Pan-Genotypic Direct-Acting Antiviral Agents for Undetermined or Mixed-Genotype Hepatitis C Infection: A Real-World Multi-Center Effectiveness Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Treatment, Efficacy, and Safety Evaluation
2.3. Statistical Analyses
3. Results
3.1. General Characteristics of the Study Population
3.2. Treatment Effectiveness
3.3. Laboratory Adverse Events of the Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yen, H.H.; Su, P.Y.; Liu, I.I.; Zeng, Y.H.; Huang, S.P.; Hsu, Y.C.; Hsu, P.K.; Chen, Y.Y. Retrieval of lost patients in the system for hepatitis C microelimination: A single-center retrospective study. BMC Gastroenterol. 2021, 21, 209. [Google Scholar] [CrossRef]
- Su, P.Y.; Yen, H.H.; Hsu, Y.C.; Wu, S.S.; Kor, C.T.; Su, W.W. Rapid virological response assessment by Abbott RealTime hepatitis C virus assay for predicting sustained virological responses in patients with hepatitis C virus genotype 1 treated with pegylated-interferon and ribavirin. Kaohsiung J. Med. Sci. 2016, 32, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, H.H.; Shih, K.L.; Lin, T.T.; Su, W.W.; Soon, M.S.; Liu, C.S. Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J. Gastroenterol. 2012, 18, 5084–5089. [Google Scholar] [CrossRef] [PubMed]
- Su, P.Y.; Su, W.W.; Hsu, Y.C.; Wang, S.Y.; Chiu, P.F.; Yen, H.H. Micro-Elimination of Hepatitis C among Patients with Kidney Disease by Using Electronic Reminder System-A Hospital-Based Experience. J. Clin. Med. 2022, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Su, P.Y.; Su, W.W.; Hsu, Y.C.; Huang, S.P.; Yen, H.H. Real-world experience of switching from tenofovir disoproxil fumarate to tenofovir alafenamide in patients with chronic hepatitis B: A retrospective study. PeerJ 2021, 9, e12527. [Google Scholar] [CrossRef]
- Liu, I.-L.; Liu, T.; Zeng, Y.-H.; Huang, S.-P.; Hsu, Y.-C.; Su, P.-Y.; Yen, H.-H. Interferon-Free Anti-HCV Therapy Has a Better Treatment Response Rate and Adherence Than Interferon-Based Therapy for Patients With HCV/HIV Coinfection: A Single-Center Retrospective Study. Chang. J. Med. 2020, 18, 122–129. [Google Scholar] [CrossRef]
- Burki, T. Eliminating hepatitis C. Lancet Infect. Dis. 2019, 19, 246–247. [Google Scholar] [CrossRef]
- Hsu, S.J.; Chiu, M.C.; Fang, Y.J.; Yang, T.H.; Yu, J.J.; Chen, C.C.; Kuo, C.C.; Lee, J.Y.; Chen, C.H.; Chen, D.S.; et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir in Asian patients with chronic hepatitis C. J. Form. Med. Assoc. 2019, 118, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Li, C.Y.; Tsai, S.J.; Chen, Y.C. Anti-hepatitis C virus therapy in chronic kidney disease patients improves long-term renal and patient survivals. World J. Clin. Cases 2019, 7, 1270–1281. [Google Scholar] [CrossRef]
- Guerra Veloz, M.F.; Pino Bellido, P.; Cordero Ruiz, P.; Vega Rodriguez, F.; Bellido Munoz, F.; Ramirez de Arellano, E.; Caunedo Alvarez, A.; Pascual Hernandez, A.; Carmona Soria, I. HCV micro-elimination strategies: An interventional study in diagnosed patients without access to the system. Liver Int. 2021, 41, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.H.; Su, P.Y.; Zeng, Y.H.; Liu, I.L.; Huang, S.P.; Hsu, Y.C.; Chen, Y.Y.; Yang, C.W.; Wu, S.S.; Chou, K.C. Glecaprevir-pibrentasvir for chronic hepatitis C: Comparing treatment effect in patients with and without end-stage renal disease in a real-world setting. PLoS ONE 2020, 15, e0237582. [Google Scholar] [CrossRef] [PubMed]
- Su, P.Y.; Chen, Y.Y.; Yen, H.H.; Huang, S.P.; Liu, I.L.; Zeng, Y.H.; Hsu, Y.C.; Siao, F.Y. Strategy for the Micro-Elimination of Hepatitis C among Patients with Diabetes Mellitus-A Hospital-Based Experience. J. Clin. Med. 2021, 10, 2509. [Google Scholar] [CrossRef]
- Polilli, E.; Cento, V.; Restelli, U.; Ceccherini-Silberstein, F.; Aragri, M.; Di Maio, V.C.; Sciacca, A.; Santoleri, F.; Fazii, P.; Costantini, A.; et al. Consequences of inaccurate hepatitis C virus genotyping on the costs of prescription of direct antiviral agents in an Italian district. Clin. Outcomes Res. 2016, 8, 467–473. [Google Scholar] [CrossRef] [Green Version]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- Majethia, S.; Lee, I.H.; Chastek, B.; Bunner, S.; Wolf, J.; Hsiao, A.; Mozaffari, E. Economic impact of applying the AASLD-IDSA simplified treatment algorithm on the real-world management of hepatitis C. J. Manag. Care Spec. Pharm. 2022, 28, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Ghany, M.G.; Morgan, T.R.; Panel, A.-I.H.C.G. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America Recommendations for Testing, Managing, and Treating Hepatitis C Virus Infection. Hepatology 2020, 71, 686–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.J.; Lu, C.K.; Chen, W.M.; Tung, S.Y.; Wei, K.L.; Shen, C.H.; Hsieh, Y.Y.; Yen, C.W.; Chang, K.C.; Chiu, W.N.; et al. Pangenotypic direct-acting antiviral agents for mixed genotype hepatitis C infection: A real-world effectiveness analysis. J. Gastroenterol. Hepatol. 2021, 36, 2911–2916. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Tachi, K.; Shimizu, Y.; Nagano, K.; Ishizu, Y.; Kuzuya, T.; Honda, T.; Ishigami, M.; Hirooka, Y.; Hattori, M.; et al. The Prevalence of Mixed Hepatitis C Virus Genotype Infection and Its Effect on the Response to Direct-Acting Antivirals Therapy. Intervirology 2019, 62, 23–29. [Google Scholar] [CrossRef]
- Wahid, B.; Naeem, N.; Altaf, S.; Ilyas, N. Increasing Prevalence of Untypable and Mixed Genotypes of Hepatitis C Virus in Pakistan: Latest Trends in 2018. Viral Immunol. 2019, 32, 192–194. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Huang, C.F.; Liu, S.F.; Liu, H.Y.; Yeh, M.L.; Huang, C.I.; Hsieh, M.H.; Dai, C.Y.; Chen, S.C.; Yu, M.L.; et al. The performance of HCV GT plus RUO reagent in determining Hepatitis C virus genotypes in Taiwan. PLoS ONE 2021, 16, e0246376. [Google Scholar] [CrossRef]
- Zahid, N.; Ahmad, R.; Iqbal, M.S.; Khan, S.A.; Asghar, S.Y.; Shah, M.M. Detection of hepatitis through proteases and protease inhibitors genes expression and identification of HCV untypable genotype in Abbottabad, Pakistan. Acta Virol. 2021, 65, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Aziz, H.; Fatima, S.; Faheem, M. Indeterminate Prediction of Hepatitis C Virus Genotype by Commercial Real-Time Polymerase Chain Reaction Assay Resolving by Sequencing to Avoid the Consequence of Inaccurate Typing. Viral Immunol. 2020, 33, 507–513. [Google Scholar] [CrossRef]
- Mesbahi, Z.; Kabbaj, H.; Malki, H.; Bouihat, N.; Qrafli, M.; Belefquih, B.; Marcil, S.; Challine, D.; Pawlotsky, J.M.; Bouvier, M.; et al. Indeterminate genotypes of hepatitis C virus by the Abbott RealTime HCV Genotype II assay in Morocco. About eight cases resolved by a sequencing method. J. Med. Virol. 2018, 90, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.J.; Jacobson, I.M.; Hezode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.L.; Chan, H.L.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 1, 2, 4, 5, and 6 Infection. N. Engl. J. Med. 2015, 373, 2599–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, G.R.; Afdhal, N.; Roberts, S.K.; Brau, N.; Gane, E.J.; Pianko, S.; Lawitz, E.; Thompson, A.; Shiffman, M.L.; Cooper, C.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 2 and 3 Infection. N. Engl. J. Med. 2015, 373, 2608–2617. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.S., Jr.; Buti, M.; Rodrigues, L.; Chulanov, V.; Chuang, W.L.; Aguilar, H.; Horvath, G.; Zuckerman, E.; Carrion, B.R.; Rodriguez-Perez, F.; et al. Glecaprevir/pibrentasvir for 8weeks in treatment-naive patients with chronic HCV genotypes 1-6 and compensated cirrhosis: The EXPEDITION-8 trial. J. Hepatol. 2020, 72, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Gane, E.; Poordad, F.; Zadeikis, N.; Valdes, J.; Lin, C.W.; Liu, W.; Asatryan, A.; Wang, S.; Stedman, C.; Greenbloom, S.; et al. Safety and Pharmacokinetics of Glecaprevir/Pibrentasvir in Adults With Chronic Genotype 1-6 Hepatitis C Virus Infections and Compensated Liver Disease. Clin. Infect. Dis. 2019, 69, 1657–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klinker, H.; Naumann, U.; Rössle, M.; Berg, T.; Bondin, M.; Lohmann, K.; Koenig, B.; Zeuzem, S.; Cornberg, M. Glecaprevir/pibrentasvir for 8 weeks in patients with compensated cirrhosis: Safety and effectiveness data from the German Hepatitis C-Registry. Liver Int. 2021, 41, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
- Lampertico, P.; Carrion, J.A.; Curry, M.; Turnes, J.; Cornberg, M.; Negro, F.; Brown, A.; Persico, M.; Wick, N.; Porcalla, A.; et al. Real-world effectiveness and safety of glecaprevir/pibrentasvir for the treatment of patients with chronic HCV infection: A meta-analysis. J. Hepatol. 2020, 72, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol. 2014, 61, S45–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruzziello, A.; Marigliano, S.; Loquercio, G.; Cozzolino, A.; Cacciapuoti, C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J. Gastroenterol. 2016, 22, 7824–7840. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Adinolfi, L.E.; Fracanzani, A.L.; Rini, F.; Caldarella, R.; Calvaruso, V.; Camma, C.; Ciaccio, M.; Di Marco, V.; Grimaudo, S.; et al. Hepatitis C virus eradication by direct-acting antiviral agents improves carotid atherosclerosis in patients with severe liver fibrosis. J. Hepatol. 2018, 69, 18–24. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, A.L.; Sreenu, V.B.; Wilkie, G.; Gunson, R.; Templeton, K.; Leitch, E.C.M. Prevalence of mixed genotype hepatitis C virus infections in the UK as determined by genotype-specific PCR and deep sequencing. J. Viral Hepat. 2018, 25, 524–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuadrado, A.; Cobo, C.; Mateo, M.; Blasco, A.J.; Cabezas, J.; Llerena, S.; Fortea, J.I.; Lazaro, P.; Crespo, J. Telemedicine efficiently improves access to hepatitis C management to achieve HCV elimination in the penitentiary setting. Int. J. Drug Policy 2020, 88, 103031. [Google Scholar] [CrossRef] [PubMed]
- Hasan, F.; Alfadhli, A.; Al-Gharabally, A.; Alkhaldi, M.; Colombo, M.; Lazarus, J.V. Accelerating the elimination of hepatitis C in Kuwait: An expert opinion. World J. Gastroenterol. 2020, 26, 4415–4427. [Google Scholar] [CrossRef]
- Chiu, W.N.; Hung, C.H.; Lu, S.N.; Chen, M.Y.; Tung, S.Y.; Wei, K.L.; Lu, C.K.; Chen, C.H.; Hu, T.H.; Hu, J.H.; et al. Real-world effectiveness of glecaprevir/pibrentasvir and ledipasvir/sofosbuvir for mixed genotype hepatitis C infection: A multicenter pooled analysis in Taiwan. J. Viral Hepat. 2020, 27, 866–872. [Google Scholar] [CrossRef] [PubMed]
- Perez Castano, Y.; Chouza Perez, J.M.; Sanz Largo, V.; Almandoz Cortajarena, E.; Gomez Garcia, A.; Esandi Gonzalez, F.J.; Castiella Eguzkiza, A.; Arranz Diaz, S.; Urtasun Lugea, I.; Sanchez Iturri, M.J.; et al. Linkage to care strategy for the micro-elimination of hepatitis C among parenteral drug users on methadone replacement therapy in Gipuzkoa. Rev. Esp. Enferm. Dig. 2020, 112, 545–549. [Google Scholar] [CrossRef]
- Chen, C.T.; Lu, M.Y.; Hsieh, M.H.; Tsai, P.C.; Hsieh, T.Y.; Yeh, M.L.; Huang, C.I.; Tsai, Y.S.; Ko, Y.M.; Lin, C.C.; et al. Outreach onsite treatment with a simplified pangenotypic direct-acting anti-viral regimen for hepatitis C virus micro-elimination in a prison. World J. Gastroenterol. 2022, 28, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Mangia, A.; Albanese, A.P.; Bourliere, M.; Craxi, A.; Dieterich, D.; Solomon, S.; Vanstraelen, K.; Hernandez, C.; Turnes, J. Guidelines Have a Key Role in Driving HCV Elimination by Advocating for Simple HCV Care Pathways. Adv. Ther. 2021, 38, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
Parameter | All Patients | Mixed Type | Indeterminate Type | p-Values |
---|---|---|---|---|
Gender (Male), n/N (%) | 82/147 (55.8%) | 24/37 (64.9%) | 58/110 (52.7%) | 0.198 |
Age, yr, mean ± SD | 63 ± 13 | 63 ± 12 | 63 ± 14 | 0.912 |
Body Height, cm, mean ± SD | 160.5 ± 8.8 | 161.4 ± 9.6 | 160.2 ± 8.5 | 0.494 |
Body weight, kg, mean ± SD | 64.8 ± 12.6 | 65.4 ± 10.6 | 64.6 ± 13.2 | 0.779 |
Body Mass Index, kg/m2, mean ± SD | 24.9 ± 3.9 | 24.7 ± 3.6 | 25 ± 4 | 0.737 |
Comorbidity, n/N (%) | ||||
Hepatoma | 3/147 (2.0%) | 2/37 (5.4%) | 1/110 (0.9%) | 0.156 |
Cirrhosis | 20/147(13.7%) | 3/37 (8.1%) | 17/110 (15.5%) | 0.252 |
Renal Failure | 9/147 (6.1%) | 2/37 (5.4%) | 7/110 (6.4%) | 1.000 |
PWID | 5/147 (3.4%) | 1/37 (2.7%) | 4/110 (3.6%) | 1.000 |
DM | 28/147 (19.0%) | 7/37 (18.9%) | 21/110 (19.1%) | 0.982 |
HTN | 46/147 (31.3%) | 10/37 (27.0%) | 36/110 (32.7%) | 0.518 |
HBV | 9/147 (6.1%) | 2/37 (5.4%) | 7/110 (6.4%) | 1.000 |
Previous Interferon Therapy, n/N (%) | 0.129 | |||
Prior interferon failure | 3/147 (2.0%) | 2/37 (5.4%) | 1/110 (0.9%) | |
No interferon therapy | 142/147 (96.6%) | 34/37 (91.9%) | 108/110 (98.2%) | |
Prior interferon interruption | 2/147 (1.4%) | 1/37 (2.7%) | 1/110 (0.9%) | |
Regimen of DAA, n/N (%) | 0.892 | |||
Glecaprevir–Pibrentasvir | 90/147 (61.2%) | 23/37 (62.2%) | 67/110 (60.9%) | |
Sofosbuvir + Velpatasvir | 57/147 (38.8%) | 14/37 (37.8%) | 43/110 (39.1%) | |
Laboratory Data | ||||
HCV viral load, IU/mL, median (IQR) | 1,257,396 (71,390–4,118,819) | 1,236,277 (157,609–2,996,333) | 1,2768,32 (39,167–4,504,185) | 0.810 |
AST, U/L, median (IQR) | 37 (27–53) | 36 (29–49) | 38 (27–56) | 0.806 |
ALT, U/L, median (IQR) | 43 (27–69) | 44 (29–66) | 43 (27–69) | 0.603 |
Platelet count, ×103/μL, mean ± SD | 188 ± 67 | 193 ± 69 | 186 ± 67 | 0.595 |
Hb, g/dL, median (IQR) | 13.7 (12–14.7) | 14.1 (13–15.1) | 13.6 (12–14.4) | 0.063 |
I.N.R., median (IQR) | 0.99 (0.95–1.04) | 1.01 (0.95–1.06) | 0.99 (0.95–1.04) | 0.955 |
Bilirubin, mg/dL, median (IQR) | 0.64 (0.5–0.87) | 0.7 (0.5–0.9) | 0.62 (0.5–0.8) | 0.280 |
Albumin, g/dL, median (IQR) | 3.9 (3.7–4.2) | 3.9 (3.7–4.1) | 4 (3.7–4.2) | 0.616 |
Creatinine, mg/dL, median (IQR) | 0.9 (0.69–1.07) | 0.92 (0.69–1.17) | 0.9 (0.7–1.07) | 0.996 |
FIB4, median (IQR) | 2.08 (1.34–3.34) | 2.06 (1.39–3) | 2.15 (1.34–3.45) | 0.653 |
APRI, median (IQR) | 0.513 (0.321–0.921) | 0.514 (0.348–0.87) | 0.512 (0.317–0.94) | 0.930 |
HCV Genotype, n (%) | Total of Mixed Type (N = 37) | GLE/PIB (N = 23) | SOF/VEL (N = 14) |
---|---|---|---|
1 + 2 + 6 | 2/37 (5.4%) | 2/23 (8.7%) | 0/14 (0.0%) |
1 + 3 | 3/37 (8.1%) | 2/23 (8.7%) | 1/14 (7.1%) |
1 + 4 | 2/37 (5.4%) | 0/23 (0.0%) | 2/14 (14.3%) |
1 + 6 | 7/37 (18.9%) | 5/23 (21.7%) | 2/14 (14.3%) |
1a + 2 | 1/37 (2.7%) | 0/23 (0.0%) | 1/14 (7.1%) |
1a + 4 | 1/37 (2.7%) | 0/23 (0.0%) | 1/14 (7.1%) |
1b + 2 | 17/37 (45.9%) | 11/23 (47.8%) | 6/14 (42.9%) |
1b + 3 | 2/37 (5.4%) | 2/23 (8.7%) | 0/14 (0.0%) |
3 + 4 | 2/37 (5.4%) | 1/23 (4.3%) | 1/14 (7.1%) |
HCV RNA < LLOQ | All Patients (n = 147) | Mixed Type (n = 37) | Undetermined (n = 110) | p-Values | |||
---|---|---|---|---|---|---|---|
n/N (%) | 95% CI | n/N (%) | 95% CI | n/N (%) | 95% CI | ||
During treatment | |||||||
ETVR (ITT) | 138/147 (93.9%) | 88.7–97.2 | 36/37 (97.3%) | 85.8–99.9 | 102/110 (92.7%) | 86.2–96.8 | 0.450 |
ETVR (PP) | 138/145 (95.2%) | 90.3–98.0 | 36/36 (100.0%) | 90.3–100 | 102/109 (93.6%) | 87.2–97.4 | 0.193 |
After treatment | |||||||
SVR12 (ITT) | 136/147 (92.5%) | 87.0–96.2 | 34/37 (91.9%) | 78.1–98.3 | 102/110 (92.7%) | 86.2–96.8 | 1.000 |
SVR12 (PP) | 136/141 (96.5%) | 91.9–98.8 | 34/35 (97.1%) | 85.1–99.9 | 102/106 (96.2%) | 90.6–99.0 | 1.000 |
All Patients | Mixed Type | Indeterminate Type | p-Values | |
---|---|---|---|---|
GPT, n/N (%) | 0.441 | |||
<3× elevation | 145/147 (98.6%) | 36/37 (97.3%) | 109/110 (99.1%) | |
3–5× elevation | 2/147 (1.4%) | 1/37 (2.7%) | 1/110 (0.9%) | |
≥5× elevation | 0/147 (0.0%) | 0/37 (0.0%) | 0/110 (0.0%) | |
GOT, n/N (%) | 0.252 | |||
<3× elevation | 146/147 (99.3%) | 36/37 (97.3%) | 110/110 (100.0%) | |
3–5× elevation | 1/147 (0.7%) | 1/37 (2.7%) | 0/110 (0.0%) | |
≥5× elevation | 0/147 (0.0%) | 0/37 (0.0%) | 0/110 (0.0%) | |
Bilirubin, n/N (%) | 0.799 | |||
<1.5× elevation | 134/147 (91.2%) | 35/37 (94.6%) | 99/110 (90.0%) | |
1.5–3× elevation | 12/147 (8.2%) | 2/37 (5.4%) | 10/110 (9.1%) | |
≥3× elevation | 1/147 (0.7%) | 0/37 (0.0%) | 1/110 (0.9%) | |
Anemia, n/N (%) | 0.756 | |||
G0 * | 84/120 (70.0%) | 22/30 (73.3%) | 62/90 (68.9%) | |
G1 | 27/120 (22.5%) | 6/30 (20.0%) | 21/90 (23.3%) | |
G2 | 6/120 (5.0%) | 2/30 (6.7%) | 4/90 (4.4%) | |
G3 | 3/120 (2.5%) | 0/30 (0.0%) | 3/90 (3.3%) | |
Thrombocytopenia, n/N (%) | 0.660 | |||
G0 | 83/119 (69.7%) | 23/30 (76.7%) | 60/89 (67.4%) | |
G1 | 29/119 (24.4%) | 5/30 (16.7%) | 24/89 (27.0%) | |
G2 | 4/119 (3.4%) | 1/30 (3.3%) | 3/89 (3.4%) | |
G3 | 3/119 (2.5%) | 1/30 (3.3%) | 2/89 (2.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, H.-H.; Chen, Y.-Y.; Lai, J.-H.; Chen, H.-M.; Yao, C.-T.; Huang, S.-P.; Liu, I.-L.; Zeng, Y.-H.; Yang, F.-C.; Siao, F.-Y.; et al. Pan-Genotypic Direct-Acting Antiviral Agents for Undetermined or Mixed-Genotype Hepatitis C Infection: A Real-World Multi-Center Effectiveness Analysis. J. Clin. Med. 2022, 11, 1853. https://doi.org/10.3390/jcm11071853
Yen H-H, Chen Y-Y, Lai J-H, Chen H-M, Yao C-T, Huang S-P, Liu I-L, Zeng Y-H, Yang F-C, Siao F-Y, et al. Pan-Genotypic Direct-Acting Antiviral Agents for Undetermined or Mixed-Genotype Hepatitis C Infection: A Real-World Multi-Center Effectiveness Analysis. Journal of Clinical Medicine. 2022; 11(7):1853. https://doi.org/10.3390/jcm11071853
Chicago/Turabian StyleYen, Hsu-Heng, Yang-Yuan Chen, Jun-Hung Lai, Hung-Ming Chen, Chih-Ta Yao, Siou-Ping Huang, I-Ling Liu, Ya-Huei Zeng, Fang-Chi Yang, Fu-Yuan Siao, and et al. 2022. "Pan-Genotypic Direct-Acting Antiviral Agents for Undetermined or Mixed-Genotype Hepatitis C Infection: A Real-World Multi-Center Effectiveness Analysis" Journal of Clinical Medicine 11, no. 7: 1853. https://doi.org/10.3390/jcm11071853
APA StyleYen, H.-H., Chen, Y.-Y., Lai, J.-H., Chen, H.-M., Yao, C.-T., Huang, S.-P., Liu, I.-L., Zeng, Y.-H., Yang, F.-C., Siao, F.-Y., Chen, M.-W., & Su, P.-Y. (2022). Pan-Genotypic Direct-Acting Antiviral Agents for Undetermined or Mixed-Genotype Hepatitis C Infection: A Real-World Multi-Center Effectiveness Analysis. Journal of Clinical Medicine, 11(7), 1853. https://doi.org/10.3390/jcm11071853