Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring
Abstract
:1. Introduction
2. MicroRNA: General Characteristics
3. MiRNA in Coronary Heart Disease
4. Acetylsalicylic Acid and Clopidogrel Impact on Platelet miRNA Expression
5. MiRNAs Expression and Platelet Reactivity
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; den Ruijter, H.M.; Bots, M.L.; Moons, K.G. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: A systematic review. Heart 2012, 98, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Makki, N.; Brennan, T.M.; Girotra, S. Acute coronary syndrome. J. Intensive Care Med. 2015, 30, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Jarolim, P. High sensitivity cardiac troponin assays in the clinical laboratories. Clin. Chem Lab. Med. 2015, 53, 635–652. [Google Scholar] [CrossRef]
- Choi, J.L.; Li, S.; Han, J.Y. Platelet function tests: A review of progresses in clinical application. Biomed. Res. Int. 2014, 2014, 456569. [Google Scholar] [CrossRef]
- Rumbaut, R.E.; Thiagarajan, P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. In Integrated Systems Physiology: From Molecule to Function to Disease; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Rumbaut, R.E.; Slaff, D.W.; Burns, A.R. Microvascular thrombosis models in venules and arterioles in vivo. Microcirculation 2005, 12, 259–274. [Google Scholar] [CrossRef]
- oude Egbrink, M.G.; Tangelder, G.J.; Slaaf, D.W.; Reneman, R.S. Thromboembolic reaction following wall puncture in arterioles and venules of the rabbit mesentery. Thromb. Haemost. 1988, 59, 23–28. [Google Scholar] [CrossRef]
- Yang, Y.; Lewis, J.P.; Hulot, J.S.; Scott, S.A. The pharmacogenetic control of antiplatelet response: Candidate genes and CYP2C19. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1599–1617. [Google Scholar] [CrossRef] [Green Version]
- Cavallari, L.H.; Lee, C.R.; Beitelshees, A.L.; Cooper-DeHoff, R.M.; Duarte, J.D.; Voora, D.; Kimmel, S.E.; McDonough, C.W.; Gong, Y.; Dave, C.V.; et al. Multisite Investigation of Outcomes with Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy after Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2018, 11, 181–191. [Google Scholar] [CrossRef]
- Lee, C.R.; Thomas, C.D.; Beitelshees, A.L.; Tuteja, S.; Empey, P.E.; Lee, J.C.; Limdi, N.A.; Duarte, J.D.; Skaar, T.C.; Chen, Y.; et al. Impact of the CYP2C19*17 Allele on Outcomes in Patients Receiving Genotype-Guided Antiplatelet Therapy after Percutaneous Coronary Intervention. Clin. Pharmacol. Ther. 2021, 109, 705–715. [Google Scholar] [CrossRef]
- Tomaniak, M.; Gąsecka, A.; Filipiak, K.J. Cell-derived microvesicles in cardiovascular diseases and antiplatelet therapy monitoring—A lesson for future trials? Current evidence, recent progresses and perspectives of clinical application. Int. J. Cardiol. 2017, 226, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, B. Acute coronary syndrome—The present and future role of biomarkers. Clin. Chem. Lab. Med. 2013, 51, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, N.; Skroblin, P.; Barwari, T.; Huntley, R.P.; Lu, R.; Joshi, A.; Lovering, R.C.; Mayr, M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ. Res. 2017, 120, 418–435. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yao, Q.; Cui, H.; Yang, J.; Wu, N.; Liu, Y.; Zhou, Y.; Zhang, Y.; Su, J.; Xia, Y.; et al. MiR-223 or miR-126 predicts resistance to dual antiplatelet therapy in patients with ST-elevation myocardial infarction. J. Int. Med. Res. 2021, 49, 3000605211016209. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef]
- Murchison, E.P.; Hannon, G.J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 2004, 16, 223–229. [Google Scholar] [CrossRef]
- Park, J.E.; Heo, I.; Tian, Y.; Simanshu, D.K.; Chang, H.; Jee, D.; Patel, D.J.; Kim, V.N. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 2011, 475, 201–205. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provost, P. The clinical significance of platelet microparticle-associated microRNAs. Clin. Chem. Lab. Med. 2017, 55, 657–666. [Google Scholar] [CrossRef]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Turchinovich, A.; Samatov, T.R.; Tonevitsky, A.G.; Burwinkel, B. Circulating miRNAs: Cell-cell communication function? Front. Genet. 2013, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.R.; Hartwig, J.H.; Italiano, J.E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. J. Clin. Investig. 2005, 115, 3348–3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, O.B.; Grove, E.L.; Kristensen, S.D.; Nissen, P.H.; Hvas, A.M. MicroRNA as Biomarkers for Platelet Function and Maturity in Patients with Cardiovascular Disease. Thromb. Haemost. 2021, 122, 181–195. [Google Scholar] [CrossRef]
- Landry, P.; Plante, I.; Ouellet, D.L.; Perron, M.P.; Rousseau, G.; Provost, P. Existence of a microRNA pathway in anucleate platelets. Nat. Struct. Mol. Biol. 2009, 16, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Klimczak, D.; Pączek, L.; Jażdżewski, K.; Kuch, M. MicroRNAs: Powerful regulators and potential diagnostic tools in cardiovascular disease. Kardiol. Pol. 2015, 73, 1–6. [Google Scholar] [CrossRef]
- Tomaniak, M.; Sygitowicz, G.; Błaszczyk, O.; Kołtowski, Ł.; Puchta, D.; Malesa, K.; Kochanowski, J.; Sitkiewicz, D.; Filipiak, K.J. miR-1, miR-21, and galectin-3 in hypertensive patients with symptomatic heart failure and left ventricular hypertrophy. Kardiol. Pol. 2018, 76, 1009–1011. [Google Scholar] [CrossRef]
- Sygitowicz, G.; Tomaniak, M.; Błaszczyk, O.; Kołtowski, Ł.; Filipiak, K.J.; Sitkiewicz, D. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch. Cardiovasc. Dis. 2015, 108, 634–642. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 2010, 285, 17442–17452. [Google Scholar] [CrossRef] [Green Version]
- Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010, 107, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoekstra, M.; van der Lans, C.A.; Halvorsen, B.; Gullestad, L.; Kuiper, J.; Aukrust, P.; van Berkel, T.J.; Biessen, E.A. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem. Biophys. Res. Commun. 2010, 394, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.; Dunoyer-Geindre, S.; Zapilko, V.; Nolli, S.; Reny, J.L.; Fontana, P. Functional Validation of microRNA-126-3p as a Platelet Reactivity Regulator Using Human Haematopoietic Stem Cells. Thromb. Haemost. 2019, 119, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Guo, L.Z.; Kim, M.H.; Han, J.Y.; Serebruany, V. Platelet microRNA for predicting acute myocardial infarction. J. Thromb. Thrombolysis 2017, 44, 556–564. [Google Scholar] [CrossRef]
- De Rosa, S.; Indolfi, C. Circulating microRNAs as Biomarkers in Cardiovascular Diseases. Exp. Suppl. 2015, 106, 139–149. [Google Scholar] [CrossRef]
- Templin, C.; Volkmann, J.; Emmert, M.Y.; Mocharla, P.; Müller, M.; Kraenkel, N.; Ghadri, J.R.; Meyer, M.; Styp-Rekowska, B.; Briand, S.; et al. Increased Proangiogenic Activity of Mobilized CD34+ Progenitor Cells of Patients with Acute ST-Segment-Elevation Myocardial Infarction: Role of Differential MicroRNA-378 Expression. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Nishiguchi, T.; Imanishi, T.; Akasaka, T. MicroRNAs and cardiovascular diseases. Biomed. Res. Int. 2015, 2015, 682857. [Google Scholar] [CrossRef]
- Valgimigli, M.; Bueno, H.; Byrne, R.A.; Collet, J.P.; Costa, F.; Jeppsson, A.; Jüni, P.; Kastrati, A.; Kolh, P.; Mauri, L.; et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2018, 39, 213–260. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Diodati, J.G.; Pharand, C. Resistance to clopidogrel: A review of the evidence. J. Am. Coll. Cardiol. 2005, 45, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Boer, H.C.; van Solingen, C.; Prins, J.; Duijs, J.M.; Huisman, M.V.; Rabelink, T.J.; van Zonneveld, A.J. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur. Heart J. 2013, 34, 3451–3457. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Zampetaki, A.; Dudek, K.; Kaudewitz, D.; King, A.; Kirkby, N.S.; Crosby-Nwaobi, R.; Prokopi, M.; Drozdov, I.; Langley, S.R.; et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ. Res. 2013, 112, 595–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carino, A.; De Rosa, S.; Sorrentino, S.; Polimeni, A.; Sabatino, J.; Caiazzo, G.; Torella, D.; Spaccarotella, C.; Mongiardo, A.; Strangio, A.; et al. Modulation of Circulating MicroRNAs Levels during the Switch from Clopidogrel to Ticagrelor. Biomed. Res. Int. 2016, 2016, 3968206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonello, L.; Tantry, U.S.; Marcucci, R.; Blindt, R.; Angiolillo, D.J.; Becker, R.; Bhatt, D.L.; Cattaneo, M.; Collet, J.P.; Cuisset, T.; et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J. Am. Coll. Cardiol. 2010, 56, 919–933. [Google Scholar] [CrossRef] [Green Version]
- Mussbacher, M.; Pirabe, A.; Brunnthaler, L.; Schrottmaier, W.C.; Assinger, A. Horizontal MicroRNA Transfer by Platelets—Evidence and Implications. Front. Physiol. 2021, 12, 678362. [Google Scholar] [CrossRef]
- Becker, K.C.; Kwee, L.C.; Neely, M.L.; Grass, E.; Jakubowski, J.A.; Fox, K.A.A.; White, H.D.; Gregory, S.G.; Gurbel, P.A.; Carvalho, L.P.; et al. Circulating MicroRNA Profiling in Non-ST Elevated Coronary Artery Syndrome Highlights Genomic Associations with Serial Platelet Reactivity Measurements. Sci. Rep. 2020, 10, 6169. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, F.Y.; Lin, Y.W.; Cheng, S.M.; Chang, C.C.; Lin, R.H.; Chuang, C.L.; Sheu, J.S.; Chen, S.M.; Tsai, C.S. Platelet MicroRNA 365-3p Expression Correlates with High On-treatment Platelet Reactivity in Coronary Artery Disease Patients. Cardiovasc. Drugs Ther. 2019, 33, 129–137. [Google Scholar] [CrossRef]
- Chyrchel, B.; Totoń-Żurańska, J.; Kruszelnicka, O.; Chyrchel, M.; Mielecki, W.; Kołton-Wróż, M.; Wołkow, P.; Surdacki, A. Association of plasma miR-223 and platelet reactivity in patients with coronary artery disease on dual antiplatelet therapy: A preliminary report. Platelets 2015, 26, 593–597. [Google Scholar] [CrossRef]
- Jäger, B.; Stojkovic, S.; Haller, P.M.; Piackova, E.; Kahl, B.S.; Andric, T.; Vargas, K.G.; Wojta, J.; Huber, K. Course of platelet miRNAs after cessation of P2Y12 antagonists. Eur. J. Clin. Investig. 2019, 49, e13149. [Google Scholar] [CrossRef]
- Kaudewitz, D.; Skroblin, P.; Bender, L.H.; Barwari, T.; Willeit, P.; Pechlaner, R.; Sunderland, N.P.; Willeit, K.; Morton, A.C.; Armstrong, P.C.; et al. Association of MicroRNAs and YRNAs with Platelet Function. Circ. Res. 2016, 118, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.G.; Mandolini, C.; Moerland, P.D.; de Ronde, M.W.; Sondermeijer, B.M.; Halliani, A.; Nieuwland, R.; Cipollone, F.; Creemers, E.E.; Meijers, J.C.; et al. Low miR-19b-1-5p expression in isolated platelets after aspirin use is related to aspirin insensitivity. Int. J. Cardiol. 2016, 203, 262–263. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xu, X.; Hu, H.; Cheng, J.; Chen, R.; Hu, Y.; Chen, X. The expression profile of platelet-derived miRNA in coronary artery disease patients with clopidogrel resistance. Pharmacol. Res. Perspect. 2021, 9, e00751. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qin, L.; Wang, Z.; Peng, L.; Liu, J.; Wang, X.; Du, R.; Zou, Y.; Wu, Y.; Yin, T. Platelet-derived miRNAs as determinants of the antiplatelet response in clopidogrel-treated patients with ACS. Thromb. Res. 2020, 186, 71–74. [Google Scholar] [CrossRef]
- Liu, Y.L.; Hu, X.L.; Song, P.Y.; Li, H.; Li, M.P.; Du, Y.X.; Li, M.Y.; Ma, Q.L.; Peng, L.M.; Song, M.Y.; et al. Influence of GAS5/MicroRNA-223-3p/P2Y12 Axis on Clopidogrel Response in Coronary Artery Disease. J. Am. Heart Assoc. 2021, 10, e021129. [Google Scholar] [CrossRef]
- Peng, L.; Liu, J.; Qin, L.; Liu, J.; Xi, S.; Lu, C.; Yin, T. Interaction between platelet-derived microRNAs and CYP2C19*2 genotype on clopidogrel antiplatelet responsiveness in patients with ACS. Thromb. Res. 2017, 157, 97–102. [Google Scholar] [CrossRef]
- Shi, R.; Ge, L.; Zhou, X.; Ji, W.J.; Lu, R.Y.; Zhang, Y.Y.; Zeng, S.; Liu, X.; Zhao, J.H.; Zhang, W.C.; et al. Decreased platelet miR-223 expression is associated with high on-clopidogrel platelet reactivity. Thromb. Res. 2013, 131, 508–513. [Google Scholar] [CrossRef]
- Tang, Q.J.; Lei, H.P.; Wu, H.; Chen, J.Y.; Deng, C.Y.; Sheng, W.S.; Fu, Y.H.; Li, X.H.; Lin, Y.B.; Han, Y.L.; et al. Plasma miR-142 predicts major adverse cardiovascular events as an intermediate biomarker of dual antiplatelet therapy. Acta Pharmacol. Sin. 2019, 40, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Yin, Q.; Zhang, M.; Li, S.; Chen, S. Leukocyte miR-223-3p is not associated with altered platelet responses to clopidogrel in patients with coronary artery disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2018, 43, 421–427. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, F.; Luo, Y.; Liao, J.; Cao, J.; Xue, T. Platelet miR-107 Participates in Clopidogrel Resistance after PCI Treatment by Regulating P2Y12. Acta Haematol. 2022, 145, 46–53. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhou, X.; Ji, W.J.; Shi, R.; Lu, R.Y.; Li, J.L.; Yang, G.H.; Luo, T.; Zhang, J.Q.; Zhao, J.H.; et al. Decreased circulating microRNA-223 level predicts high on-treatment platelet reactivity in patients with troponin-negative non-ST elevation acute coronary syndrome. J. Thromb. Thrombolysis 2014, 38, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Czajka, P.; Fitas, A.; Jakubik, D.; Eyileten, C.; Gasecka, A.; Wicik, Z.; Siller-Matula, J.M.; Filipiak, K.J.; Postula, M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front. Physiol. 2021, 12, 652579. [Google Scholar] [CrossRef] [PubMed]
- Krammer, T.L.; Mayr, M.; Hackl, M. microRNAs as promising biomarkers of platelet activity in antiplatelet therapy monitoring. Int. J. Mol. Sci. 2020, 21, 3477. [Google Scholar] [CrossRef] [PubMed]
- Klimczak-Tomaniak, D.; van den Berg, V.J.; Strachinaru, M.; Akkerhuis, K.M.; Baart, S.; Caliskan, K.; Manintveld, O.C.; Umans, V.; Geleijnse, M.; Boersma, E.; et al. Longitudinal patterns of N-terminal pro B-type natriuretic peptide, troponin T, and C-reactive protein in relation to the dynamics of echocardiographic parameters in heart failure patients. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Tomaniak, M.; Katagiri, Y.; Modolo, R.; de Silva, R.; Khamis, R.Y.; Bourantas, C.V.; Torii, R.; Wentzel, J.J.; Gijsen, F.J.H.; van Soest, G.; et al. Vulnerable plaques and patients: State-of-the-art. Eur. Heart J. 2020, 41, 2997–3004. [Google Scholar] [CrossRef]
- Garcia, A.; Dunoyer-Geindre, S.; Fish, R.J.; Neerman-Arbez, M.; Reny, J.L.; Fontana, P. Methods to Investigate miRNA Function: Focus on Platelet Reactivity. Thromb. Haemost. 2021, 121, 409–421. [Google Scholar] [CrossRef]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Gross, L.; Aradi, D.; Sibbing, D. Platelet Function Testing in Patients on Antiplatelet Medications. Semin. Thromb. Hemost. 2016, 42, 306–320. [Google Scholar] [CrossRef]
- Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
Authors | Population | Intervention | Comparison | Outcomes | Methods | RNA Used for Normalization |
---|---|---|---|---|---|---|
Shi et al. [58] | 33 NSTE-ACS pts nondiabetic | 300 mg ASA + 300 mg clopidogrel (24 h) or 100 mg ASA + 75 mg clopidogrel (5 days) | group dichotomizedby PRI/PAG | ↓ miR-223 in PRI-determined low responders | PRI by VASP phosphorylation and PAG by LTA platelet miRNAs analysis by qPCR | U6 |
Kok et al. [53] | 25 healthy male volunteers 35–65 YO | 100 mg ASA OD for 2 weeks + simvastatin 40 mg OD for 6 weeks | blood samples at baseline and after 6 weeks | ↓ miR-19b-1-5p expression after aspirin use associated with sustained platelet aggregation | platelet miRNAs analysis by qPCR | previously published normalization panel |
Li et al. [36] | 40 healthy volunteers and 20 STEMI pts | LD: 600 mg clopidogrel + 300 mg ASA before PCI | healthy volunteers vs STEMI pts correlation between miRNA levels and PR | ↓ miR-21, miR-126 ↑ miR-150, m iR-223 in STEMI pts no correlation between miRNAs with PRU or VASP | PRU by VerifyNow + PRI by VASP phosphorylation platelet miRNAs analysis by qPCR | RNU 43 |
Peng et al. [57] | 165 ACS pts | 100 mg ASA + 75 mg clopidogrel 300 mg clopidogrel LD to the patients undergoing coronary angiography | 21 low-responders and 21 high-responders according to PAG | ↑ miR-21, miR-221 and miR-223 in the high-responders compared to the low-responders | relative platelet inhibition based on PAG by LTA at baseline and after 5 days platelet miRNAs analysis by qPCR | U6 |
Chen et al. [49] | 155 stable angina pts and 20 healthy controls | stent implantation + ASA (LD: 300 mg, MD: 100 mg OD) + (clopidogrel (LD: 300 mg, MD: 75 mg OD) or ticagrelor (LD: 180 mg, MD: 90 mg BD) or clopidogrel (LD: 300 mg, MD: 75 mg OD)) + cilostazol (100 mg BD) DAPT for 6 months, then aspirin alone | healthy volunteers subdivision in stable angina pts by PRU | different relationships between miRNAs levels and PRU-determined PR miR-339-3p and miR-365-3p with the highest sensitivity and specificity for detecting HTPR (24 h after drug administration) | PRU by VerifyNow platelet miRNA analysis by qPCR | n.d. |
Jäger et al. [51] | 62 CAD pts | 100 mg ASA OD + (75 mg clopidogrel OD/10 mg prasugrel OD/90 mg ticagrelor BID) cessation of P2Y12 inhibitor therapy at baseline | differences in miRNA levels between groups at different time points | cessation of P2Y12 inhibitor therapy did not affect platelet miRNA levels differences in miRNA levels between groups (increased in ticagrelor) | MEA by the Multiplate analyser platelet miRNAs analysis by qPCR | cel-miR-39 |
Liu et al. [55] | 430 ACS pts 214 healthy volunteers | 100 mg ASA + 75 mg clopidogrel (if PCI, then LD: 300 mg clopidogrel) | 10 cases for HPR and 10 for LPR from the healthy group 10 cases for HTPR and 10 for LTPR from ACS pts | ↓ miR-223, miR-126 in the pts with HTPR ↑ miR-150 in the pts with HTPR compared to pts with LTPR | PR by TEG platelet miRNAs analysis by qPCR | U6 |
Zhang et al. [61] | 50 CAD pts after PCI | Before PCI: 75 mg clopidogrel for 6 days or LD 300 mg clopidogrel and 300 mg ASA After PCI: 100 mg ASA OD + 75 mg clopidogrel OD | 28 pts in the HPR group and 22 pts in the LPR group | ↓ miR-107, miR-15b-5p it the pts with HPR | PRU by VerifyNow platelet miRNAs analysis by qPCR | U6 |
Lin et al. [54] | 60 CAD pts after PCI | 100 mg ASA OD + 75 mg clopidogrel OD | 30 pts in clopidogrel resistance group (CR) and 30 pts in control group | ↓ miR-411-3p in the CR group ↑ miR-142-3p, miR-24-3p in the CR group | IPA by VerifyNow platelet miRNA analysis by qPCR | n.d. |
Liu et al. [56] | 37 CAD pts after PCI | 100 mg ASA + clopidogrel (LD: 300 mg, MD: 75 mg OD) | correlation between PRI values and miRNA expression levels | PRI values negatively correlated with miR-223-3p expression | PRI by VASP phosphorylation flow cytometry platelet miRNA analysis by qPCR | U6 |
Authors | Population | Intervention | Comparison | Outcomes | Methods | RNA Used for Normalization |
---|---|---|---|---|---|---|
Zhang et al. [62] | 62 NSTE-ACS pts with troponin negative | 300 mg ASA + 300 mg clopidogrel (24 h) or 100 mg ASA + 75 mg clopidogrel (5 days) | group divided into subgroups compared with each other | ↓ plasma miR-223 in PRI low-responders miR-223 expression correlated with PRI | PRI by VASP phosphorylation flow cytometry plasma miRNAs analysis by qPCR | human-5 s-rRNA |
Chyrchel et al. [50] | 21 NSTE-ACS men with an uncomplicated hospital course | (75 mg clopidogrel OD or 10 mg prasugrel OD or 90 mg ticagrelor BID) + 75–100 mg ASA OD | correlation between plasma miR-223 and PAG PAG compared between clopidogrel & prasugrel/ticagrelor | ↓ PR in pts on prasugrel or ticagrelor compared to clopidogrel ↑ miR-223 with increased DAPT responsiveness | PR measured by MEA plasma miRNAs analysis by qPCR prasugrel and ticagrelor combined in miRNAs analysis | miR-16 |
Kaudewitz et al. [52] | 125 ACS pts 30 days after onset of ACS | ASA + clopidogrel/prasugrel/ticagrelor | correlations between miRNA levels and platelet functions | no correlation between miRNAs and PAG miR-24, miR-126, miR-191, miR-223 correlated with PRU miR-126 correlated with PRI | PRU by VerifyNow and PRI by VASP phosphorylation and PAG by LTA plasma miRNAs analysis by qPCR | cel-miR-39* |
Xie et al. [60] | 188 NSTE-ACS pts after elective PCI | 100 mg ASA + 75 mg clopidogrel | 47 ultra-responders (UR) and 47 non-responders (NR) according to PAG (only 24 and 36 samples analysed, respectively) | no difference in hsa-miR-223- 3p between the NR and UR no significant correlation between miR-223-3p PAG | PAG as a value of electronic impedance (Ω) between the two electrodes immersed in a diluted sample leukocyte miR-223-3p analysis by qPCR | U6 |
Tang et al. [59] | 115 CAD pts + 1199 CAD pts as a prospective cohort | 100 mg ASA + 300 mg clopidogrel LD | pts divided into 4 subgroups according to ARU and PRU | ↑ miR-142 associated with a high risk of MACE ↑ miR-126, miR-142, miR-130a, miR-27a miR-106a in pts resistant to clopidogrel therapy | PRU and ARU by VerifyNow plasma miRNAs analysis by qPCR plasma samples mixed from pts of a given subgroup | cel-miR-39 |
Becker et al. [48] | 878 NSTE-ACS pts + 96 pts NSTE-ACS in corroborative cohort | 100 mg ASA + (75 mg clopidogrel/10 mg prasugrel) | nested case-control study correlation between PR and miRNA levels | miR-15b-5p, miR-93 and miR-126 associated with PR | PRU by VerifyNow or PRI by VASP phosphorylation or Multiplate ADP test assayplasma miRNAs analysis by qPCR and non-targeted miR-Seq analysis | 3 most stable endogenous miRNAs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procyk, G.; Klimczak-Tomaniak, D.; Sygitowicz, G.; Tomaniak, M. Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. J. Clin. Med. 2022, 11, 1763. https://doi.org/10.3390/jcm11071763
Procyk G, Klimczak-Tomaniak D, Sygitowicz G, Tomaniak M. Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. Journal of Clinical Medicine. 2022; 11(7):1763. https://doi.org/10.3390/jcm11071763
Chicago/Turabian StyleProcyk, Grzegorz, Dominika Klimczak-Tomaniak, Grażyna Sygitowicz, and Mariusz Tomaniak. 2022. "Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring" Journal of Clinical Medicine 11, no. 7: 1763. https://doi.org/10.3390/jcm11071763
APA StyleProcyk, G., Klimczak-Tomaniak, D., Sygitowicz, G., & Tomaniak, M. (2022). Circulating and Platelet MicroRNAs in Cardiovascular Risk Assessment and Antiplatelet Therapy Monitoring. Journal of Clinical Medicine, 11(7), 1763. https://doi.org/10.3390/jcm11071763