The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches
Abstract
:1. Introduction
2. Qualification for the Causal Treatment of Ischemic Stroke
2.1. A Standard Operating Procedure of Imaging Methods Which Is Employed in Ischemic Stroke in NSSU Diagnostic Imaging Unit
- CT scan without contrast assisted by RAPID software. The scans automatically analyzed (RAPID software) on the ASPECT scale show only old ischemic changes in the left hemisphere of the brain. In the right hemisphere of the brain there are no signs of the presence of hypodense areas that would indicate new areas of stroke.
- Perfusion CT scan assisted by RAPID software. The reference levels in the RAPID analysis are set according to the criteria developed in the DEFUSE 3 study. The levels of 2 parameters are investigated: CBF (cerebral blood flow) less than 30% compared to the opposite hemisphere indicates necrosis—purple color area, Tmax value greater than 6 sec signifies the area of the penumbra. Additionally, a quantitative analysis is performed. The calculated mismatch is at the level of 1.6, which according to the adopted DEFUSE 3 criteria, should disqualify the patient from mechanical thrombectomy. On the other hand, European recommendations suggest that up to 6 h after the appearance of the first symptoms of the disease, we do not always have to follow the pCT results, but rather rely on the CT scan.
- CT angiography of the cerebral and intracerebral arteries taken from the level of the aortic arch. The patient moved during the examination, because of this, the head is bent to the right and slightly upwards. Full occlusion of the right internal carotid artery is visible in its proximal part.
- MR Diffusion Weighted Imaging (DWI) and corresponding apparent diffusion coefficient (ADC) sequences. A. In the DWI sequence a large area with a hyperintense signal corresponding to cerebral ischemia is visible in the right hemisphere. B. In the ADC sequence the same area has a hypointense signal which may correspond, including DWI images, to the acute nature of ischemia.
- MR Fluid-attenuated inversion recovery (FLAIR) and DWI sequences. DWI-FLAIR-mismatch. No marked parenchymal hyperintensity is detected on fluid attenuated inversion recovery (FLAIR) images on right hemisphere (C), while acute ischemic lesion is clearly visible on DWI (D), indicating DWI-FLAIR-mismatch. Old post-stroke lesions are visible in the left hemisphere of the brain.
- Digital Subtraction Angiography—DSA. The distal end of the aspiration catheter through which a contrast agent is administered is inserted into the proximal segment of the right internal carotid artery. The place of the occlusion is visible through which the contrast agent does not flow.
- Rotary Digital Subtraction Angiography—3D DSA. Control examination performed directly after successful mechanical thrombectomy—mTICI 3. Visible flow of contrast blood both through the main trunk of the internal carotid artery and its branches.
2.2. Prehospital Triage in Ischemic Stroke: Problems and Needs in Poland
3. Causes of Reperfusion Procedures Failure and Potentials Risks Related to Reperfusion
4. The Role of Mitochondria in the Pathophysiology of Ischemic Stroke and Recanalization
5. The Role of Inflammation in the Pathophysiology of Ischemic Stroke and in the Assessment of the Prognosis of Reperfusion Procedures
6. Examples of Neuroprotection in the Treatment of Ischemic Stroke
7. Potential Goals of Ischemic Stroke Therapy and the Evaluation of the Effectiveness of the Applied Treatment
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mandalaneni, K.; Rayi, A.; Jillella, D.V. Stroke Reperfusion Injury; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Boeckh-Behrens, T.; Kleine, J.F.; Zimmer, C.; Neff, F.; Scheipl, F.; Pelisek, J.; Schirmer, L.; Nguyen, K.; Karatas, D.; Poppert, H. Thrombus Histology Suggests Cardioembolic Cause in Cryptogenic Stroke. Stroke 2016, 47, 1864–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desilles, J.; Nomenjanahary, M.S.; Consoli, A.; Ollivier, V.; Faille, D.; Bourrienne, M.; Hamdani, M.; Dupont, S.; Di Meglio, L.; Escalard, S.; et al. Impact of COVID-19 on thrombus composition and response to thrombolysis: Insights from a monocentric cohort population of COVID-19 patients with acute ischemic stroke. J. Thromb. Haemost. 2022, 20, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Alkarithi, G.; Duval, C.; Shi, Y.; Macrae, F.L.; Ariëns, R.A. Thrombus Structural Composition in Cardiovascular Disease. Arter. Thromb. Vasc. Biol. 2021, 41, 2370–2383. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L. Time is brain-quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Da Silva-Candal, A.; Dopico-López, A.; Pérez-Mato, M.; Rodríguez-Yáñez, M.; Pumar, J.; Ávila-Gómez, P.; Castillo, J.; Sobrino, T.; Campos, F.; Hervella, P.; et al. Characterization of a Temporal Profile of Biomarkers as an Index for Ischemic Stroke Onset Definition. J. Clin. Med. 2021, 10, 3136. [Google Scholar] [CrossRef]
- Pilato, F.; Valente, I.; Calandrelli, R.; Alexandre, A.; Arena, V.; Dell’Aquila, M.; Broccolini, A.; Della Marca, G.; Morosetti, R.; Frisullo, G.; et al. Clot evaluation and distal embolization risk during mechanical thrombectomy in anterior circulation stroke. J. Neurol. Sci. 2022, 432, 120087. [Google Scholar] [CrossRef]
- Badwaik, D.G.; Badwaik, P. Influence of Psychological Disorders on the Functional Outcomes in the Survivors of Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105486. [Google Scholar] [CrossRef]
- Zhang, S.R.; Phan, T.G.; Sobey, C.G. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol. Sci. 2021, 42, 96–105. [Google Scholar] [CrossRef]
- Feigin, V.; Krishnamurthi, R. Oxford Textbook of Stroke and Cerebrovascular Disease; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Béjot, Y.; Daubail, B.; Giroud, M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Rev. Neurol. 2016, 172, 59–68. [Google Scholar] [CrossRef]
- Worldometers. Current World Population. Available online: https://www.worldometers.info/world-population/ (accessed on 27 December 2021).
- United States Census Bureau. U.S. and World Population Clock. Available online: https://www.census.gov/popclock/ (accessed on 27 December 2021).
- Roy-O’Reilly, M.; McCullough, L.D. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology 2018, 159, 3120–3131. [Google Scholar] [CrossRef] [Green Version]
- Howard, V.J.; Madsen, T.E.; Kleindorfer, D.O.; Judd, S.E.; Rhodes, J.D.; Soliman, E.Z.; Kissela, B.M.; Safford, M.M.; Moy, C.S.; McClure, L.A.; et al. Sex and Race Differences in the Association of Incident Ischemic Stroke with Risk Factors. JAMA Neurol. 2019, 76, 179–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Béjot, Y.; Bailly, H.; Durier, J.; Giroud, M. Epidemiology of stroke in Europe and trends for the 21st century. Presse Med. 2016, 45, e391–e398. [Google Scholar] [CrossRef] [PubMed]
- Truelsen, T.; Piechowski-Jozwiak, B.; Bonita, R.; Mathers, C.; Bogousslavsky, J.; Boysen, G. Stroke incidence and prevalence in Europe: A review of available data. Eur. J. Neurol. 2006, 13, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Truelsen, T.; Begg, S.; Mathers, C.D.; Satoh, T. Global burden of cerebrovascular disease in the year 2000. In GBD 2000 Working Paper; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Wafa, H.A.; Wolfe, C.D.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Ikeda, T.; Feigin, V.L. Global, Regional and Country-Specific Burden of Ischaemic Stroke, Intracerebral Haemorrhage and Subarachnoid Haemorrhage: A Systematic Analysis of the Global Burden of Disease Study 2017. Neuroepidemiology 2020, 54, 171–179. [Google Scholar] [CrossRef]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- The GBD 2016 Lifetime Risk of Stroke Collaborators; Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; et al. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef]
- Kim, J.; Thayabaranathan, T.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; Owolabi, M.; Pandian, J.; et al. Global Stroke Statistics 2019. Int. J. Stroke 2020, 15, 819–838. [Google Scholar] [CrossRef]
- Thrift, A.G.; Thayabaranathan, T.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.L.; Norrving, B.; Donnan, G.A.; Cadilhac, D. Global stroke statistics. Int. J. Stroke 2017, 12, 13–32. [Google Scholar] [CrossRef]
- Muratova, T.; Khramtsov, D.; Stoyanov, A.; Vorokhta, Y. Clinical Epidemiology of Ischemic Stroke: Global Trends and Regional Differences. Georgian Med. News 2020, 2, 83–86. [Google Scholar]
- Nannoni, S.; de Groot, R.; Bell, S.; Markus, H.S. Stroke in COVID-19: A systematic review and meta-analysis. Int. J. Stroke 2021, 16, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; Ishida, K.; Torres, J.; Mac Grory, B.; Raz, E.; Humbert, K.; Henninger, N.; Trivedi, T.; Lillemoe, K.; Alam, S.; et al. SARS-CoV-2 and Stroke in a New York Healthcare System. Stroke 2020, 51, 2002–2011, Erratum in Stroke 2020, 51, e179. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, A. Contemporary Problems of Managing Human Resources and Corporate Finance. In Knowledge–Economy–Society; Kraków University of Economics: Kraków, Poland, 2017; p. 17. [Google Scholar]
- Underlying Cause of Death, 1999–2000. Available online: https://wonder.cdc.gov/wonder/help/ucd.html (accessed on 27 February 2022).
- MacKenzie, I.E.; Moeini-Naghani, I.; Sigounas, D. Trends in Endovascular Mechanical Thrombectomy in Treatment of Acute Ischemic Stroke in the United States. World Neurosurg. 2020, 138, e839–e846. [Google Scholar] [CrossRef] [PubMed]
- Renna, R.; Pilato, F.; Profice, P.; Della Marca, G.; Broccolini, A.; Morosetti, R.; Frisullo, G.; Rossi, E.; De Stefano, V.; Di Lazzaro, V. Risk Factor and Etiology Analysis of Ischemic Stroke in Young Adult Patients. J. Stroke Cerebrovasc. Dis. 2014, 23, e221–e227. [Google Scholar] [CrossRef]
- Rochmah, T.; Rahmawati, I.; Dahlui, M.; Budiarto, W.; Bilqis, N. Economic Burden of Stroke Disease: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7552. [Google Scholar] [CrossRef]
- Priorities in Healthcare. Warsaw, Session: Directions for Further Optimization of Stroke Care in Poland. Presentation by Prof. A. Słowik under the Title “Access to Causal Treatment of Ischemic Stroke in Poland 2019–2021”. Available online: https://www.termedia.pl/Konferencja-PRIORYTETY-W-OCHRONIE-ZDROWIA-2022-OBEJRZYJ-NAGRANIA,1624,18667.html (accessed on 26 January 2022).
- Psychogios, K.; Tsivgoulis, G. Intravenous thrombolysis for acute ischemic stroke: Why not? Curr. Opin. Neurol. 2022, 35, 10–17. [Google Scholar] [CrossRef]
- Aguiar de Sousa, D.; von Martial, R.; Abilleira, S.; Gattringer, T.; Kobayashi, A.; Gallofré, M.; Szikora, I.; Feigin, V.; Caso, V.; Fischer, U.; et al. Access to and delivery of acute ischaemic stroke treatments: A survey of national scientific societies and stroke experts in 44 European countries. Eur. Stroke J. 2019, 4, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, J.A.; Yoo, A.J.; Nogueira, R.G.; Verduzco, L.A.; Schwamm, L.H.; Pryor, J.C.; Rabinov, J.D.; Gonzalez, R.G. Case volumes of intra-arterial and intravenous treatment of ischemic stroke in the USA. J. NeuroInterv. Surg. 2009, 1, 27–31. [Google Scholar] [CrossRef]
- Joo, H.; Wang, G.; George, M.G. Use of intravenous tissue plasminogen activato and hospital costs for patients with acute ischaemic stroke aged 18–64 years in the USA. Stroke Vasc. Neurol. 2016, 1, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.Y.; Li, Y.C.; Liu, J.M.; Liu, Y.N.; Liu, S.W.; Qi, J.L.; Zhou, M.G. [Estimation of the impact of risk factors control on non-communicable diseases mortality, life expectancy and the labor force lost in China in 2030]. Zhonghua Yu Fang Yi Xue Za Zhi 2017, 51, 1079–1085. [Google Scholar]
- Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; et al. Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2019, 50, e344–e418, Correction in Stroke 2019, 50, e440–e441. [Google Scholar] [CrossRef] [PubMed]
- Zi, W.; Qiu, Z.; Li, F.; Sang, H.; Wu, D.; Luo, W.; Liu, S.; Yuan, J.; Song, J.; Shi, Z.; et al. Effect of Endovascular Treatment Alone vs Intravenous Alteplase Plus Endovascular Treatment on Functional Independence in Patients with Acute Ischemic Stroke: The DEVT Randomized Clinical Trial. JAMA 2021, 325, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Turc, G.; Bhogal, P.; Fischer, U.; Khatri, P.; Lobotesis, K.; Mazighi, M.; Schellinger, P.D.; Toni, D.; de Vries, J.; White, P.; et al. European Stroke Organisation (ESO)–European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischaemic StrokeEndorsed by Stroke Alliance for Europe (SAFE). Eur. Stroke J. 2019, 4, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhemer, O.A.; Fransen, P.S.S.; Beumer, D.; Berg, L.A.V.D.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.H.; et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. N. Engl. J. Med. 2015, 372, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Romoli, M.; Paciaroni, M.; Tsivgoulis, G.; Agostoni, E.C.; Vidale, S. Mothership versus Drip-and-Ship Model for Mechanical Thrombectomy in Acute Stroke: A Systematic Review and Meta-Analysis for Clinical and Radiological Outcomes. J. Stroke 2020, 22, 317–323. [Google Scholar] [CrossRef]
- Udar Mózgu–Problem Interdyscyplinarny. Available online: https://vimeo.com/652844074/ae3fbf2c0c (accessed on 4 December 2021).
- Remedios, L.W.; Lingam, S.; Remedios, S.W.; Gao, R.; Clark, S.W.; Davis, L.T.; Landman, B.A. Comparison of convolutional neural networks for detecting large vessel occlusion on computed tomography angiography. Med. Phys. 2021, 48, 6060–6068. [Google Scholar] [CrossRef]
- Jin, H.; Qu, Y.; Guo, Z.-N.; Yan, X.-L.; Sun, X.; Yang, Y. Impact of Jilin Province Stroke Emergency Maps on Acute Stroke Care Improvement in Northeast China. Front. Neurol. 2020, 11, 734. [Google Scholar] [CrossRef]
- Sevick, L.K.; Demchuk, A.M.; Shuaib, A.; Smith, E.E.; Rempel, J.L.; Butcher, K.; Menon, B.K.; Jeerakathil, T.; Kamal, N.; Thornton, J.; et al. A Prospective Economic Evaluation of Rapid Endovascular Therapy for Acute Ischemic Stroke. Can. J. Neurol. Sci./J. Can. Sci. Neurol. 2021, 48, 791–798. [Google Scholar] [CrossRef]
- Venema, E.; Burke, J.F.; Roozenbeek, B.; Nelson, J.; Lingsma, H.F.; Dippel, D.W.; Kent, D.M. Prehospital Triage Strategies for the Transportation of Suspected Stroke Patients in the United States. Stroke 2020, 51, 3310–3319. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef] [Green Version]
- Katyal, A.; Bhaskar, S. CTP-guided reperfusion therapy in acute ischemic stroke: A meta-analysis. Acta Neurol. Scand. 2021, 143, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Luan, D.; Zhang, Y.; Yang, Q.; Zhou, Z.; Huang, X.; Zhao, S.; Yuan, L. Efficacy and Safety of Intravenous Thrombolysis in Patients with Unknown Onset Stroke: A Meta-Analysis. Behav. Neurol. 2019, 2019, 5406923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyeler, M.; Weber, L.; Kurmann, C.C.; Piechowiak, E.I.I.; Mosimann, P.J.; Zibold, F.; Meinel, T.R.; Branca, M.; Goeldlin, M.; Pilgram-Pastor, S.M.; et al. Association of reperfusion success and emboli in new territories with long term mortality after mechanical thrombectomy. J. NeuroInterv. Surg. 2022, 14, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Nowak, K.; Derbisz, J.; Pęksa, J.; Łasocha, B.; Brzegowy, P.; Slowik, J.; Wrona, P.; Pulyk, R.; Popiela, T.; Slowik, A. Post-stroke infection in acute ischemic stroke patients treated with mechanical thrombectomy does not affect long-term outcome. Adv. Interv. Cardiol. 2020, 16, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Luchowski, P.; Szmygin, M.; Wojczal, J.; Prus, K.; Sojka, M.; Luchowska, E.; Rejdak, K. Stroke patients from rural areas have lower chances for long-term good clinical outcome after mechanical thrombectomy. Clin. Neurol. Neurosurg. 2021, 206, 106687. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Machado, C.; Santo, G.; Silva, F.; Ferreira, L.; et al. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front. Neurol. 2020, 11, 1605. [Google Scholar] [CrossRef]
- Sun, M.-S.; Jin, H.; Sun, X.; Huang, S.; Zhang, F.-L.; Guo, Z.-N.; Yang, Y. Free Radical Damage in Ischemia-Reperfusion Injury: An Obstacle in Acute Ischemic Stroke after Revascularization Therapy. Oxidative Med. Cell. Longev. 2018, 2018, 3804979. [Google Scholar] [CrossRef]
- Alluri, H.; Shaji, C.A.; Davis, M.L.; Tharakan, B. Oxygen-Glucose Deprivation and Reoxygenation as an In Vitro Ischemia-Reperfusion Injury Model for Studying Blood-Brain Barrier Dysfunction. J. Vis. Exp. 2015, 99, e52699. [Google Scholar] [CrossRef] [Green Version]
- Kawase, H.; Takeda, Y.; Mizoue, R.; Sato, S.; Fushimi, M.; Murai, S.; Morimatsu, H. Extracellular Glutamate Concentration Increases Linearly in Proportion to Decreases in Residual Cerebral Blood Flow After the Loss of Membrane Potential in a Rat Model of Ischemia. J. Neurosurg. Anesthesiol. 2021, 33, 356–362. [Google Scholar] [CrossRef]
- Zaitoun, I.S.; Shahi, P.K.; Suscha, A.; Chan, K.; McLellan, G.J.; Pattnaik, B.R.; Sorenson, C.M.; Sheibani, N. Hypoxic–ischemic injury causes functional and structural neurovascular degeneration in the juvenile mouse retina. Sci. Rep. 2021, 11, 12670. [Google Scholar] [CrossRef]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef]
- Shimada, N.; Graf, R.; Rosner, G.; Wakayama, A.; George, C.P.; Heiss, W.-D. Ischemic Flow Threshold for Extracellular Glutamate Increase in Cat Cortex. J. Cereb. Blood Flow Metab. 1989, 9, 603–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostandy, B.B. The role of glutamate in neuronal ischemic injury: The role of spark in fire. Neurol. Sci. 2012, 33, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chen, H.-Y.; Wei, K.-C. Role of HMGB1/TLR4 Axis in Ischemia/Reperfusion-Impaired Extracellular Glutamate Clearance in Primary Astrocytes. Cells 2020, 9, 2585. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kong, J.; Wu, J.; Wang, X.; Lai, M. GC–MS-based metabolomics identifies an amino acid signature of acute ischemic stroke. Neurosci. Lett. 2017, 642, 7–13. [Google Scholar] [CrossRef]
- Cvoro, V.; Wardlaw, J.M.; Marshall, I.; Armitage, P.A.; Rivers, C.S.; Bastin, M.E.; Carpenter, T.K.; Wartolowska, K.; Farrall, A.J.; Dennis, M.S. Associations Between Diffusion and Perfusion Parameters, N -Acetyl Aspartate, and Lactate in Acute Ischemic Stroke. Stroke 2009, 40, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Guadagno, J.V.; Jones, P.S.; Aigbirhio, F.I.; Wang, D.; Fryer, T.D.; Day, D.J.; Antoun, N.; Nimmo-Smith, I.; Warburton, E.A.; Baron, J.C. Selective neuronal loss in rescued penumbra relates to initial hypoperfusion. Brain 2008, 131, 2666–2678. [Google Scholar] [CrossRef] [Green Version]
- Tijssen, M.P.M.; Hofman, P.A.M.; Stadler, A.A.R.; Van Zwam, W.; De Graaf, R.; Van Oostenbrugge, R.J.; Klotz, E.; Wildberger, J.E.; Postma, A.A. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur. Radiol. 2014, 24, 834–840. [Google Scholar] [CrossRef]
- Barbay, M.; Diouf, M.; Roussel, M.; Godefroy, O.; GRECOGVASC Study Group. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement. Geriatr. Cogn. Disord. 2018, 46, 322–334. [Google Scholar] [CrossRef]
- Pendlebury, S.T.; Rothwell, P.M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 2009, 8, 1006–1018. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Sheth, B.; Gill, J.; Yadegarfar, M.; Stubbs, B.; Yadegarfar, M.; Meader, N. Prevalence and predictors of post-stroke mood disorders: A meta-analysis and meta-regression of depression, anxiety and adjustment disorder. Gen. Hosp. Psychiatry 2017, 47, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoo, H.; Marushima, A.; Nagasaki, Y.; Hirayama, A.; Ito, H.; Puentes, S.; Mujagic, A.; Tsurushima, H.; Tsuruta, W.; Suzuki, K.; et al. Neurovascular Unit Protection from Cerebral Ischemia–Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Stroke 2017, 48, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Nawabi, J.; Flottmann, F.; Hanning, U.; Bechstein, M.; Schön, G.; Kemmling, A.; Fiehler, J.; Broocks, G. Futile Recanalization with Poor Clinical Outcome Is Associated with Increased Edema Volume After Ischemic Stroke. Investig. Radiol. 2019, 54, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Gauberti, M.; Lapergue, B.; de Lizarrondo, S.M.; Vivien, D.; Richard, S.; Bracard, S.; Piotin, M.; Gory, B. Ischemia-Reperfusion Injury After Endovascular Thrombectomy for Ischemic Stroke. Stroke 2018, 49, 3071–3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmrich, J.V.; Ejaz, S.; Williamson, D.J.; Hong, Y.T.; Sitnikov, S.; Fryer, T.D.; Aigbirhio, F.I.; Wulff, H.; Baron, J.-C. Assessing the Effects of Cytoprotectants on Selective Neuronal Loss, Sensorimotor Deficit and Microglial Activation after Temporary Middle Cerebral Occlusion. Brain Sci. 2019, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Staessens, S.; François, O.; Desender, L.; Vanacker, P.; Dewaele, T.; Sciot, R.; Vanhoorelbeke, K.; Andersson, T.; De Meyer, S.F. Detailed histological analysis of a thrombectomy-resistant ischemic stroke thrombus: A case report. Thromb. J. 2021, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, X.; Yang, W.; Zhang, Y.; Wang, T.; Xu, R.; Wang, Y.; Li, L.; Feng, Y.; Yang, K.; et al. Influence of first-pass effect on recanalization outcomes in the era of mechanical thrombectomy: A systemic review and meta-analysis. Neuroradiology 2021, 63, 795–807. [Google Scholar] [CrossRef]
- Weyland, C.S.; Neuberger, U.; Potreck, A.; Pfaff, J.A.R.; Nagel, S.; Schönenberger, S.; Bendszus, M.; Möhlenbruch, M.A. Reasons for Failed Mechanical Thrombectomy in Posterior Circulation Ischemic Stroke Patients. Clin. Neuroradiol. 2021, 31, 745–752. [Google Scholar] [CrossRef]
- Ducroux, C.; Di Meglio, L.; Loyau, S.; Delbosc, S.; Boisseau, W.; Deschildre, C.; Ben Maacha, M.; Blanc, R.; Redjem, H.; Ciccio, G.; et al. Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke. Stroke 2018, 49, 754–757. [Google Scholar] [CrossRef]
- Fereidoonnezhad, B.; Dwivedi, A.; Johnson, S.; McCarthy, R.; McGarry, P. Blood clot fracture properties are dependent on red blood cell and fibrin content. Acta Biomater. 2021, 127, 213–228. [Google Scholar] [CrossRef]
- Abbasi, M.; Larco, J.A.; Mereuta, M.O.; Liu, Y.; Fitzgerald, S.; Dai, D.; Kadirvel, R.; Savastano, L.; Kallmes, D.F.; Brinjikji, W. Diverse thrombus composition in thrombectomy stroke patients with longer time to recanalization. Thromb. Res. 2022, 209, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Vallés, J.; Lago, A.; Santos, M.T.; Latorre, A.M.; Tembl, J.I.; Salom, J.B.; Nieves, C.; Moscardó, A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: Prognostic significance. Thromb. Haemost. 2017, 117, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Kyheng, M.; Consoli, A.; Desilles, J.-P.; Gory, B.; Richard, S.; Rodesch, G.; Labreuche, J.; Girot, J.-B.; Dargazanli, C.; et al. Identifying the predictors of first-pass effect and its influence on clinical outcome in the setting of endovascular thrombectomy for acute ischemic stroke: Results from a multicentric prospective registry. Int. J. Stroke 2021, 16, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Mokin, M.; Morr, S.; Natarajan, S.K.; Lin, N.; Snyder, K.V.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I. Thrombus density predicts successful recanalization with Solitaire stent retriever thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 2015, 7, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Yang, E.; Yao, X.; Zhang, X.; Wang, Q.; Wang, Y.; Liu, J.; Fan, W.; Yi, K.; Kang, C.; et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury. Redox Biol. 2021, 38, 101792. [Google Scholar] [CrossRef] [PubMed]
- Froehler, M.T.; Tateshima, S.; Duckwiler, G.; Jahan, R.; Gonzalez, N.; Vinuela, F.; Liebeskind, D.; Saver, J.; Villablanca, J.P.; for the UCLA Stroke Investigators. The hyperdense vessel sign on CT predicts successful recanalization with the Merci device in acute ischemic stroke. J. NeuroInterv. Surg. 2013, 5, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.R.; Fricano, S.; Waqas, M.; Tso, M.; Dmytriw, A.A.; Mokin, M.; Kolega, J.; Tomaszewski, J.; Levy, E.I.; Davies, J.M.; et al. Increased Perviousness on CT for Acute Ischemic Stroke is Associated with Fibrin/Platelet-Rich Clots. Am. J. Neuroradiol. 2020, 42, 57–64. [Google Scholar] [CrossRef]
- Sivan-Hoffmann, R.; Gory, B.; Rabilloud, M.; Gherasim, D.N.; Armoiry, X.; Riva, R.; Labeyrie, P.-E.; Gonike-Sadeh, U.; Eldesouky, I.; Turjman, F. Patient Outcomes with Stent-Retriever Thrombectomy for Anterior Circulation Stroke: A Meta-Analysis and Review of the Literature. Isr. Med Assoc. J. 2016, 18, 561–566. [Google Scholar]
- Sporns, P.B.; Krähling, H.; Psychogios, M.N.; Jeibmann, A.; Minnerup, J.; Broocks, G.; Meyer, L.; Brehm, A.; Wildgruber, M.; Fiehler, J.; et al. Small thrombus size, thrombus composition, and poor collaterals predict pre-interventional thrombus migration. J. Neurointerv. Surg. 2021, 13, 409–414. [Google Scholar] [CrossRef]
- Mishra, S.M.; Dykeman, J.; Sajobi, T.; Trivedi, A.; Almekhlafi, M.; Sohn, S.I.; Bal, S.; Qazi, E.; Calleja, A.; Eesa, M.; et al. Early Reperfusion Rates with IV tPA Are Determined by CTA Clot Characteristics. Am. J. Neuroradiol. 2014, 35, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Riedel, C.H.; Zimmermann, P.; Jensen-Kondering, U.; Stingele, R.; Deuschl, G.; Jansen, O. The importance of size: Successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length. Stroke 2011, 42, 1775–1777. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Kuang, H.; Ospel, J.M.; Hill, M.D.; Demchuk, A.M.; Goyal, M.; Menon, B.K. Automated Prediction of Ischemic Brain Tissue Fate from Multiphase Computed Tomographic Angiography in Patients with Acute Ischemic Stroke Using Machine Learning. J. Stroke 2021, 23, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, J.; Tang, T.-Y.; Zeng, C.-H.; Zhang, Y.; Zhao, Z.; Zhao, D.-L.; Geng, L.-Y.; Deng, G.; Zhang, Z.-J.; et al. Collateral Status at Single-Phase and Multiphase CT Angiography versus CT Perfusion for Outcome Prediction in Anterior Circulation Acute Ischemic Stroke. Radiology 2020, 296, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Kuang, H.; Qiu, W.; Boers, A.M.; Brown, S.; Muir, K.; Majoie, C.B.; Dippel, D.W.; White, P.; Epstein, J.; Mitchell, P.J.; et al. Computed Tomography Perfusion–Based Machine Learning Model Better Predicts Follow-Up Infarction in Patients with Acute Ischemic Stroke. Stroke 2021, 52, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Brugnara, G.; Neuberger, U.; Mahmutoglu, M.A.; Foltyn, M.; Herweh, C.; Nagel, S.; Schönenberger, S.; Heiland, S.; Ulfert, C.; Ringleb, P.A.; et al. Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning. Stroke 2020, 51, 3541–3551. [Google Scholar] [CrossRef]
- Ledru, F.; Blanchard, D.; Battaglia, S.; Jeunemaitre, X.; Courbon, D.; Guize, L.; Guermonprez, J.-L.; Ducimetière, P.; Diébold, B. Relation between severity of coronary artery disease, left ventricular function, and myocardial infarction, and influence of the ACE I/D gene polymorphism. Am. J. Cardiol. 1998, 82, 160–165. [Google Scholar] [CrossRef]
- Lai, Y.; Lin, P.; Chen, M.; Zhang, Y.; Chen, J.; Zheng, M.; Liu, J.; Du, H.; Chen, R.; Pan, X.; et al. Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol. 2020, 34, 101503. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, E.; Sims, N. Alterations in the glutathione content of mitochondria following short-term forebrain ischemia in rats. Neurosci. Lett. 1996, 218, 75–78. [Google Scholar] [CrossRef]
- Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins. Apoptosis 2019, 24, 687–702. [Google Scholar] [CrossRef]
- Li, Q.; Cao, Y.; Dang, C.; Han, B.; Han, R.; Ma, H.; Hao, J.; Wang, L. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol. Med. 2020, 12, e11002. [Google Scholar] [CrossRef] [PubMed]
- Shih, E.K.; Robinson, M.B. Role of Astrocytic Mitochondria in Limiting Ischemic Brain Injury? Physiology 2018, 33, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Akatsu, H.; Heese, K.; Sze, S.K. Quantitative clinical proteomic study of autopsied human infarcted brain specimens to elucidate the deregulated pathways in ischemic stroke pathology. J. Proteom. 2013, 91, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Kim, J.-H.; Gook, E.; Kim, J.; Ko, Y.; Kim, I.; Kwon, H.; Lim, H.; Jung, B.; Yang, K.; et al. Inhibition of mitochondria-dependent apoptosis by 635-nm irradiation in sodium nitroprusside-treated SH-SY5Y cells. Free Radic. Biol. Med. 2009, 47, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Bladowski, M.; Gawrys, J.; Gajecki, D.; Szahidewicz-Krupska, E.; Sawicz-Bladowska, A.; Doroszko, A. Role of the Platelets and Nitric Oxide Biotransformation in Ischemic Stroke: A Translative Review from Bench to Bedside. Oxidative Med. Cell. Longev. 2020, 2020, 2979260. [Google Scholar] [CrossRef]
- Carinci, M.; Vezzani, B.; Patergnani, S.; Ludewig, P.; Lessmann, K.; Magnus, T.; Casetta, I.; Pugliatti, M.; Pinton, P.; Giorgi, C. Different Roles of Mitochondria in Cell Death and Inflammation: Focusing on Mitochondrial Quality Control in Ischemic Stroke and Reperfusion. Biomedicines 2021, 9, 169. [Google Scholar] [CrossRef]
- Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol. Neurobiol. 2019, 56, 4880–4893. [Google Scholar] [CrossRef]
- Jackson, J.; O’Donnell, J.; Takano, H.; Coulter, D.; Robinson, M.B. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters. J. Neurosci. 2014, 34, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Anzell, A.R.; Maizy, R.; Przyklenk, K.; Sanderson, T.H. Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury. Mol. Neurobiol. 2018, 55, 2547–2564. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.-L.; Mukda, S.; Chen, S.-D. Diverse roles of mitochondria in ischemic stroke. Redox Biol. 2018, 16, 263–275. [Google Scholar] [CrossRef]
- Schousboe, A. Astrocytic Metabolism Focusing on Glutamate Homeostasis: A Short Review Dedicated to Vittorio Gallo. Neurochem. Res. 2020, 45, 522–525. [Google Scholar] [CrossRef]
- Lee, S.Y.; Chung, W.-S. The roles of astrocytic phagocytosis in maintaining homeostasis of brains. J. Pharmacol. Sci. 2021, 145, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Roosterman, D.; Cottrell, G.S. Astrocytes and neurons communicate via a monocarboxylic acid shuttle. AIMS Neurosci. 2020, 7, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Povysheva, N.; Nigam, A.; Brisbin, A.K.; Johnson, J.W.; Barrionuevo, G. Oxygen–Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons. Neuroscience 2019, 412, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Ludhiadch, A.; Sharma, R.; Muriki, A.; Munshi, A. Role of Calcium Homeostasis in Ischemic Stroke: A Review. CNS Neurol. Disord. Drug Targets 2022, 21, 52–61. [Google Scholar] [CrossRef]
- Morken, T.S.; Brekke, E.; Håberg, A.; Widerøe, M.; Brubakk, A.-M.; Sonnewald, U. Altered Astrocyte–Neuronal Interactions After Hypoxia-Ischemia in the Neonatal Brain in Female and Male Rats. Stroke 2014, 45, 2777–2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, I.H.; Villa-González, M.; Martín, G.; Soto, M.; Pérez-Álvarez, M.J. Glial Cells as Therapeutic Approaches in Brain Ischemia-Reperfusion Injury. Cells 2021, 10, 1639. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.-Q.; Ma, X.-T.; Hu, Z.-W.; Yang, S.; Chen, M.; Bosco, D.B.; Wu, L.-J.; Tian, D.-S. Dual Functions of Microglia in Ischemic Stroke. Neurosci. Bull. 2019, 35, 921–933. [Google Scholar] [CrossRef]
- Cai, W.; Liu, S.; Hu, M.; Huang, F.; Zhu, Q.; Qiu, W.; Hu, X.; Colello, J.; Zheng, S.G.; Lu, Z. Functional Dynamics of Neutrophils After Ischemic Stroke. Transl. Stroke Res. 2020, 11, 108–121. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, J.; Xu, T.; Peng, Y.; Wang, A.; Wang, J.; Peng, H.; Li, Q.; Ju, Z.; Geng, D.; et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology 2017, 89, 805–812. [Google Scholar] [CrossRef]
- Foster, A.J.; Smyth, M.; Lakhani, A.; Jung, B.; Brant, R.F.; Jacobson, K. Consecutive fecal calprotectin measurements for predicting relapse in pediatric Crohn’s disease patients. World J. Gastroenterol. 2019, 25, 1266–1277. [Google Scholar] [CrossRef]
- Pluta, R.; Januszewski, S.; Czuczwar, S. Neuroinflammation in Post-Ischemic Neurodegeneration of the Brain: Friend, Foe, or Both? Int. J. Mol. Sci. 2021, 22, 4405. [Google Scholar] [CrossRef]
- Marta-Enguita, J.; Navarro-Oviedo, M.; Rubio-Baines, I.; Aymerich, N.; Herrera, M.; Zandio, B.; Mayor, S.; Rodriguez, J.-A.; Páramo, J.-A.; Toledo, E.; et al. Association of calprotectin with other inflammatory parameters in the prediction of mortality for ischemic stroke. J. Neuroinflamm. 2021, 18, 3. [Google Scholar] [CrossRef]
- Chen, C.; Huang, T.; Zhai, X.; Ma, Y.; Xie, L.; Lu, B.; Zhang, Y.; Li, Y.; Chen, Z.; Yin, J.; et al. Targeting neutrophils as a novel therapeutic strategy after stroke. J. Cereb. Blood Flow Metab. 2021, 41, 2150–2161. [Google Scholar] [CrossRef]
- García-Culebras, A.; Durán-Laforet, V.; Peña-Martínez, C.; Moraga, A.; Ballesteros, I.; Cuartero, M.I.; de la Parra, J.; Palma-Tortosa, S.; Hidalgo, A.; Corbí, A.L.; et al. Role of TLR4 (Toll-Like Receptor 4) in N1/N2 Neutrophil Programming After Stroke. Stroke 2019, 50, 2922–2932. [Google Scholar] [CrossRef] [Green Version]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef]
- Lehmann, A.L.C.F.; Alfieri, D.F.; de Araújo, M.C.M.; Trevisani, E.R.; Nagao, M.R.; Pesente, F.S.; Gelinski, J.R.; de Freitas, L.B.; Flauzino, T.; Lehmann, M.F.; et al. Immune-inflammatory, coagulation, adhesion, and imaging biomarkers combined in machine learning models improve the prediction of death 1 year after ischemic stroke. Clin. Exp. Med. 2021, 22, 111–123. [Google Scholar] [CrossRef]
- Yuan, S.; Tang, B.; Zheng, J.; Larsson, S.C. Circulating Lipoprotein Lipids, Apolipoproteins and Ischemic Stroke. Ann. Neurol. 2020, 88, 1229–1236. [Google Scholar] [CrossRef]
- Plubell, D.; Fenton, A.M.; Rosario, S.; Bergstrom, P.; Wilmarth, P.A.; Clark, W.M.; Zakai, N.A.; Quinn, J.F.; Minnier, J.; Alkayed, N.J.; et al. High-Density Lipoprotein Carries Markers That Track with Recovery from Stroke. Circ. Res. 2020, 127, 1274–1287. [Google Scholar] [CrossRef]
- Spronk, E.; Sykes, G.; Falcione, S.; Munsterman, D.; Joy, T.; Kamtchum-Tatuene, J.; Jickling, G.C. Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Front. Neurol. 2021, 12, 597. [Google Scholar] [CrossRef]
- Levard, D.; Buendia, I.; Lanquetin, A.; Glavan, M.; Vivien, D.; Rubio, M. Filling the gaps on stroke research: Focus on inflammation and immunity. Brain Behav. Immun. 2021, 91, 649–667. [Google Scholar] [CrossRef]
- Vezzani, B.; Carinci, M.; Patergnani, S.; Pasquin, M.P.; Guarino, A.; Aziz, N.; Pinton, P.; Simonato, M.; Giorgi, C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020, 10, 1437. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Jiang, W.; Cui, P.; Zheng, K.; Dang, C.; Wang, J.; Li, H.; Chen, L.; Zhang, R.; Wang, Q.M.; et al. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med. 2021, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, A.; Urra, X.; Planas, A.M. Infection after acute ischemic stroke: A manifestation of brain-induced immunodepression. Stroke 2007, 38, 1097–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urra, X.; Mirã, F.; Chamorro, A.; Planas, A.M.; Miró, F. Antigen-specific immune reactions to ischemic stroke. Front. Cell. Neurosci. 2014, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Dave, K.R.; Pileggi, A.; Raval, A.P. Recurrent hypoglycemia increases oxygen glucose deprivation-induced damage in hippocampal organotypic slices. Neurosci. Lett. 2011, 496, 25–29. [Google Scholar] [CrossRef]
- Nitzsche, A.; Poittevin, M.; Benarab, A.; Bonnin, P.; Faraco, G.; Uchida, H.; Favre, J.; Garcia-Bonilla, L.; Garcia, M.C.; Leger, P.-L.P.; et al. Endothelial S1P 1 Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circ. Res. 2021, 128, 363–382. [Google Scholar] [CrossRef]
- Andjelkovic, A.V.; Xiang, J.; Stamatovic, S.M.; Hua, Y.; Xi, G.; Wang, M.M.; Keep, R.F. Endothelial Targets in Stroke: Translating Animal Models to Human. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2240–2247. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Profice, P.; Dileone, M.; Della Marca, G.; Colosimo, C.; Pravatà, E.; Pavone, A.; Pennisi, M.; Maviglia, R.; Pilato, F. Delayed hypothermia in malignant ischaemic stroke. Neurol. Sci. 2012, 33, 661–664. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhang, Z.; Bian, Q.; Gao, Z.; Zhang, S. Mild hypothermia facilitates mitochondrial transfer from astrocytes to injured neurons during oxygen-glucose deprivation/reoxygenation. Neurosci. Lett. 2021, 756, 135940. [Google Scholar] [CrossRef]
- Russo, E.; Napoli, E.; Borlongan, C. V Healthy mitochondria for stroke cells. Brain Circ. 2018, 4, 95–98. [Google Scholar]
- Wang, X.; Li, H.; Ding, S. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity. Int. J. Mol. Sci. 2014, 15, 20449–20468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.-D.; Fu, Y.-Y.; Han, X.-Y.; Yong, Z.-J.; Li, Q.; Hu, Z.; Liu, Z.-G. Hyperbaric Oxygen Preconditioning Protects Against Cerebral Ischemia/Reperfusion Injury by Inhibiting Mitochondrial Apoptosis and Energy Metabolism Disturbance. Neurochem. Res. 2021, 46, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Lawson, D.; Renfrew, S.; Ledingham, I.; Sharp, G. Preservation of cerebral cortical activity by breathing oxygen at two atmospheres of pressure during cerebral ischemia. Surg. Gynecol. Obstet. 1961, 113, 13. [Google Scholar]
- Hentia, C.; Rizzato, A.; Camporesi, E.; Yang, Z.; Muntean, D.M.; Săndesc, D.; Bosco, G. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav. 2018, 8, e00959. [Google Scholar] [CrossRef]
- Engin, A.; Engin, A.B. N-Methyl-D-Aspartate Receptor Signaling-Protein Kinases Crosstalk in Cerebral Ischemia. Adv. Exp. Med. Biol. 2021, 1275, 259–283. [Google Scholar]
- Huo, Y.; Feng, X.; Niu, M.; Wang, L.; Xie, Y.; Wang, L.; Ha, J.; Cheng, X.; Gao, Z.; Sun, Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J. Neurosci. Res. 2021, 99, 3204–3221. [Google Scholar] [CrossRef]
- Teng, J.-F.; Ma, Y.-H.; Deng, W.-J.; Luo, Z.-Y.; Jing, J.; Pan, P.-W.; Yao, Y.-B.; Fang, Y.-B. Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke. Neural Regen. Res. 2022, 17, 433–439. [Google Scholar] [CrossRef]
- Harraz, M.M.; Eacker, S.M.; Wang, X.; Dawson, T.M.; Dawson, V.L. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 18962–18967. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Augustine, G.J.; Ammar, M.-R.; Tashiro, A.; Cohen, S.M. A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat. Neurosci. 2015, 18, 379–385. [Google Scholar] [CrossRef]
- Majdi, A.; Mahmoudi, J.; Sadigh-Eteghad, S.; Farhoudi, M.; Shotorbani, S.S. The interplay of microRNAs and post-ischemic glutamate excitotoxicity: An emergent research field in stroke medicine. Neurol. Sci. 2016, 37, 1765–1771. [Google Scholar] [CrossRef]
- Zeyen, T.; Noristani, R.; Habib, S.; Heinisch, O.; Slowik, A.; Huber, M.; Schulz, J.B.; Reich, A.; Habib, P. Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke. J. Mol. Med. 2020, 98, 833–847. [Google Scholar] [CrossRef]
- Wu, X.; Lin, L.; Qin, J.; Wang, L.; Wang, H.; Zou, Y.; Zhu, X.; Hong, Y.; Zhang, Y.; Liu, Y.; et al. CARD3 Promotes Cerebral Ischemia-Reperfusion Injury Via Activation of TAK1. J. Am. Heart Assoc. 2020, 9, e014920. [Google Scholar] [CrossRef]
- Chrostek, M.; Fellows, E.G.; Crane, A.T.; Grande, A.; Low, W.C. Efficacy of stem cell-based therapies for stroke. Brain Res. 2019, 1722, 146362. [Google Scholar] [CrossRef]
- Yu, F.; Huang, T.; Ran, Y.; Li, D.; Ye, L.; Tian, G.; Xi, J.; Liu, Z. New Insights into the Roles of Microglial Regulation in Brain Plasticity-Dependent Stroke Recovery. Front. Cell. Neurosci. 2021, 15, 299. [Google Scholar] [CrossRef]
- Feng, L.; Dou, C.; Xia, Y.; Li, B.; Zhao, M.; Yu, P.; Zheng, Y.; El-Toni, A.M.; Atta, N.F.; Galal, A.; et al. Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS Nano 2021, 15, 2263–2280. [Google Scholar] [CrossRef]
- Hatakeyama, M.; Ninomiya, I.; Otsu, Y.; Omae, K.; Kimura, Y.; Onodera, O.; Fukushima, M.; Shimohata, T.; Kanazawa, M. Cell Therapies under Clinical Trials and Polarized Cell Therapies in Pre-Clinical Studies to Treat Ischemic Stroke and Neurological Diseases: A Literature Review. Int. J. Mol. Sci. 2020, 21, 6194. [Google Scholar] [CrossRef]
- ClinicalTrials.gov Identifier (NCT Number): NCT01955707. Available online: https://clinicaltrials.gov/ct2/show/NCT01955707 (accessed on 7 October 2013).
- Chavda, V.; Madhwani, K.; Chaurasia, B. Stroke and immunotherapy: Potential mechanisms and its implications as immune-therapeutics. Eur. J. Neurosci. 2021, 54, 4338–4357. [Google Scholar] [CrossRef]
- Yu, C.Y.; Ng, G.; Liao, P. Therapeutic Antibodies in Stroke. Transl. Stroke Res. 2013, 4, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Hou, K.; Li, G.; Yu, J.; Xu, K.; Wu, W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021, 460, 167–180. [Google Scholar] [CrossRef]
- Cao, Z.; Harvey, S.S.; Chiang, T.; Foltz, A.G.; Lee, A.G.; Cheng, M.Y.; Steinberg, G.K. Unique Subtype of Microglia in Degenerative Thalamus After Cortical Stroke. Stroke 2021, 52, 687–698. [Google Scholar] [CrossRef]
- Xu, H.; Jia, B.; Huo, X.; Mo, D.; Ma, N.; Gao, F.; Yang, M.; Miao, Z. Predictors of Futile Recanalization After Endovascular Treatment in Patients with Acute Ischemic Stroke in a Multicenter Registry Study. J. Stroke Cerebrovasc. Dis. 2020, 29, 105067. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P.D.; Jackson-Friedman, C.; Shin, C.; Hassid, S. Synergistic Combinatorial Stroke Therapy: A Quantal Bioassay of a GABA Agonist and a Glutamate Antagonist. Exp. Neurol. 2000, 163, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Bryll, A.; Krzyściak, W.; Karcz, P.; Pilecki, M.; Śmierciak, N.; Szwajca, M.; Skalniak, A.; Popiela, T. Determinants of Schizophrenia Endophenotypes Based on Neuroimaging and Biochemical Parameters. Biomedicines 2021, 9, 372. [Google Scholar] [CrossRef]
- Cai, W.; Liu, H.; Zhao, J.; Chen, L.; Chen, J.; Lu, Z.; Hu, X. Pericytes in Brain Injury and Repair After Ischemic Stroke. Transl. Stroke Res. 2017, 8, 107–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Zhang, K.; Li, P.; Zhu, L.; Xu, J.; Yang, B.; Hu, X.; Lu, Z.; Chen, J. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: An aging effect. Ageing Res. Rev. 2017, 34, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Tymianski, M. Can molecular and cellular neuroprotection be translated into therapies for patients?: Yes, but not the way we tried it before. Stroke 2010, 41, S87–S90. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popiela, T.J.; Krzyściak, W.; Pilato, F.; Ligęzka, A.; Bystrowska, B.; Bukowska-Strakova, K.; Brzegowy, P.; Muthusamy, K.; Kozicz, T. The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches. J. Clin. Med. 2022, 11, 1864. https://doi.org/10.3390/jcm11071864
Popiela TJ, Krzyściak W, Pilato F, Ligęzka A, Bystrowska B, Bukowska-Strakova K, Brzegowy P, Muthusamy K, Kozicz T. The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches. Journal of Clinical Medicine. 2022; 11(7):1864. https://doi.org/10.3390/jcm11071864
Chicago/Turabian StylePopiela, Tadeusz J., Wirginia Krzyściak, Fabio Pilato, Anna Ligęzka, Beata Bystrowska, Karolina Bukowska-Strakova, Paweł Brzegowy, Karthik Muthusamy, and Tamas Kozicz. 2022. "The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches" Journal of Clinical Medicine 11, no. 7: 1864. https://doi.org/10.3390/jcm11071864
APA StylePopiela, T. J., Krzyściak, W., Pilato, F., Ligęzka, A., Bystrowska, B., Bukowska-Strakova, K., Brzegowy, P., Muthusamy, K., & Kozicz, T. (2022). The Assessment of Endovascular Therapies in Ischemic Stroke: Management, Problems and Future Approaches. Journal of Clinical Medicine, 11(7), 1864. https://doi.org/10.3390/jcm11071864