Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. ROBS (Research in Obesity and Bariatric Surgery) Study Cohort
2.1.1. Roux-en-Y Gastric Bypass
2.1.2. Low-Calorie Formula Diet
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. Base-Line NAFLD Fibrosis Scores Are Associated with T2D
3.3. Dynamics of Obesity-Related Parameters and Serum Lipids during Therapy-Induced Weight Loss
3.4. Improvement of T2D and NAFLD Occurs during Weight Loss
3.5. Relation of T2D Improvement to Body Fat Loss and Changes in NAFLD Fibrosis Score
3.6. NAFLD Fibrosis Score Improved More in Patients with High Body Fat Loss
3.7. Correlation of Body Fat Loss and NAFLD Improvement Is Pronounced in Males
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.L. A comprehensive definition for metabolic syndrome. DMM Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Roeb, E. Non-alcoholic fatty liver diseases: Current challenges and future directions. Ann. Transl. Med. 2021, 9, 726. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Van Natta, M.L.; Clark, J.; Neuschwander-Tetri, B.A.; Diehl, A.; Dasarathy, S.; Loomba, R.; Chalasani, N.; Kowdley, K.; Hameed, B.; et al. Prospective Study of Outcomes in Adults with Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2021, 385, 1559–1569. [Google Scholar] [CrossRef]
- Dulai, P.S.; Singh, S.; Patel, J.; Soni, M.; Prokop, L.J.; Younossi, Z.; Sebastiani, G.; Ekstedt, M.; Hagstrom, H.; Nasr, P.; et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. Hepatology 2017, 65, 1557–1565. [Google Scholar] [CrossRef]
- Arnouk, J.; Rachakonda, V.P.; Jaiyeola, D.; Behari, J. Differential Outcomes and Clinical Challenges of NAFLD with Extreme Obesity. Hepatol. Commun. 2020, 4, 1419–1429. [Google Scholar] [CrossRef]
- Lee, J.; Vali, Y.; Boursier, J.; Spijker, R.; Anstee, Q.M.; Bossuyt, P.M.; Zafarmand, M.H. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: A systematic review. Liver Int. 2021, 41, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Graham, S.; Wang, X.; Cai, D.; Huang, M.; Pique-Regi, R.; Dong, X.C.; Chen, Y.E.; Willer, C.; et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. J. Hepatol. 2020, 73, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Masarone, M.; Rosato, V.; Aglitti, A.; Bucci, T.; Caruso, R.; Salvatore, T.; Sasso, F.C.; Tripodi, M.F.; Persico, M. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE 2017, 12, e0178473. [Google Scholar] [CrossRef] [PubMed]
- Dzierlenga, A.L.; Clarke, J.D.; Hargraves, T.L.; Ainslie, G.R.; Vanderah, T.W.; Paine, M.F.; Cherrington, N.J. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J. Pharmacol. Exp. Ther. 2015, 352, 462–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzolino, D.; Sessa, G.; Salvatore, T.; Sasso, F.C.; Giugliano, D.; Lefebvre, P.J.; Torella, R. The involvement of the opioid system in human obesity: A study in normal weight relatives of obese people. J. Clin. Endocrinol. Metab. 1996, 81, 713–718. [Google Scholar] [CrossRef]
- Irungbam, K.; Churin, Y.; Matono, T.; Weglage, J.; Ocker, M.; Glebe, D.; Hardt, M.; Koeppel, A.; Roderfeld, M.; Roeb, E. Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2. Lab. Investig. 2020, 100, 454–465. [Google Scholar] [CrossRef]
- Immonen, H.; Hannukainen, J.C.; Iozzo, P.; Soinio, M.; Salminen, P.; Saunavaara, V.; Borra, R.; Parkkola, R.; Mari, A.; Lehtimäki, T.; et al. Effect of bariatric surgery on liver glucose metabolism in morbidly obese diabetic and non-diabetic patients. J. Hepatol. 2014, 60, 377–383. [Google Scholar] [CrossRef]
- Schmitz, S.M.T.; Kroh, A.; Koch, A.; Brozat, J.F.; Stier, C.; Neumann, U.P.; Ulmer, T.F.; Alizai, P.H. Comparison of Liver Recovery after Sleeve Gastrectomy and Roux-en-Y-Gastric Bypass. Obes. Surg. 2021, 31, 3218–3226. [Google Scholar] [CrossRef]
- Hempel, F.; Roderfeld, M.; Müntnich, L.J.; Albrecht, J.; Oruc, Z.; Arneth, B.; Karrasch, T.; Pons-Kühnemann, J.; Padberg, W.; Renz, H.; et al. Caspase-cleaved keratin 18 measurements identified ongoing liver injury after bariatric surgery. J. Clin. Med. 2021, 10, 1233. [Google Scholar] [CrossRef]
- Laursen, T.L.; Hagemann, C.A.; Wei, C.; Kazankov, K.; Thomsen, K.L.; Knop, F.K.; Grønbæk, H. Bariatric surgery in patients with non-alcoholic fatty liver disease—From pathophysiology to clinical effects. World J. Hepatol. 2019, 11, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, M.; Kayser, B.D.; Yoshino, J.; Stein, R.I.; Reeds, D.; Eagon, J.C.; Eckhouse, S.R.; Watrous, J.D.; Jain, M.; Knight, R.; et al. Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N. Engl. J. Med. 2020, 383, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Brock, J.; Schmid, A.; Karrasch, T.; Pfefferle, P.; Schlegel, J.; Busse, I.; Hauenschild, A.; Schmidt, B.; Koukou, M.; Arapogianni, E.; et al. Progranulin serum levels and gene expression in subcutaneous vs visceral adipose tissue of severely obese patients undergoing bariatric surgery. Clin. Endocrinol. 2019, 91, 400–410. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Oliver, D.; Arnold, H.L.; Gogia, S.; Neuschwander-Tetri, B.A. Development and validation of a simple NAFLD clinical scoring system for identifying patients without advanced disease. Gut 2008, 57, 1441–1447. [Google Scholar] [CrossRef]
- Kariyama, K.; Nouso, K.; Hiraoka, A.; Wakuta, A.; Oonishi, A.; Kuzuya, T.; Toyoda, H.; Tada, T.; Tsuji, K.; Itobayashi, E.; et al. EZ-ALBI Score for Predicting Hepatocellular Carcinoma Prognosis. Liver Cancer 2020, 9, 734–743. [Google Scholar] [CrossRef]
- Feng, W.; Yin, T.; Chu, X.; Shan, X.; Jiang, C.; Wang, Y.; Qian, Y.; Zhu, D.; Sun, X.; Bi, Y. Metabolic effects and safety of Roux-en-Y gastric bypass surgery vs. conventional medication in obese Chinese patients with type 2 diabetes. Diabetes. Metab. Res. Rev. 2019, 35, e3138. [Google Scholar] [CrossRef]
- Chaim, F.D.M.; Pascoal, L.B.; Chaim, F.H.M.; Palma, B.B.; Damázio, T.A.; da Costa, L.B.E.; Carvalho, R.; Cazzo, E.; Gestic, M.A.; Utrini, M.P.; et al. Histological grading evaluation of non-alcoholic fatty liver disease after bariatric surgery: A retrospective and longitudinal observational cohort study. Sci. Rep. 2020, 10, 8496. [Google Scholar] [CrossRef]
- Silva, R.G.D.; Miranda, M.L.Q.D.; Brant, P.E.D.A.C.; Schulz, P.O.; Nascimento, M.D.F.A.; Schmillevitch, J.; Vieira, A.; Freitas, W.R.D.; Szutan, L.A. Acoustic radiation force impulse elastography and liver fibrosis risk scores in severe obesity. Arch. Endocrinol. Metab. 2021, 65, 730–738. [Google Scholar] [CrossRef]
- Stål, P. Liver fibrosis in non-alcoholic fatty liver disease-Diagnostic challenge with prognostic significance. World J. Gastroenterol. 2015, 21, 11077–11087. [Google Scholar] [CrossRef] [PubMed]
- Vangoitsenhoven, R.; Wilson, R.L.; Cherla, D.V.; Tu, C.; Kashyap, S.R.; Cummings, D.E.; Schauer, P.R.; Aminian, A. Presence of Liver Steatosis Is Associated with Greater Diabetes Remission after Gastric Bypass Surgery. Diabetes Care 2021, 44, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Tozzi, R.; Risi, R.; Tuccinardi, D.; Mariani, S.; Basciani, S.; Spera, G.; Lubrano, C.; Gnessi, L. Beneficial effects of the ketogenic diet on nonalcoholic fatty liver disease: A comprehensive review of the literature. Obes. Rev. 2020, 21, e13024. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.Y.; Wu, C.H.; Chu, N.F.; Chang, C.J. Efficacy and safety of very-low-calorie diet in Taiwanese: A multicenter randomized, controlled trial. Nutrition 2009, 25, 1129–1136. [Google Scholar] [CrossRef]
- Schwenger, K.J.P.; Fischer, S.E.; Jackson, T.D.; Okrainec, A.; Allard, J.P. Non-alcoholic Fatty Liver Disease in Morbidly Obese Individuals Undergoing Bariatric Surgery: Prevalence and Effect of the Pre-Bariatric Very Low Calorie Diet. Obes. Surg. 2018, 28, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Adinolfi, L.E.; Petta, S.; Fracanzani, A.L.; Nevola, R.; Coppola, C.; Narciso, V.; Rinaldi, L.; Calvaruso, V.; Pafundi, P.C.; Lombardi, R.; et al. Reduced incidence of type 2 diabetes in patients with chronic hepatitis C virus infection cleared by direct-acting antiviral therapy: A prospective study. Diabetes Obes. Metab. 2020, 22, 2408–2416. [Google Scholar] [CrossRef]
- Rinaldi, L.; Pafundi, P.C.; Galiero, R.; Caturano, A.; Morone, M.V.; Silvestri, C.; Giordano, M.; Salvatore, T.; Sasso, F.C. Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants 2021, 10, 270. [Google Scholar] [CrossRef]
- Roeb, E.; Canbay, A.; Bantel, H.; Bojunga, J.; de Laffolie, J.; Demir, M.; Denzer, U.; Geier, A.; Hofmann, W.; Hudert, C.; et al. Konsultationsfassung S2k-Leitlinie Nicht-Alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Verdauungs- und Stoffwechselkrankheiten (DGVS). 2022. Available online: https://www.dgvs.de/wp-content/uploads/2022/02/LL-NAFLD_deutsch_Konsultationsfassung_04.02.22.pdf (accessed on 8 March 2022).
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 2015, 402, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Gender differences in glucose homeostasis and diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef]
- Perrone, F.; Bianciardi, E.; Benavoli, D.; Tognoni, V.; Niolu, C.; Siracusano, A.; Gaspari, A.L.; Gentileschi, P. Gender Influence on Long-Term Weight Loss and Comorbidities after Laparoscopic Sleeve Gastrectomy and Roux-en-Y Gastric Bypass: A Prospective Study with a 5-Year Follow-up. Obes. Surg. 2016, 26, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Kur, P.; Kolasa-Wołosiuk, A.; Misiakiewicz-Has, K.; Wiszniewska, B. Sex hormone-dependent physiology and diseases of liver. Int. J. Environ. Res. Public Health 2020, 17, 2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.D.; Abdelmalek, M.F.; Pang, H.; Guy, C.D.; Smith, A.D.; Diehl, A.M.; Suzuki, A. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 2014, 59, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Wang, L.; Li, Z.; Zhang, H.; Wu, J.; Rahman, N.; Guo, Y.; Li, D.; Li, N.; et al. Differential effects of estrogen/androgen on the prevention of nonalcoholic fatty liver disease in the male rat. J. Lipid Res. 2013, 54, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.A.; Suzuki, A.; Abdelmalek, M.F.; Yates, K.P.; Wilson, L.A.; Bass, N.M.; Gill, R.; Cedars, M.; Terrault, N. Testosterone is Associated with Nonalcoholic Steatohepatitis and Fibrosis in Premenopausal Women with NAFLD. Clin. Gastroenterol. Hepatol. 2021, 1267–1274.e1. [Google Scholar] [CrossRef]
- Hamaguchi, M.; Kojima, T.; Ohbora, A.; Takeda, N.; Fukui, M.; Kato, T. Aging is a risk factor of nonalcoholic fatty liver disease in premenopausal women. World J. Gastroenterol. 2012, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
Parameters | Base-Line | 12 Months Follow-Up | p |
---|---|---|---|
A Anthropometric Characteristics | |||
Demographic | |||
Age [years] | 42.8 (20; 67) | - | - |
Gender | - | ||
Female | 52 (64.2%) | - | |
Male | 29 (35.8%) | - | |
Anthropometric | |||
BMI [kg/m2] | 43.6 (31.9; 59.2) | 33.5 (24.3; 49.7) | <0.001 |
Body weight [kg] | 130 (90.1; 185.4) | 99.6 (61; 159) | <0.001 |
Weight loss [%] | - | 23 (1; 41.4) | - |
Excessive weight [kg] | 61.3 | - | - |
Excessive weight loss [%] | - | 50.4 | - |
Body fat [%] | 45.9 (28.5; 59.2) | 34.8 (15.0; 53.7) | <0.001 |
Waist–hip ratio | 0.95 (0.69; 1.25) | 0.9 (0.72; 1.13) | <0.001 |
B Anamnesis and medication | |||
Hypertension | <0.001 | ||
Yes | 40 (49.4) | 26 (32.1 %) | |
no | 40 (49.4) | 54 (66.7) | |
Cardiovascular disease | 0.317 | ||
Yes | 2 (2.5) | 3 (3.7) | |
No | 79 (97.5) | 77 (95.1) | |
Smoking | 0.564 | ||
Yes | 18 (22.2) | 19 (23.5) | |
No | 63 (77.8) | 61 (75.3) | |
Hormonal contraception | 0.059 | ||
Yes | 12 (14.8) | 16 (19.8) | |
No | 67 (82.7) | 64 (79) | |
C Metabolism | |||
Type 2 diabetes mellitus | 0.063 | ||
Yes | 14 (17.3) | 9 (11.1) | |
No | 66 (81.5) | 71 (87.7) | |
Hyperlipidemia | 0.001 | ||
Yes | 37 (45.7) | 21 (25.9) | |
No | 44 (54.3) | 59 (72.8) | |
Number of medications | 0.041 | ||
0 | 72 (87.8) | 79 (96.3) | |
1 | 6 (7.3) | 0 | |
2 | 2 (2.4) | 1 (1.2) | |
3 | 1 (1.2) | 0 | |
Insulin therapy | 0.157 | ||
Yes | 5 (6.1) | 3 (3.7) | |
No | 76 (93.9) | 77 (93.9) | |
GLP Analogs | 0.157 | ||
Yes | 2 (2.5) | 0 | |
No | 79 (97.5) | 80 (98.8) | |
LDL cholesterol [mg/dL] | 132.7 (40; 201) | 114.5 (44; 213) | <0.001 |
HDL cholesterol [mg/dL] | 48.4 (29; 84) | 51.5 (28; 77) | 0.001 |
Total cholesterol [mg/dL] | 193.8 (135; 260) | 177.8 (94; 299) | <0.001 |
Serum triglycerides [mg/dL] | 138 (48; 436) | 99 (39; 283) | <0.001 |
CRP [mg/L] | 9.2 (0.6; 31.0) | 5,1 (0.5; 152) | <0.001 |
HbA1c [%] | 5.7 (4.7; 9.0) | 5.4 (4.5; 7.7) | <0.001 |
Liver | |||
ALT [U/L] | 36.5 (11; 132) | 29.8 (8; 418) | <0.001 |
AST [U/L] | 25.1 (8; 54) | 24.5 (11; 312) | 0.008 |
Alkaline phosphatase [U/L] | 75.8 (35; 122) | 68.8 (30; 194) | <0.001 |
GGT [U/L] | 33.3 (9; 136) | 28.5 (5; 514) | <0.001 |
Bilirubin [µmol/L] | 10.3 (3.4; 24) | 12.4 (3.4; 44.5) | 0.002 |
Albumin [g/L] | 44.2 (36.8; 50.2) | 43,6 (38.3; 52.8) | 0.060 |
D Liver scores | |||
BARD | 0.009 | ||
0 | 0 | 3 (3.7) | |
1 | 38 (46.9) | 23 (28.4) | |
2 | 10 (12.3) | 11 (13.6) | |
3 | 30 (37) | 37 (45.7) | |
4 | 3 (3.7) | 7 (8.6) | |
ALBI | <0.001 | ||
1 | 11 (13.6) | 6 (7.4) | |
2 | 64 (79) | 71 (87.7) | |
3 | 0 | 1 (1.2) | |
NFS | 1.000 | ||
<−1.445 | 46 (56.8) | 48 (59.3) | |
>0.675 | 8 (9.9) | 3 (3.7) | |
FIB-4 | 1.000 | ||
<1.45 | 70 (86.4) | 67 (82.7) | |
>3.25 | 0 | 1 (1.2) |
Base-Line | 12 Months Follow-Up | p | |
---|---|---|---|
A Anthropometric Characteristics | |||
Demographic | |||
Age [years] | 40.7 (20; 60) | - | - |
Gender | - | ||
Female | 65 (82.3%) | - | |
Male | 14 (17.7%) | - | |
Anthropometric | |||
BMI [kg/m2] | 51.7 (42; 62) | 33.1 (24; 42) | <0.001 |
Body weight [kg] | 149.4 (109; 244) | 94.6 (61; 146) | <0.001 |
Weight loss [%] | 35.45 (16.75; 54.91) | - | |
Excessive weight [kg] | 82.9 | - | - |
Excessive weight loss [%] | 64.4 | - | |
Body fat [%] | 52 (30; 62.1) | 35.5 (19.6; 49.1) | <0.001 |
Waist–hip ratio | 0.96 (0.71; 1.33) | 0.88 (0.71; 1.05) | <0.001 |
B Medical history and medication | |||
Hypertension | <0.001 | ||
Yes | 51 (64.6) | 30 (38) | |
no | 26 (32.9) | 45 (57) | |
Cardiovascular disease | 1.000 | ||
Yes | 3 (3.8) | 2 (2.5) | |
No | 74 (93.7) | 74 (93.7) | |
Smoking | 0.655 | ||
Yes | 22 (27.8) | 21 (26.6) | |
No | 57 (72.2) | 55 (69.6) | |
Hormonal contraception | 0.564 | ||
Yes | 14 (17.7) | 12 (15.2) | |
No | 63 (79.7) | 64 (81) | |
C Metabolism | |||
Diabetes mellitus type 2 | <0.001 | ||
Yes | 19 (24.1) | 6 (7.6) | |
No | 54 (68.4) | 67 (84.8) | |
Hyperlipidemia | <0.001 | ||
Yes | 32 (40.5) | 9 (11.4) | |
No | 47 (59.5) | 65 (82.3) | |
Number of medications | 0.001 | ||
0 | 60 (75.9) | 71 (89.9) | |
1 | 11 (13.9) | 3 (3.8) | |
2 | 6 (7.6) | 1 (1.3) | |
3 | 2 (2.5) | 0 | |
Insulin therapy | 0.005 | ||
Yes | 11 (13.9) | 0 | |
No | 67 (84.8) | 74 (93.7 | |
GLP Analogs | 0.046 | ||
Yes | 4 (5.1) | 0 | |
No | 75 (94.9) | 75 (94.9) | |
LDL cholesterol [mg/dL] | 128.67 (53; 233) | 88,13 (13; 153) | <0.001 |
HDL cholesterol [mg/dL] | 47.60 (0; 87) | 53.08 (17; 144) | <0.001 |
Total cholesterol [mg/dL] | 185.5 (115; 290) | 154 (96; 242) | <0.001 |
Serum triglycerides [mg/dL] | 142.46 (58; 751) | 90.19 (43; 253) | <0.001 |
CRP [mg/L] | 14.3 (2.09; 110,89) | 3.37 (0,49; 43,0) | <0.001 |
HbA1c [%] | 6.0 (4.7; 9.6) | 5.3 (4.4; 6.7) | <0.001 |
Liver | |||
ALT [U/L] | 41.93 (12; 263) | 29.92 (9; 186) | <0.001 |
AST [U/L] | 29.16 (12; 140) | 22.33 (8; 137) | <0.001 |
Alkaline phosphatase [U/L] | 83.227 (36; 131) | 82.71 (31; 270) | 0.449 |
GGT [U/L] | 64.99 (9; 1867) | 20.69 (5; 279) | <0.001 |
Bilirubin [µmol/L] | 8.80 (3.4; 23.9) | 10.2396 (1.71; 25.66) | <0.001 |
Albumin [g/L] | 43.5 (36.1; 51.0) | 43.525 (37.4; 51.2) | 0.980 |
D Liver scores | |||
BARD | 0.093 | ||
0 | 0 | 3 (3.8) | |
1 | 37 (46.8) | 23 (29.1) | |
2 | 15 (19) | 14 (17.7) | |
3 | 19 (24.1) | 30 (38) | |
4 | 8 (10.1) | 9 (11.4) | |
ALBI | 0.037 | ||
1 | 15 (19) | 11 (13.9) | |
2 | 60 (75.9) | 65 (82.3) | |
3 | 0 | 0 | |
NFS | 1.000 | ||
<−1.445 | 18 (22.8) | 52 (65.8) | |
>0.675 | 6 (7.6) | 0 | |
FIB-4 | 1.000 | ||
<1.45 | 75 (94.9) | 72 (91.1) | |
>3.25 | 0 | 0 |
Base-Line | 12 months Follow-Up | |||||
---|---|---|---|---|---|---|
A Anthropometric Characteristics | ||||||
Demographic | LCD n= 81 | RYGB n= 79 | p | LCD n= 81 | RYGB n= 79 | p |
Age [years] | 42.8 (20; 67) | 40.7 (20; 60) | 0.282 | - | - | |
Gender | - | |||||
Female | 52 (64.2%) | 65 (82.3%) | 0.01 | - | - | |
Male | 29 (35.8%) | 14 (17.7%) | - | - | ||
Anthropometric | - | |||||
BMI [kg/m2] | 43.6 (31.9; 59.2) | 51.7 (42; 62) | <0.001 | 33.5 (24.3; 49.7) | 33.1 (24; 42) | 0.755 |
Body weight [kg] | 130 (90.1; 185.4) | 149.4 (109; 244) | <0.001 | 99.6 (61;159) | 94.6 (61; 146) | 0.199 |
Weight loss [%] | - | - | - | 23 (1; 41.4) | 35.45 (16.75; 54.91) | <0.001 |
Excessive weight [kg] | 61.3 | 82.9 | <0.001 | - | - | - |
Excessive weight loss [%] | - | - | 50.4 | 64.4 | <0.001 | |
Body fat [%] | 45.9 (28.5; 59.2) | 52 (30; 62.1) | <0.001 | 34.8 (15.0; 53.7) | 35.5 (19.6; 49.1) | 0.656 |
Waist–hip ratio | 0.95 (0.69; 1.25) | 0.96 (0.71; 1.33) | 0.962 | 0.9 (0.72; 1.13) | 0.88 (0.71; 1.05) | 0.968 |
B Medical history and medication | ||||||
Hypertension | 0.04 | 0.333 | ||||
Yes | 40 (49.4) | 51 (64.6) | 26 (32.1 %) | 30 (38) | ||
no | 40 (49.4) | 26 (32.9) | 54 (66.7) | 45 (57) | ||
Cardiovascular disease | 0.61 | 0.693 | ||||
Yes | 2 (2.5) | 3 (3.8) | 3 (3.7) | 2 (2.5) | ||
No | 79 (97.5) | 74 (93.7) | 77 (95.1) | 74 (93.7) | ||
Smoking | 0.413 | 0.580 | ||||
Yes | 18 (22.2) | 22 (27.8) | 19 (23.5) | 21 (26.6) | ||
No | 63 (77.8) | 57 (72.2) | 61 (75.3) | 55 (69.6) | ||
Hormonal contraception | 0.617 | 0.495 | ||||
Yes | 12 (14.8) | 14 (17.7) | 16 (19.8) | 12 (15.2) | ||
No | 67 (82.7) | 63 (79.7) | 64 (79) | 64 (81) | ||
C Metabolism | ||||||
Diabetes mellitus | 0.2 | 0.529 | ||||
Yes | 14 (17.3) | 19 (24.1) | 9 (11.1) | 6 (7.6) | ||
No | 66 (81.5) | 54 (68.4) | 71 (87.7) | 67 (84.8) | ||
Hyperlipidemia | 0.51 | 0.028 | ||||
Yes | 37 (45.7) | 32 (40.5) | 21 (25.9) | 9 (11.4) | ||
No | 44 (54.3) | 47 (59.5) | 59 (72.8) | 65 (82.3) | ||
Number of medications | 0.03 | 0.157 | ||||
0 | 72 (87.8) | 60 (75.9) | 79 (96.3) | 71 (89.9) | ||
1 | 6 (7.3) | 11 (13.9) | 0 | 3 (3.8) | ||
2 | 2 (2.4) | 6 (7.6) | 1 (1.2) | 1 (1.3) | ||
3 | 1 (1.2) | 2 (2.5) | 0 | 0 | ||
Insulin therapy | 0.098 | 0.094 | ||||
Yes | 5 (6.1) | 11 (13.9) | 3 (3.7) | 0 | ||
No | 76 (93.9) | 67 (84.8) | 77 (93.9) | 74 (93.7 | ||
GLP Analogs | 0.389 | 1.000 | ||||
Yes | 2 (2.5) | 4 (5.1) | 0 | 0 | ||
No | 79 (97.5) | 75 (94.9) | 80 (98.8) | 75 (94.9) | ||
LDL cholesterol [mg/dL] | 132.7 (40; 201) | 128.67 (53; 233) | 0.384 | 114.5 (44; 213) | 88,13 (13; 153) | <0.001 |
HDL cholesterol [mg/dL] | 48.4 (29; 84) | 47.60 (0; 87) | 0.877 | 51.5 (28; 77) | 53.08 (17; 144) | 0.823 |
Total cholesterol [mg/dL] | 193.8 (135; 260) | 185.5 (115; 290) | 0.102 | 177.8 (94; 299) | 154 (96; 242) | <0.001 |
Serum triglycerides [mg/dL] | 138 (48; 436) | 142.46 (58; 751) | 0.917 | 99 (39; 283) | 90.19 (43; 253) | 0.212 |
CRP [mg/L] | 9.2 (0.6; 31.0) | 14.3 (2.09; 110,89) | <0.001 | 5,1 (0.5; 152) | 3.37 (0,49; 43,0) | 0.060 |
HbA1c [%] | 5.7 (4.7; 9.0) | 6.0 (4.7; 9.6) | 0.049 | 5.4 (4.5; 7.7) | 5.3 (4.4; 6.7) | 0.073 |
Liver | ||||||
ALT [U/L] | 36.5 (11; 132) | 41.93 (12; 263) | 0.254 | 29.8 (8; 418) | 29.92 (9; 186) | 0.263 |
AST [U/L] | 25.1 (8; 54) | 29.16 (12; 140) | 0.465 | 24.5 (11; 312) | 22.33 (8; 137) | 0.370 |
Alkaline phosphatase [U/L] | 75.8 (35; 122) | 83.227 (36; 131) | 0.036 | 68.8 (30; 194) | 82.71 (31; 270) | <0.001 |
GGT [U/L] | 33.3 (9; 136) | 64.99 (9; 1867) | 0.431 | 28.5 (5; 514) | 20.69 (5; 279) | <0.001 |
Bilirubin [µmol/L] | 10.3 (3.4; 24) | 8.8 (3.4; 23.9) | 0.012 | 12.4 (3.4; 44.5) | 10.2(1.7; 25.7) | 0.081 |
Albumin [g/L] | 44.2 (36.8; 50.2) | 43.5 (36.1; 51.0) | 0.228 | 43,6 (38.3; 52.8) | 43.525 (37.4; 51.2) | 0.529 |
D Liver scores | ||||||
BARD | 0.946 | 0.835 | ||||
0 | 0 | 0 | 3 (3.7) | 3 (3.8) | ||
1 | 38 (46.9) | 37 (46.8) | 23 (28.4) | 23 (29.1) | ||
2 | 10 (12.3) | 15 (19) | 1 (13.6) | 14 (17.7) | ||
3 | 30 (37) | 19 (24.1) | 37 (45.7) | 30 (38) | ||
4 | 3 (3.7) | 8 (10.1) | 7 (8.6) | 9 (11.4) | ||
ALBI | 0.171 | 0.103 | ||||
1 | 11 (13.6) | 15 (19) | 6 (7.4) | 11 (13.9) | ||
2 | 64 (79) | 60 (75.9) | 71 (87.7) | 65 (82.3) | ||
3 | 0 | 0 | 1 (1.2) | 0 | ||
NFS | 0.282 | 0.077 | ||||
<−1.445 | 46 (56.8) | 18 (22.8) | 48 (59.3) | 52 (65.8) | ||
>0.675 | 8 (9.9) | 6 (7.6) | 3 (3.7) | 0 | ||
FIB-4 | 1 | 0.303 | ||||
<1.45 | 70 (86.4) | 75 (94.9) | 67 (82.7) | 72 (91.1) | ||
>3.25 | 0 | 0 | 1 (1.2) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, A.; Arians, M.; Karrasch, T.; Pons-Kühnemann, J.; Schäffler, A.; Roderfeld, M.; Roeb, E. Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy. J. Clin. Med. 2022, 11, 1756. https://doi.org/10.3390/jcm11071756
Schmid A, Arians M, Karrasch T, Pons-Kühnemann J, Schäffler A, Roderfeld M, Roeb E. Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy. Journal of Clinical Medicine. 2022; 11(7):1756. https://doi.org/10.3390/jcm11071756
Chicago/Turabian StyleSchmid, Andreas, Miriam Arians, Thomas Karrasch, Jörn Pons-Kühnemann, Andreas Schäffler, Martin Roderfeld, and Elke Roeb. 2022. "Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy" Journal of Clinical Medicine 11, no. 7: 1756. https://doi.org/10.3390/jcm11071756
APA StyleSchmid, A., Arians, M., Karrasch, T., Pons-Kühnemann, J., Schäffler, A., Roderfeld, M., & Roeb, E. (2022). Improvement of Type 2 Diabetes Mellitus and Attenuation of NAFLD Are Associated with the Success of Obesity Therapy. Journal of Clinical Medicine, 11(7), 1756. https://doi.org/10.3390/jcm11071756