST, PD vs non-PD | NR |
Liu [28] | 46 | NSCLC | Retrospective | CT | Pre-ICI | Nivolumab | PFS, OS | NR |
Khorrami [29] | 139 | NSCLC | Retrospective | CT | Pre-and post 3-4 cycles of ICI | Anti-PD-(L)1 | RECIST, OS | Gender, smoker status |
Nardone [30] | 59 | NSCLC | Retrospective | CT | Pre-ICI | Nivolumab | PFS, OS | NR |
Dercle [31] | 92 | NSCLC | Retrospective | CT | Pre-and post 3-4 cycles of ICI | Nivolumab | iRECIST, BOR | NR |
Liu [32] | 197 | NSCLC | Retrospective | CT | Pre-and post 3-4 cycles of ICI | Nivolumab | iRECIST | NR |
Valentinuzzi [34] | 30 | NSCLC | Retrospective | PET/CT | Pre-, 1mo, and 4mo post-ICI | Pembrolizumab | iRADIOMICS | NR |
Tunali [37] | 228 | NSCLC | Prospective | CT | Pre-ICI | Anti-PD-(L)1 | hyperprogression | Metastases, prior therapy, NLR |
Vaidya [38] | 109 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | hyperprogression | NR |
Tang [40] | 290 | NSCLC | Retrospective | CT+tumor immune sample | Pre-ICI | Anti-PD-L1 | OS | Lesion size, N-status, histology, age at surgery, prior therapy |
Yoon [41] | 149 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-L1 | T-cell infiltration | Age, female, smoker status, EGFR+ |
Sun [42] | 135 | HNSCC, NSCLC, HCC, BLCA | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | CD8 expression | Tumor volume, prior therapy, Royal Marsden Hospital prognostic score |
Jiang [43] | 399 | NSCLC | Retrospective | PET/CT | Pre-ICI | Anti-PD-(L)1 | PD-L1 expression | NR |
Tunali [45] | 332 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | PFS, OS | Albumin, metastases |
He [46] | 123 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | TMB | NR |
Yang [47] | 92 | NSCLC | Retrospective | CT | Pre-ICI | Anti-PD-(L)1 | DCB, PFS | age, metastases |
Trebeschi [48] | 123 | NSCLC, melanoma | Retrospective | CT | Pre-ICI | Anti-PD-1 | RECIST | NR |
Mu [49] | 210 | NSCLC | Retrospective | PET/CT | Pre-ICI | Anti-PD-(L)1 | cachexia, PFS, OS | BMI, metastases, ECOG |
Bathia [58] | 88 | Melanoma | Retrospective | MRI | Pre-ICI | Anti-PD-(L)1 | PFS, OS | ECOG, LDH |
Basler [59] | 112 | Melanoma | Retrospective | PET/CT | Pre-ICI | Anti-PD-1 ± anti-CTLA4 | pseudoprogression | LDH, S100 |
Author | Radiomic Software | Total/Reduced Radiomic Features | Validation | Model Building Test | Phase | RQS (%) |
---|---|---|---|---|---|---|
Mu [49] | MATLAB | 790/8 | Split sample | AIC, HL | III | 24 (68.1) |
Ravanelli [23] | TexRAD | NR | Cross-validation | Cox proportional hazards | II | 10 (27.8) |
Polverari [25] | LIFEx | NR | NR | NR | Discovery science | −3 (0.0) |
Ladwa [26] | MATLAB | NR | Cross-validation | General model for combining pairs of texture parameters | 0 | 2 (5.6) |
Shen [27] | Mazda | NR/10 | NR | LDA, NDA, PCA | 0 | 4 (11.1) |
Liu [28] | Python | 1106/3 | Cross-validation | SVM, LR, GNB | 0 | 11 (29.1) |
Khorrami [29] | 3D Slicer, MATLAB | 99/8 | Split sample, external | LDR | II | 11 (30.6) |
Nardone [30] | LifeX, X-Tile | NR | Split sample, external | Texture score | I | 3 (8.3) |
Dercle [31] | MATLAB | 1160/4 | Split sample | RF | 0 | 13 (36.1) |
Liu [32] | in-house software | 402/7 | Split sample | LR | II | 17 (45.8) |
Valentinuzzi [34] | 3D Slicer | 490/12 | Cross-validation | LR | 0 | 13 (36.1) |
Tunali [37] | MATLAB | 600/409 | NR | LR | Discovery science | 5 (15.3) |
Vaidya [38] | 3D Slicer, MATLAB | 198/3 | Split sample | RF, LDA, DLDA, QDA, SVM | II | 11 (29.2) |
Tang [40] | 3D Slicer, IBEX | 12/4 | Split sample | Cox proportional hazards | II | 14 (38.9) |
Yoon [41] | AVIEW | 63/8 | Internal, bootstrapping | LR | II | 15 (41.7) |
Sun [42] | LIFEx | 84/5 | External | LEN | II | 18 (50) |
Jiang [43] | Python | 1744/24 | Cross-validation | LR, RF | II | 8 (22.1) |
Tunali [45] | MATLAB, C++ | 213/2 | External | Cox proportional hazards | Discovery science | 22 (61.1) |
He [46] | 3D Slicer, Python | 1688/1020 | Split sample | deep learning | II | 16 (44.4) |
Yang [47] | Python | 110/88 | Cross-validation | RF | 0 | 14 (37.5) |
Trebeschi [48] | NR | 5865/68 | Split sample | RF | II | 11 (31.9) |
Mu [49] | ITK-SNAP, MATLAB | 1053/9 | Cross-validation | LR | II | 17 (45) |
Bathia [58] | ITK-SNAP, CERR | 21/12 | Cross-validation | LR | 0 | 7 (19.4) |
Basler [59] | Python | 344/NR | Cross-validation | LR | II | 14 (38.8) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavallo, F.; De Giovanni, C.; Nanni, P.; Forni, G.; Lollini, P.-L. 2011: The immune hallmarks of cancer. Cancer Immunol. Immunother. 2011, 60, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoos, A. Development of immuno-oncology drugs—From CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 2016, 15, 235–247. [Google Scholar] [CrossRef]
- Yu, J.X.; Hubbard-Lucey, V.M.; Tang, J. Immuno-oncology drug development goes global. Nat. Rev. Drug Discov. 2019, 18, 899–900. [Google Scholar]
- Huemer, F.; Leisch, M.; Geisberger, R.; Melchardt, T.; Rinnerthaler, G.; Zaborsky, N.; Greil, R. Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence. Int. J. Mol. Sci. 2020, 21, 2856. [Google Scholar] [CrossRef]
- Yu, J.X.; Hodge, J.P.; Oliva, C.; Neftelinov, S.T.; Hubbard-Lucey, V.M.; Tang, J. Trends in clinical development for PD-1/PD-L1 inhibitors. Nat. Rev. Drug Discov. 2020, 19, 163–164. [Google Scholar]
- Castello, A.; Lopci, E. Update on tumor metabolism and patterns of response to immunotherapy. Q. J. Nucl. Med. Mol. Imaging 2020, 64, 175–185. [Google Scholar] [CrossRef]
- Dromain, C.; Beigelman, C.; Pozzessere, C.; Duran, R.; Digklia, A. Imaging of tumour response to immunotherapy. Eur. Radiol. Exp. 2020, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Nishino, M.; Hatabu, H.; Hodi, F.S. Imaging of Cancer Immunotherapy: Current Approaches and Future Directions. Radiology 2019, 290, 9–22. [Google Scholar] [CrossRef]
- Okwundu, N.; Grossman, D.; Hu-Lieskovan, S.; Grossmann, K.F.; Swami, U. The dark side of immunotherapy. Ann. Transl. Med. 2021, 9, 1041. [Google Scholar] [CrossRef]
- Castello, A.; Lopci, E. The Role of PET/CT in the Era of Immune Checkpoint Inhibitors: State of Art. Curr. Radiopharm. 2019, 13, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Wahid, K.A.; van Dijk, L.V.; Farahani, K.; Thompson, R.F.; Fuller, C.D. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin. Transl. Radiat. Oncol. 2021, 28, 97–115. [Google Scholar] [CrossRef]
- Porcu, M.; Solinas, C.; Mannelli, L.; Micheletti, G.; Lambertini, M.; Willard-Gallo, K.; Neri, E.; Flanders, A.E.; Saba, L. Radiomics and “radi-…omics” in cancer immunotherapy: A guide for clinicians. Crit. Rev. Oncol. Hematol. 2020, 154, 103068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; de AF Fonseca, L.; Shi, Z.; Zhu, C.; Dekker, A.; Bermejo, I.; Wee, L. Systematic review of radiomic biomarkers for predicting immune checkpoint inhibitor treatment outcomes. Methods 2021, 188, 61–72. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sollini, M.; Antunovic, L.; Chiti, A.; Kirienko, M. Towards clinical application of image mining: A systematic review on artificial intelligence and radiomics. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2656–2672. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, L.; Cuppari, L.; Menis, J.; Bonanno, L.; Reccia, P.; Frega, S.; Pasello, G. 18F-FDG PET/CT in non-small-cell lung cancer patients: A potential predictive biomarker of response to immunotherapy. Nucl. Med. Commun. 2019, 40, 802–807. [Google Scholar] [CrossRef]
- Seban, R.-D.; Mezquita, L.; Berenbaum, A.; Dercle, L.; Botticella, A.; Le Pechoux, C.; Caramella, C.; Deutsch, E.; Grimaldi, S.; Adam, J.; et al. Baseline metabolic tumor burden on FDG PET/CT scans predicts outcome in advanced NSCLC patients treated with immune checkpoint inhibitors. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 1147–1157. [Google Scholar] [CrossRef]
- Castello, A.; Toschi, L.; Rossi, S.; Mazziotti, E.; Lopci, E. The immune-metabolic-prognostic index and clinical outcomes in patients with non-small cell lung carcinoma under checkpoint inhibitors. J. Cancer Res. Clin. Oncol. 2020, 146, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Mu, W.; Tunali, I.; Gray, J.E.; Qi, J.; Schabath, M.B.; Gillies, R.J. Radiomics of 18F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Ravanelli, M.; Agazzi, G.M.; Milanese, G.; Roca, E.; Silva, M.; Tiseo, M.; Rondi, P.; Baggi, A.; Ganeshan, B.; Muri, M.; et al. Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated by nivolumab: A multicentre retrospective study. Eur. J. Radiol. 2019, 118, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J. Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef] [PubMed]
- Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; et al. 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Cancers 2020, 12, 1163. [Google Scholar] [CrossRef] [PubMed]
- Ladwa, R.; Roberts, K.E.; O’Leary, C.; Maggacis, N.; O’Byrne, K.J.; Miles, K. Computed tomography texture analysis of response to second-line nivolumab in metastatic non-small cell lung cancer. Lung Cancer Manag. 2020, 9, LMT38. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Fu, H.; Tao, G.; Liu, X.; Yuan, Z.; Ye, X. Pre-Immunotherapy Contrast-Enhanced CT Texture-Based Classification: A Useful Approach to Non-Small Cell Lung Cancer Immunotherapy Efficacy Prediction. Front. Oncol. 2021, 11, 591106. [Google Scholar] [CrossRef]
- Liu, C.; Gong, J.; Yu, H.; Liu, Q.; Wang, S.; Wang, J. A CT-Based Radiomics Approach to Predict Nivolumab Response in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 544339. [Google Scholar] [CrossRef]
- Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R.; Corredor, G.; Alilou, M.; Bera, K.; Fu, P.; et al. Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non–Small Cell Lung Cancer. Cancer Immunol. Res. 2020, 8, 108–119. [Google Scholar] [CrossRef]
- Nardone, V.; Tini, P.; Pastina, P.; Botta, C.; Reginelli, A.; Carbone, S.F.; Giannicola, R.; Calabrese, G.; Tebala, C.; Guida, C.; et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using Nivolumab. Oncol. Lett. 2020, 19, 1559–1566. [Google Scholar] [CrossRef]
- Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, M.; Zhang, Y.; Luo, Y.; He, S.; Wang, Y.; Chen, F.; Liu, Y.; Yang, Q.; Li, Y.; et al. Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced nonsmall-cell lung cancer. Front. Oncol. 2021, 11, 657615. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.; Desideri, I.; et al. Delta radiomics: A systematic review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef]
- Valentinuzzi, D.; Vrankar, M.; Boc, N.; Ahac, V.; Zupancic, Z.; Unk, M.; Skalic, K.; Zagar, I.; Studen, A.; Simoncic, U.; et al. FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol. Oncol. 2020, 54, 285–294. [Google Scholar] [CrossRef]
- Castello, A.; Rossi, S.; Mazziotti, E.; Toschi, L.; Lopci, E. Hyperprogressive Disease in Patients with Non–Small Cell Lung Cancer Treated with Checkpoint Inhibitors: The Role of 18F-FDG PET/CT. J. Nucl. Med. 2020, 61, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Lopci, E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [18 F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J. Clin. Med. 2021, 10, 5160. [Google Scholar] [CrossRef]
- Tunali, I.; Gray, J.E.; Qi, J.; Abdalah, M.; Jeong, D.K.; Guvenis, A.; Gillies, R.J.; Schabath, M.B. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: An early report. Lung Cancer 2019, 129, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, P.; Bera, K.; Patil, P.D.; Gupta, A.; Jain, P.; Alilou, M.; Khorrami, M.; Velcheti, V.; Madabhushi, A. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J. Immunother. Cancer 2020, 8, e001343. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Tang, C.; Hobbs, B.; Amer, A.; Li, X.; Behrens, C.; Canales, J.R.; Cuentas, E.P.; Villalobos, P.; Fried, D.; Chang, J.Y.; et al. Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer. Sci. Rep. 2018, 8, 1922. [Google Scholar] [CrossRef]
- Yoon, J.; Suh, Y.J.; Han, K.; Cho, H.; Lee, H.-J.; Hur, J.; Choi, B.W. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Thorac. Cancer 2020, 11, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Phd, R.; Paragios, N.; Deutsch, E.; Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Ammari, S.; et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018, 19, 1180–1191. [Google Scholar] [CrossRef]
- Jiang, M.; Sun, D.; Guo, Y.; Guo, Y.; Xiao, J.; Wang, L.; Yao, X. Assessing PD-L1 Expression Level by Radiomic Features From PET/CT in Non small Cell Lung Cancer Patients: An Initial Result. Acad. Radiol. 2020, 27, 171–179. [Google Scholar] [CrossRef]
- Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015, 3, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tunali, I.; Tan, Y.; Gray, J.E.; Katsoulakis, E.; Eschrich, S.A.; Saller, J.; Aerts, H.J.W.L.; Boyle, T.; Qi, J.; Guvenis, A.; et al. Hypoxia-Related Radiomics and Immunotherapy Response: A Multicohort Study of Non-Small Cell Lung Cancer. JNCI Cancer Spectr. 2021, 5, pkab048. [Google Scholar] [CrossRef] [PubMed]
- He, B.X.; Dong, D.; She, Y.L.; Fang, M.; Zhu, Y.; Zhang, H.; Huang, Z.; Jiang, T.; Tian, J.; Chen, C. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J. Immunother. Cancer 2020, 8, e000550. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhou, L.; Zhong, J.; Lv, T.; Li, A.; Ma, L.; Zhong, J.; Yin, S.; Huang, L.; Zhou, C.; et al. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Respir. Res. 2021, 22, 189. [Google Scholar] [CrossRef]
- Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.M.; Delli Pizzi, A.; Lalezari, F.; Lambregts, D.M.J.; Rohaan, M.W.; Parmar, C.; et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.; Katsoulakis, E.; Whelan, C.J.; Gage, K.L.; Schabath, M.B.; Gillies, R.J. Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors. Br. J. Cancer 2021, 125, 229–239. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Mo, X.; You, J.; Chen, L.; Fang, J.; Wang, F.; Jin, Z.; Zhang, B.; Zhang, S. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 345–360. [Google Scholar] [CrossRef]
- Jamshidi, N.; Diehn, M.; Bredel, M.; Kuo, M.D. Illuminating Radiogenomic Characteristics of Glioblastoma Multiforme through Integration of MR Imaging, Messenger RNA Expression, and DNA Copy Number Variation. Radiology 2013, 270, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, Y.; Qian, Z.; Sun, Z.; Xu, K.; Wang, K.; Liu, S.; Fan, X.; Li, S.; Zhang, Z.; et al. A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage Clin. 2018, 20, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.J.; Kim, H.H.; Cha, J.H.; Shin, H.J.; Baek, S.H.; Lee, H.J.; Gong, G. Correlation between MRI and the Level of Tumor-Infiltrating Lymphocytes in Patients with Triple-Negative Breast Cancer. AJR Am. J. Roentgenol. 2016, 207, 1146–1151. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Sun, X.; Cao, G.; Rubin, D.L.; Napel, S.; Ikeda, D.M.; Kurian, A.W.; Li, R. Heterogeneous Enhancement Patterns of Tumor-adjacent Parenchyma at MR Imaging Are Associated with Dysregulated Signaling Pathways and Poor Survival in Breast Cancer. Radiology 2017, 285, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Feng, S.; Wei, J.; Liu, F.; Li, B.; Li, X.; Hou, Y.; Gu, D.; Tang, M.; Xiao, H.; et al. Pretreatment prediction of immunoscore in hepatocellular cancer: A radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging. Eur. Radiol. 2019, 29, 4177–4187. [Google Scholar] [CrossRef]
- Liao, H.; Zhang, Z.; Chen, J.; Liao, M.; Xu, L.; Wu, Z.; Yuan, K.; Song, B.; Zeng, Y. Preoperative Radiomic Approach to Evaluate Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma Patients Using Contrast-Enhanced Computed Tomography. Ann. Surg. Oncol. 2019, 26, 4537–4547. [Google Scholar] [CrossRef]
- Tixier, F.; Cheze-le-Rest, C.; Schick, U.; Simon, B.; Dufour, X.; Key, S.; Pradier, O.; Aubry, M.; Hatt, M.; Corcos, L.; et al. Transcriptomics in cancer revealed by Positron Emission Tomography radiomics. Sci. Rep. 2020, 10, 5660. [Google Scholar] [CrossRef]
- Bhatia, A.; Birger, M.; Veeraraghavan, H.; Um, H.; Tixier, F.; McKenney, A.S.; Cugliari, M.; Caviasco, A.; Bialczak, A.; Malani, R.; et al. MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro Oncol. 2019, 21, 1578–1586. [Google Scholar] [CrossRef]
- Basler, L.; Gabryś, H.S.; Hogan, S.A.; Pavic, M.; Bogowicz, M.; Vuong, D.; Tanadini-Lang, S.; Förster, R.; Kudura, K.; Huellner, M.W.; et al. Radiomics, Tumor Volume, and Blood Biomarkers for Early Prediction of Pseudoprogression in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibition. Clin. Cancer Res. 2020, 26, 4414–4425. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Reuzé, S.; Orlhac, F.; Chargari, C.; Nioche, C.; Limkin, E.; Riet, F.; Escande, A.; Haie-Meder, C.; Dercle, L.; Gouy, S.; et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 2017, 8, 43169–43179. [Google Scholar] [CrossRef] [Green Version]
- Reuzé, S.; Schernberg, A.; Orlhac, F.; Sun, R.; Chargari, C.; Dercle, L.; Deutsch, E.; Buvat, I.; Robert, C. Radiomics in Nuclear Medicine Applied to Radiation Therapy: Methods, Pitfalls, and Challenges. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1117–1142. [Google Scholar] [CrossRef]
- Welch, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.F.; Wee, L.; Dekker, A.; Huang, S.H.; Purdie, T.G.; O’Sullivan, B.; Aerts, H.; et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother. Oncol. 2019, 130, 2–9. [Google Scholar] [CrossRef] [Green Version]
Cancer Type | Trial Identifier Number | Phase/Status | ICI | Radiomics Aim |
---|---|---|---|---|
Lung Cancer | NCT04984148 | recruiting | not specified | PD-L1 expression, PFS, OS, pneumonitis |
NCT03305380 | completed | not specified | pneumonitis | |
NCT04364776 | III, recruiting | durvalumab | PFS, OS | |
NCT04994795 | not yet recruiting | pembrolizumab ± chemo | PFS, OS, DoR, TTP | |
NCT04007068 | unknown | pembrolizumab | iRADIOMICS vs. irRC | |
NCT03311672 | withdrawn | pembrolizumab ± RT | AraG PET-CT radiomic analyses | |
NCT04541251 | II, recruiting | camrelizumab ± chemo | therapy efficacy and decision-making assistance | |
NCT04452058 | recruiting | not specified | assist surgery, PFS, OS, ORR, CBR | |
Lung, melanoma | NCT04193956 | recruiting | not specified | treatment response, toxicity |
Merkel | NCT03304639 | not recruiting | pembrolizumab ± RT | pneumonitis |
Esophageal | NCT04821765 | II, recruiting | tislelizumab ± chemo, RT | pathologic response, OS |
NCT04821778 | III, recruiting | not specified ± chemo ± RT | treatment adverse events, pathologic response, OS | |
NCT04821843 | III, recruiting | not specified ± chemo ± RT (neoadjuvant) | pathologic response, OS | |
Urothelial | NCT03237780 | II, recruiting | atezolizumab ± chemo | changes in tumor |
NCT03387761 | I, completed | Ipilimumab ± nivolumab | responders vs. non-responders | |
Solid tumors | NCT04079283 | completed | not specified ± chemo | treatment response |
NCT04892849 | recruiting | not specified | tumor tissue pattern | |
NCT04954599 | I-II, not yet recruiting | multiple | hypoxia |
Limitations | Suggestions |
---|---|
Small cohort from single center | Multicenter clinical trials |
Heterogeneous data (“center effect”) | - prospective studies: imaging protocols can be harmonized before data acquisition (e.g., EARL recommendations) |
- retrospective studies: phantom acquisition, post-filtering steps, or ComBat method | |
Repeatability and Reproducibility | Open-source software packages with detailed description of the workflow used in the studies; |
Compliant with the IBSI guidelines | |
Results | Both positive and negative should be reported to avoid the misuse of algorithms or excessive generalization of results |
Interpretability (“black box”) | Graph-based or visualization tools for improving the interpretability of radiomic results |
Model Validation | Preferably performed on external and independent groups, prospectively collected, ideally within clinical trials |
Accessibility | Shared databases among different institutions (anonymized), able to be used as validation sets; |
Incorporated into or interfaced with existing RIS/PACS systems |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E. The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J. Clin. Med. 2022, 11, 1740. https://doi.org/10.3390/jcm11061740
Castello A, Castellani M, Florimonte L, Urso L, Mansi L, Lopci E. The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. Journal of Clinical Medicine. 2022; 11(6):1740. https://doi.org/10.3390/jcm11061740
Chicago/Turabian StyleCastello, Angelo, Massimo Castellani, Luigia Florimonte, Luca Urso, Luigi Mansi, and Egesta Lopci. 2022. "The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria" Journal of Clinical Medicine 11, no. 6: 1740. https://doi.org/10.3390/jcm11061740
APA StyleCastello, A., Castellani, M., Florimonte, L., Urso, L., Mansi, L., & Lopci, E. (2022). The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. Journal of Clinical Medicine, 11(6), 1740. https://doi.org/10.3390/jcm11061740