Comparative Clinical Value of Pharmacologic Therapies for B-Cell Chronic Lymphocytic Leukemia: An Umbrella Analysis
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Relative Survival Benefits Associated with Novel Drugs in Naïve CLL Patients
3.2. Relative Survival Benefits Associated with Novel Drugs in Refractory/Relapsed CLL Patients
3.3. Safety of Novel Drugs in CLL Patients
3.4. Partially Reported Meta-Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Weide, R.; Feiten, S.; Chakupurakal, G.; Friesenhahn, V.; Kleboth, K.; Köppler, H.; Lutschkin, J.; van Roye, C.; Thomalla, J.; Heymanns, J. Survival improvement of patients with chronic lymphocytic leukemia (CLL) in routine care 1995–2007. Leuk. Lymphoma 2020, 61, 557–566. [Google Scholar] [CrossRef]
- Lichtenberg, F.R. How many life-years have new drugs saved? A three-way fixed-effects analysis of 66 diseases in 27 countries, 2000–2013. Int. Health 2019, 11, 403–416. [Google Scholar] [CrossRef]
- NCCN Guidelines for Professionals. Chronic Lymphoytic Leukemia/Small Lymphocytic Lymphoma. Vers 2.2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf (accessed on 27 January 2022).
- Singh, M.; Mealing, S.; Baculea, S.; Cote, S.; Whelan, J. Impact of novel agents on patient-relevant outcomes in patients with previously untreated chronic lymphocytic leukemia who are not eligible for fludarabine-based therapy. J. Med. Econ. 2017, 20, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Mow, E.; Keech, J.; Naipaul, R.; Beca, J.M.; Gavura, S.; Kouroukis, C.T. Impact of novel chronic lymphocytic leukemia drugs on public spending. J. Clin. Oncol. 2018, 36 (Suppl. S1), 103. [Google Scholar] [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. Int. J. Evid.-Based. Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.S.; Waweru, C.; le Nouveau, P.; Padhiar, A.; Gautamjeet, S.; Adhyankar, S.; Leblod, V. Comparative efficacy of acalabrutinib in frontline treatment of chronic lymphocytic leukemia: A systematic review and network meta-analysis. Clin. Ther. 2020, 42, 1955–1974. [Google Scholar] [CrossRef]
- Molica, S.; Giannarelli, D.; Montserrat, E. Comparison between Venetoclax-based and Bruton Tyrosine Kinase Inhibitor-based Therapy as Upfront Treatment of Chronic Lymphocytic Leukemia (CLL): A Systematic Review and Network Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 21, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Song, S.; Yu, M.; Zhu, H.; Gao, A.; Gao, W.; Ran, X.; Huo, D. Comparison of acalabrutinib plus obinutuzumab, ibrutinib plus obinutuzumab and venetoclax plus obinutuzumab for untreated CLL: A network meta-analysis. Leuk. Lymphoma 2020, 61, 3432–3439. [Google Scholar] [CrossRef]
- Städler, N.; Shang, A.; Bosch, F.; Briggs, A.; Goede, V.; Berthier, A.; Renaudin, C.; Leblond, V. A Systematic Review and Network Meta-Analysis to Evaluate the Comparative Efficacy of Interventions for Unfit Patients with Chronic Lymphocytic Leukemia. Adv. Ther. 2016, 33, 1814–1830. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Fahrbach, K.; Dorman, E.; Baculea, S.; Côté, S.; van Sanden, S.; Diels, J. Front-line treatment of patients with chronic lymphocytic leukemia: A systematic review and network meta-analysis. J. Comp. Eff. Res. 2018, 7, 421–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molica, S.; Giannarelli, D.; Baumann, T.; Montserrat, E. Ibrutinib as initial therapy in chronic lymphocytic leukemia: A systematic review and meta-analysis. Eur. J. Haematol. 2020, 104, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Shapouri, S.; Manzoor, B.S.; Ravelo, A.; Sail, K.; Qendri, V.; van de Wetering, G.; Davids, M.S. Cost-effectiveness of a 12-month fixed-duration venetoclax treatment in combination with obinutuzumab in first-line, unfit chronic lymphocytic leukemia in the United States. J. Manag. Care Spéc. Pharm. 2021, 27, 1532–1544. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Ho, C.-L.; Lin, C.; Wu, Y.-Y.; Huang, T.-C.; Tu, Y.-K.; Lee, C.-H. Treatment Outcomes of Novel Targeted Agents in Relapse/Refractory Chronic Lymphocytic Leukemia: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2019, 8, 737. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Chen, P.-H.; Lin, C.; Wang, C.-Y.; Ho, C.-L. A network meta-analysis of maintenance therapy in chronic lymphocytic leukemia. PLoS ONE 2020, 15, e0226879. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Giannarelli, D.; Shanafelt, T.D. Comparison of venetoclax plus rituximab with B-cell receptor inhibitors in patients with relapsed/refractory chronic lymphocytic leukemia: A systematic review and network Meta-analysis. Leuk. Lymphoma 2019, 61, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Molica, S.; Giannarelli, D.; Mirabelli, R.; Levato, L.; Shanafelt, T.D. The magnitude of improvement in progression-free survival with targeted therapy in relapsed/refractory chronic lymphocytic leukemia based on prognostic risk category: A systematic review and meta-analysis. Leuk. Lymphoma 2018, 60, 1644–1649. [Google Scholar] [CrossRef]
- Puła, A.; Stawiski, K.; Braun, M.; Iskierka-Jażdżewska, E.; Robak, T. Efficacy and safety of B-cell receptor signaling pathway inhibitors in relapsed/refractory chronic lymphocytic leukemia: A systematic review and meta-analysis of randomized clinical trials. Leuk. Lymphoma 2017, 59, 1084–1094. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Gu, Y.; Xia, J.; Kong, X.; Qian, Q.; Hong, Y. Safety and efficacy of Ofatumumab in chronic lymphocytic leukemia: A systematic review and meta-analysis. Hematology 2017, 22, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, S.; Das, A.; Vutthikraivit, W.; Edwards, P.J.; Hardwicke, F.; Short, N.J.; Borthakur, G.; Maiti, A. Risk of Infection Associated with Ibrutinib in Patients with B-Cell Malignancies: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin. Lymphoma Myeloma Leuk. 2020, 20, 87–97.e5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, H.; Yang, M.; Xu, C. Adverse drug events associated with ibrutinib for the treatment of elderly patients with chronic lymphocytic leukemia. A systematic review and meta-analysis of randomized trials. Medicine 2019, 98, e16915. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, A.; Zhou, H.; Zhu, J.; Niu, T. Risk of Bleeding Associated with Ibrutinib in Patients with B-Cell Malignancies: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2020, 11, 1731. [Google Scholar] [CrossRef] [PubMed]
- Caldeira, D.; Alves, D.; Costa, J.; Ferreira, J.J.; Pinto, F.J. Ibrutinib increases the risk of hypertension and atrial fibrillation: Systematic review and meta-analysis. PLoS ONE 2019, 14, e0211228. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Paez, T.; Conte, C.; Rousseau, V.; Chebane, L.; Ysebaert, L.; Levy, V.; Montastruc, J.L.; Despas, F. Cardiovascular adverse drug reactions of ibrutinib, idelalisib, acalabrutinib, and venetoclax used in chronic lymphocytic leukemia: Systematic review-meta-analysis and Signal detection by disproportionality analysis from VigiBase®. Fund. Clin. Pharmacol. 2021, 35 (Suppl. 1), 38–39. [Google Scholar]
- Hilal, T.; Hillegass, W.B.; Gonzalez-Velez, M.; Leis, J.F.; Rosenthal, A.C. Adverse Events in Clinical Trials of Ibrutinib and Acalabrutinib for B-Cell Lymphoproliferative Disorders: A Systematic Review and Network Meta-Analysis. Blood 2020, 136, 23. [Google Scholar] [CrossRef]
- Coll Bastus, N.; Bavids, M.S.; Huntington, S.F.; Moreno, C.; Follows, G.; Cuneo, A.; Humpphrey, K.; Schary, W.; Sail, K.; Song, Y.; et al. Indirect treatment comparison analysis of venetoclax + obinutuzumab with standard front-line regimens for chronic lymphocytic leukaemia. Br. J. Haematol. 2020, 189 (Suppl. 1), 219–220. [Google Scholar]
- Khalid, Y.; Dasu, N.; Dasu, K.; Fradley, M.; Shah, A. Ventricular arrhythmias with ibrutinib use a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2021, 77, 3333. [Google Scholar] [CrossRef]
- A Haddad, P.; Ganey, N.; Gallagher, K.M. Comparative Efficacy of First-Line Chemotherapy-Free Combinations in Chronic Lymphocytic Leukemia (CLL): A Network Meta-Analysis. Blood 2020, 136, 25–26. [Google Scholar] [CrossRef]
- Sudhapalli, P.; Piena, M.; Palaka, A.; Mato, A.; van de Wetering, G.; Manzoor, B.; Sail, K. Systematic literature review and network meta-analysis comparing therapies for treatment naive patients with chronic lymphocytic leukemia. HemaSphere 2020, 4 (Suppl. 1), 320. [Google Scholar]
- Tang, X.; Zou, W.; Peng, P.; Bai, Y. Venetoclax alone or in combination with other regimens treatment achieve deep and sustained remission of relapsed/refractory chronic lymphocytic leukemia: A meta-analysis. Clin. Exp. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Habib RAiman, W.; Garg, I.; Niaz, R.; Butt, S.K.; Saeed, M.; Zubair, H.; Kashif, H.; Farrukh, M.; Naveed MTahir, N.; Fatima, A.; et al. Efficacy and safety of chimeric antigen receptor T cell therapy in chronic lymphocytic leukemia: A systematic review. Blood 2021, 138 (Suppl. 1), 4822. [Google Scholar]
- Cuneo, A.; Follows, G.; Rigolin, G.M.; Piciocchi, A.; Tedeschi, A.; Trentin, L.; Perez, A.M.; Coscia, M.; Laurenti, L.; Musuraca, G.; et al. Efficacy of bendamustine and rituximab as first salvage treatment in chronic lymphocytic leukemia and indirect comparison with ibrutinib: A GIMEMA, ERIC and UK CLL FORUM study. Haematologica 2018, 103, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, M.; Carobbio, A.; Capitoni, E.; Barbui, T. Lymphoproliferative disorders in patients with chronic myeloproliferative neoplasms. Am. J. Hematol. 2018, 93, 698–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, C.; Salvetti, C.; Griggio, V.; Porrazzo, M.; Schiattone, L.; Zamprogna, G.; Visentin, A.; Vassallo, F.; Cassin, R.; Rigolin, G.M.; et al. Preexisting and treatment-emergent autoimmune cytopenias in patients with CLL treated with targeted drugs. Blood 2021, 137, 3507–3517. [Google Scholar] [CrossRef] [PubMed]
- Brugiatelli, M.; Bandini, G.; Barosi, G.; Lauria, F.; Liso, V.; Marchetti, M.; Mauro, F.R.; Meloni, G.; Zinzani, P.L.; Tura, S. Management of chronic lymphocytic leukemia: Practice guidelines from the Italian Society of Hematology, the Italian Society of Experimental Hematology and the Italian Group for Bone Marrow Transplantation. Haematologica 2006, 91, 1662–1673. [Google Scholar]
- Zinzani, P.L.; Rambaldi, A.; Gaidano, G.; Girmenia, C.; Marchetti, M.; Pane, F.; Tura, S.; Barosi, G. Infection control in patients candidate to treatment with ibrutinib or idelalisib in chronic lymphocytic leukemia: Recommendations from Italian Society of Hematology. Leuk. Res. 2019, 81, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, M.; Barosi, G.; Liberato, L.N. Fludarabine for chronic lymphocytic leukemia. N. Engl. J. Med. 2001, 344, 1166–1167. [Google Scholar]
- Marchetti, M.; Montillo, M.; Cuneo, A.; Mauro, F.R.; Martelli, E.; Pedone, M.P. Cost-effectiveness of idelalisib-rituximab for the treatment of relapsed-refractory chronic lymphocytic leukemia. Hematol. Int. J. 2017, 1, 000106. [Google Scholar] [CrossRef]
- Marchetti, M. Cost-effectiveness of kinase inhibitors for hematologic malignancies: A systematic and critical review. Expert Rev. Pharm. Outcomes Res. 2017, 17, 469–480. [Google Scholar] [CrossRef] [PubMed]
Author, Year | NMA | Sponsored | N Studies (Patients) | Intervention | Comparator | Hazard Ratio or Risk Ratio (Confidence or Credible Intervals) |
---|---|---|---|---|---|---|
PFS | ||||||
Stadler, 2016 [10] | Yes | Yes | 5 (2882) | O-Chl | Chl F Ofa-Chl R-Chl RB FCR-lite | 0.19 (0.14–0.25) 0.20 (0.13–0.49) 0.33 (0.23–0.49) 0.43 (0.34–0.54) 0.81 (0.49–1.33) 0.88 (0.51–1.52) |
Xu, 2018 [11] | Yes | Yes | 15 (5300) | I | Chl Flud O-Chl FC FCR B R-Chl Ofa-Chl RB | 0.16 (0.08, 0.31) 0.19 (0.09, 0.38) 0.82 (0.35, 1.88) 0.38 (0.18, 0.78) 0.72 (0.32, 1.61) 0.71 (0.31, 1.65) 0.33 (0.15, 0.71) 0.28 (0.13, 0.63) 0.55 (0.24, 1.28) |
Sheng, 2020 [9] | Yes | No | 3 (1017) | OA | OI OV | 0.43 (0.22–0.87) 0.46 (0.22–0.96) § 0.30 (0.15–0.59) 0.34 (0.17–0.68) § |
Davids, 2020 [7] | Yes | Yes | 8 (3778) | A | I OI IR OV BR Chl O-Chl Ofa-Chl R-Chl | 0.35 (0.18–0.66) 0.61 (0.32–1.15) ^ 0.87 (0.46–1.63) 0.63 (0.32–1.27) ^ 0.37 (0.18–0.75) 0.56 (0.27–1.14) ^ 0.60 (0.33–1.11) 0.47 (0.24–0.89) ^ 0.15 (0.08–0.27) 0.19 (0.10–0.35) ^ 0.04 (0.02–0.07) 0.03 (0.02–0.06) ^ 0.20 (0.13–0.31) 0.16 (0.10–0.27) ^ 0.07 (0.04–0.12) 0.06 (0.03–0.10) ^ 0.08 (0.05–0.14) 0.07 (0.04–0.13) ^ |
OA | I OI IR OV BR Chl O-Chl Ofa-Chl R-Chl | 0.19 (0.09–0.38) 0.46 (0.23–0.92)^ 0.46 (0.23–0.94) 0.48 (0.23–1.01) ^ 0.20 (0.09–0.44) 0.43 (0.20–0.91) ^ 0.32 (0.16–0.64) 0.36 (0.18–0.71) ^ 0.08 (0.04–0.16) 0.14 (0.07–0.28) ^ 0.02 (0.01–0.04) 0.02 (0.01–0.05) ^ 0.11 (0.06–0.18) 0.12 (0.07–0.22) ^ 0.04 (0.02–0.07) 0.04 (0.02–0.08) ^ 0.04 (0.02–0.08) 0.06 (0.03–0.10) ^ | ||||
Molica, 2020 CLM [8] | Yes | No | 3 1 (1191) | A | OI OV | 0.87 (0.47–1.61) 0.57 (0.32v1.03) |
OA | OI OV | 0.43(0.22–0.87) 0.29(0.15–0.56) | ||||
OV | OI | 1.52 (0.82–1.81) | ||||
Molica, 2020 EJH [12] | No | No | 4 (1574) | I +/− R/O | Mixed chemo (Chl, O-Chl, RB, FCR) | 0.331 (0.272–0.403) 0.159 (0.077–0.327) 11q- 0.178 (0.121–0.261) IGVH unmut 0.270 (0.149–0.489) IGVH mut |
Chatterjee, 2021 [13] | Yes | Yes | 6 | A OA BR OI I IR | OV | 0.6 (0.3–1.0) 0.4 (0.2–0.8) 6.9 (3.3–13.2) 0.9 (0.5–1.6) 2.5 (1.4–4.3) 2.8 (1.2–5.4) |
OS | ||||||
Stadler, 2016 [10] | Yes | Yes | 5 (2882) | O-Chl | F Chl Ofa-Chl R-Chl RB | 0.35 (0.07–1.86) 0.48 (0.30–0.78) 0.53 (0.28–1.04) 0.81 (0.52–1.26) 0.81 (0.37–1.76) |
Xu, 2018 [11] | Yes | Yes | 15 (5300) | I | Chl Flud O-Chl FC FCR B R-Chl Ofa-Chl RB | 0.16(0.04, 0.56) 0.15(0.04, 0.53) 0.41 (0.09, 1.70) 0.14(0.04, 0.52) 0.20(0.05, 0.79) 0.21(0.05, 0.80) 0.27 (0.06, 1.05) 0.18(0.04, 0.71) 0.30 (0.06, 1.29) |
Sheng, 2020 [9] | Yes | No | 3 (1017) | OA | OI OV | 0.51 (0.18–1.44) 0.38 (0.13–1.08) |
Davids, 2020 [7] | Yes | Yes | 8 (3778) | A | I OI IR OV BR Chl O-Chl Ofa-Chl R-Chl | 0.44 (0.16–1.27) 0.66 (0.25–1.75) ^ 0.65 (0.24–1.75) 0.45 (0.15–1.40) 0.64 (0.22–1.87) ^ 0.48 (0.18–1.30) 0.45 (0.16–1.27) 0.61 (0.23–1.60) ^ 0.23 (0.09–0.59) 0.27 (0.11–0.70) ^ 0.60 (0.28–1.26) 0.59 (0.28–1.26) ^ 0.25 (0.09–0.71) 0.30 (0.11v0.85) ^ 0.38 (0.15–0.94) 0.44 (0.18–1.07) ^ |
AO | I OI IR OV BR Chl O-Chl Ofa-Chl R-Chl | 0.35 (0.12–1.04) 0.53 (0.19–1.45) ^ 0.51 (0.18–1.45) 0.36 (0.11–1.15) 0.51 (0.17–1.54) ^ 0.38 (0.13–1.08) 0.36 (0.12–1.05) 0.48 (0.17–1.34) ^ 0.18 (0.07–0.48) 0.22 (0.08–0.58) ^ 0.47 (0.21–1.06) 0.20 (0.07–0.59) 0.24 (0.08–0.71) ^ 0.30 (0.12–0.78) 0.35 (0.14–0.88) ^ | ||||
Molica, 2020 EJH [12] | No | No | 3 (1027) | I +/− R I +/− O | Mixed chemo +/− R/O | 0.289 (0.07–1.175) |
Chatterjee, 2021 [13] | Yes | Yes | 6 | A OA BR OI I IR | OV | 0.6 (0.3–1.2) 0.5 (0.1–1.1) 1.2 (0.5–2.4) 1.0 (0.4–2.1) 1.2 (0.5–2.3) 1.2 (0.4–2.6) |
Author, Year | NMA | Sponsored | N Studies (Patients) | Intervention | Comparator | Hazard Ratio or Risk Ratio (Confidence or Credible Intervals) |
---|---|---|---|---|---|---|
PFS | ||||||
Wu, 2017 [19] | No | No | 13 (2314) | Ofa-based | Non-Ofa-based | 0.88 (0.47–1.63) |
Pula, 2018 [18] | No | No | 5 (1866) | BTK inhibitors | Non-BTK inhibitors | 0.24(0.19–0.30) |
Chen, 2019 [14] | Yes | No | 7 (2514) | RV I | Ofa | 0.10(0.05–0.21) 0.10(0.07–0.17) |
Lee, 2020 [15] | No | Yes | 6 (1615) | Lenalidomide (maint) R (maint) Ofa (maint) | No maintenance | 0.37(0.27–0.50) 0.50(0.38–0.66) 0.52(0.41–0.66) |
Molica, 2019 [17] | No | No | 7 (2409) | I or A or V +/− R/O | No BTK inhibitor nor venetoclax | 0.187 (0.126–0.279) non 17p- 0.240 (0.185–0.311) TP53wt 0.239 (0.166–0.344) IGVH mutated 0.208 (0.168–0.59) non 11q- 0.206 (0.108–0.392) 17p- 0.231 (0.137–0.390) TP53 mutated 0.172 (0.109–0.272) IGVH unmutated 0.081 (0.054–0.121) 11q- |
OS | ||||||
Wu, 2017 [19] | No | No | 13 (2314) | Ofa-based | Non-Ofa-based | 0.97 (0.70–1.36) |
Pula, 2018 [18] | No | No | 5 (1866) | BCR-inhibitors | Non BCR-inhibitors | 0.58(0.46–0.73) |
Chen, 2019 [14] | Yes | No | 7 (2514) | RV I | Ofa | 0.33(0.11–0.99) 0.36(0.21–0.63) |
Molica, 2020 LL [16] | Yes | No | 3 (1383) | RV RB + I RB + idelalisib | RB | 0.17(0.11–0.25) 0.20(0.15–0.28) 0.33(0.25–0.44) |
Lee, 2020 [15] | No | Yes | 6 (1615) | Lenalidomide, R, or Ofa maintenance | No maintenance | 0.89 (0.70–1.14) |
Author, Year | NMA | Sponsored | N Studies (Patients) | Population | Intervention | Comparator | Outcome | Hazard Ratio or Risk Ratio (Confidence or Credible Intervals) |
---|---|---|---|---|---|---|---|---|
Wu, 2017 [19] | No | No | 13 (2314) | R/R | Ofa-based | Non-Ofa-based | AE | Infections more frequent Thrombocytopenia & anemia less frequent |
Pula, 2018 [18] | No | No | 5 (1866) | R/R | BTK inhibitors | Non BTK inhibitors | AE HG AE disc AE death | 1.25 (1.08–1.44) 1.26 (0.88–1.81) 1.06 (0.72–1.57) |
Xu, 2018 [11] | Yes | Yes | 15 (5300) | Naïve | I | Chl O-Chl R-Chl Ofa-Chl B | AE disc | 0.32 (0.08–1.18) 0.31 (0.05–2.00) 0.66 (0.1–4.31) 0.31 (0.05–1.90) 0.08 (0.1–0.6) |
Naïve, FI | I | Chl O-Chl R-Chl Ofa-Chl B | AE disc | 0.23(0.15–0.63) 0.31(0.11–0.80) 0.65 (0.23–1.81) 0.31(0.12–0.77) 0.08(0.02–0.7) | ||||
Zhou 2019 [21] | No | No | 5 (2456) | Naïve, R/R | I | Mixed | Anemia Thrombocytopenia Neutropenia Febrile neutropenia Respiratory tract infections Abdominal AE Arthralgia | 0.90 (0.67–1.21) 0.61 (0.32–1.14) 0.50 (0.25–1.00) 0.89 (0.32–2.49) 1.01 (0.78–1.30) 2.14 (1.44–3.17) 1.86 (1.10–3.15) |
Caldeira, 2019 [23] | No | No | 8 (2580) | CLL & | I-based therapy | Mixed | Arterial hypertension Atrial fibrillation | 2.82(1.52–5.23) 4.69(2.17–7.64) |
Wang 2020 [22] | 11 (4288) | CLL & | I | Mixed | Bleeding Major bleed | 3.08(2.07–4.58) 2.46(1.37–4.41) | ||
Ball, 2020 [20] | No | No | 5 (1739) | Naïve, R/R | I | Mixed | Infections HG | 1.24(1.02–1.50) |
Lee, 2020 [15] | No | Yes | 6 (1615) | R/R | Lenalidomide (maint) R (maint) Ofa (maint) | No maintenance | AE | 1.84 (0.98–3.43) 1.11 (0.69–1.79) 2.11 (0.92–4.81) |
Sheng, 2020 [9] | Yes | No | 3 (1017) | Naïve | OA | OI | AE disc Grade 3–4 AE Any AE | 0.64 (0.11–1.86) 1.10 (0.52–2.32) 0.48 (0.01–48.20) |
OA | OV | AE disc Grade 3–4 AE Any AE | 0.68 (0.26–1.81) 5.28 (0.03–831.44) 0.89 (0.45–1.77) | |||||
Molica, 2020 CLM [8] | Yes | No | 3 (1027) | Naïve | VO A A | IO IO VO | Grade 3–4 AE | 1.05 (0.64–1.73) 0.73 (0.43–1.24) 0.69 (0.44–1.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchetti, M.; Rivela, P.; Bertassello, C.; Canicattì, M. Comparative Clinical Value of Pharmacologic Therapies for B-Cell Chronic Lymphocytic Leukemia: An Umbrella Analysis. J. Clin. Med. 2022, 11, 1868. https://doi.org/10.3390/jcm11071868
Marchetti M, Rivela P, Bertassello C, Canicattì M. Comparative Clinical Value of Pharmacologic Therapies for B-Cell Chronic Lymphocytic Leukemia: An Umbrella Analysis. Journal of Clinical Medicine. 2022; 11(7):1868. https://doi.org/10.3390/jcm11071868
Chicago/Turabian StyleMarchetti, Monia, Paolo Rivela, Claudia Bertassello, and Manuela Canicattì. 2022. "Comparative Clinical Value of Pharmacologic Therapies for B-Cell Chronic Lymphocytic Leukemia: An Umbrella Analysis" Journal of Clinical Medicine 11, no. 7: 1868. https://doi.org/10.3390/jcm11071868
APA StyleMarchetti, M., Rivela, P., Bertassello, C., & Canicattì, M. (2022). Comparative Clinical Value of Pharmacologic Therapies for B-Cell Chronic Lymphocytic Leukemia: An Umbrella Analysis. Journal of Clinical Medicine, 11(7), 1868. https://doi.org/10.3390/jcm11071868