Capturing Subtle Neurocognitive Differences in Children with and without Tourette Syndrome through a Fine-Grained Analysis of Design Fluency Profiles
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Procedure
2.3. Assessment Instruments
2.3.1. Five-Point Test
2.3.2. IQ Estimate
2.3.3. TS Symptoms
2.3.4. ADHD-Related Symptoms
2.4. Statistical Analyses
3. Results
3.1. Group Equivalence and Covariates Identification
3.2. FPT Performance
3.3. FPT Process Measures
3.4. A Posteriori Analyses
4. Discussion
4.1. Decreased Performance of the Clinical Group at the FPT
4.2. Intact Time Domain of Design Fluency Task in Tourette Patients
4.3. Verbal vs. Non-Verbal Discrepancy in Children with TS
4.4. Developmental Aspects
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub.: Washington, DC, USA, 2013. [Google Scholar]
- Cavanna, A.E.; Black, K.; Hallett, M.; Voon, V. Neurobiology of the premonitory urge in Tourette syndrome: Pathophysiology and treatment implications. J. Neuropsychiatry Clin. Neurosci. 2017, 29, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houeto, J.L.; Giré, P. Tics et syndrome de Gilles de la Tourette: Diagnostic, évolution et principes de traitement. Presse Méd. 2008, 37, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Lange, F.; Seer, C.; Muller-Vahl, K.; Kopp, B. Cognitive flexibility and its electrophysiological correlates in Gilles de la Tourette syndrome. Dev. Cogn. Neurosci. 2017, 27, 78–90. [Google Scholar] [CrossRef]
- Mink, J.W. Basal ganglia dysfonction in Tourette’s syndrome: A new hypothesis. Pediatr. Neurol. 2001, 25, 190–198. [Google Scholar] [CrossRef]
- Spessot, A.; Peterson, B. Tourette’s Syndrome: A Multifactorial, Developmental Psychopathology. In Developmental Psychopathology: Risk, Disorder, and Adaptation, 2nd ed.; Cicchetti, D., Cohen, D.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 3, pp. 436–460. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Ganos, C.; Hartmann, A.; Martino, D.; Pringsheim, T.; Seri, S. The cognitive neuropsychiatry of Tourette syndrome. Cogn. Neuropsychiatry 2020, 25, 254–268. [Google Scholar] [CrossRef] [PubMed]
- Eddy, C.M.; Rizzo, R.; Cavanna, A.E. Neuropsychological aspects of Tourette syndrome: A review. J. Psychosom. Res. 2009, 67, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Morand-Beaulieu, S.; Leclerc, J.B.; Valois, P.; Lavoie, M.E.; O’Connor, K.P.; Gauthier, B. A review of the neuropsychological dimensions of Tourette syndrome. Brain Sci. 2017, 7, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitsko, R.H.; Holbrook, J.R.; Visser, S.N.; Mink, J.W.; Zinner, S.H.; Ghandour, R.M.; Blumberg, S.J. A national profile of Tourette syndrome, 2011–2012. J. Dev. Behav. Pediatr. 2014, 35, 317–322. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Servo, S.; Monaco, F.; Robertson, M.M. The behavioral spectrum of Gilles de la Tourette syndrome. J. Neuropsychiatry Clin. Neurosci. 2009, 21, 13–23. [Google Scholar] [CrossRef]
- Coffey, B.J.; Park, K.S. Behavioral and emotional aspects of Tourette syndrome. Neurol. Clin. 1997, 15, 277–289. [Google Scholar] [CrossRef]
- Freeman, R.D. Tic disorders and ADHD: Answers from a world-wide clinical dataset on Tourette syndrome. Eur. Child Adolesc. Psychiatry 2007, 16, 15–23. [Google Scholar] [CrossRef]
- Kalsi, N.; Tambelli, R.; Aceto, P.; Lai, C. Are motor skills and motor inhibitions impaired in Tourette syndrome? A review. J. Exp. Neurosci. 2015, 9, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Godar, S.C.; Bortolato, M. What makes you tic? Translational approaches to study the role of stress and contextual triggers in Tourette syndrome. Neurosci. Biobehav. Rev. 2017, 76, 123–133. [Google Scholar] [CrossRef] [Green Version]
- McCairn, K.W.; Nagai, Y.; Hori, Y.; Ninomiya, T.; Kikuchi, E.; Lee, J.Y.; Suhara, T.; Iriki, A.; Minamimoto, T.; Takada, M.; et al. A primary role for nucleus accumbens and related limbic network in vocal tics. Neuron 2016, 89, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Yaniv, A.; Benaroya-Milshtein, N.; Steinberg, T.; Ruhrman, D.; Apter, A.; Lavidor, M. Executive control development in Tourette syndrome and its role in tic reduction. Psychiatry Res. 2018, 262, 527–535. [Google Scholar] [CrossRef]
- Tucha, L.; Aschenbrenner, S.; Koerts, J.; Lange, K.W. The Five-Point Test: Reliability, validity and normative data for children and adults. PLoS ONE 2012, 7, e46080. [Google Scholar] [CrossRef] [Green Version]
- Jones-Gotman, M.; Milner, B. Design fluency: The invention of nonsense drawings after focal cortical lesions. Neuropsychologia 1977, 15, 653–674. [Google Scholar] [CrossRef]
- Fernandez, A.L.; Moroni, M.A.; Carranza, J.M.; Fabbro, N.; Lebowitz, B.K. Reliability of the Five-Point Test. Clin. Neuropsychol. 2009, 23, 501–509. [Google Scholar] [CrossRef]
- Fournier, A.; Gauthier, B.; Guay, M.-C.; Parent, V. Design fluency in children with ADHD and comorbid disorders. Brain Sci. 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Hurks, P.P.M. Administering design fluency tests in school-aged children: Analyses of design productivity over time, clustering, and switching. Clin. Neuropsychol. 2013, 27, 1131–1149. [Google Scholar] [CrossRef]
- Stievano, P.; Scalisi, T.G. Unique designs, errors and strategies in the Five-Point Test: The contribution of age, phonemic fluency and visuospatial abilities in Italian children aged 6–11 years. Child Neuropsychol. 2016, 22, 197–219. [Google Scholar] [CrossRef]
- Baldo, J.V.; Shimamura, A.P.; Delis, D.C.; Kramer, J.; Kaplan, E. Verbal and design fluency in patients with frontal lobe lesions. J. Int. Neuropsychol. Soc. 2001, 7, 586–596. [Google Scholar] [CrossRef] [Green Version]
- Delis, D.C.; Kaplan, E.; Kramer, J.H.; Delis, D.C.; Kramer, J.H. Delis-Kaplan Executive Function System (D-KEFS): Examiner’s Manual; The Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Ebersbach, M.; Hagedorn, H. The role of cognitive flexibility in the spatial representation of children’s drawings. J. Cogn. Dev. Psychopathol. 2011, 12, 32–55. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Hirschtritt, M.E.; Darrow, S.M.; Illmann, C.; Osiecki, L.; Grados, M.; Sandor, P.; Dion, Y.; King, R.A.; Pauls, D.; Budman, C.L.; et al. Genetic and phenotypic overlap of specific obsessive-compulsive and attention-deficit/hyperactive subtypes with Tourette syndrome. Psychol. Med. 2018, 48, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.P.; Strauss, E.; Loring, D.W.; McCloskey, L.; Haworth, J.M.; Lehman, R.A.W. Sensitivity of figural fluency on the five-point test to focal neurological dysfunction. Clin. Neuropsychol. 1997, 11, 59–68. [Google Scholar] [CrossRef]
- Cattelani, R.; Dal Sasso, F.; Corsini, D.; Posteraro, L. The modified Five-Point Test: Normative data for a sample of Italian healthy adults aged 16–60. Neurol. Sci. 2011, 32, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, B.; Parent, V.; Lageix, P. Exploring the dynamics of design fluency in children with and without ADHD using artificial neural networks. Child Neuropsychol. 2016, 22, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Albert, D.; Opwis, K.; Regard, M. Effect of drawing hand and age on figural fluency: A graphomotor study with the Five-Point Test in children. Child Neuropsychol. 2009, 16, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Regard, M.; Strauss, E.; Knapp, P. Children’s production on verbal and non-verbal fluency tasks. Percept. Mot. Ski. 1982, 55, 839–844. [Google Scholar] [CrossRef]
- Robertson, M.M.; Cavanna, A.E.; Eapen, V. Gilles de la Tourette syndrome and disruptive behavior disorders: Prevalence, associations, and explanation of the relationships. J. Neuropsychiatry Clin. Neurosci. 2015, 27, 33–41. [Google Scholar] [CrossRef]
- Klenberg, L.; Korkman, M.; Lahti-Nuuttila, P. Differential development of attention and executive functions in 3-to 12-year-old Finnish children. Dev. Neuropsychol. 2001, 20, 407–428. [Google Scholar] [CrossRef]
- Korkman, M.; Kemp, S.L.; Kirk, U. Effects of age on neurocognitive measures of children ages 5 to 12: A cross-sectional study on 800 children from the United States. Dev. Neuropsychol. 2001, 20, 331–354. [Google Scholar] [CrossRef]
- Levin, H.S.; Culhane, K.A.; Hartmann, J.; Evankovich, K.; Mattson, A.J.; Harward, H.; Ringholz, G.; Ewing-Cobbs, L.; Fletcher, J.M. Developmental changes in performance on tests of purported frontal lobe functioning. Dev. Neuropsychol. 1991, 7, 377–395. [Google Scholar] [CrossRef]
- Matute, E.; Rosselli, M.; Ardila, A.; Morales, G. Verbal and nonverbal fluency in Spanish-speaking children. Dev. Neuropsychol. 2004, 26, 647–660. [Google Scholar] [CrossRef]
- Van der Elst, W.; Hurks, P.; Wassenberg, R.; Meijs, C.; Jolles, J. Animal verbal fluency and design fluency in school-aged children: Effects of age, sex, and mean level of parental education, and regression-based normative data. J. Clin. Exp. Neuropsychol. 2011, 33, 1005–1015. [Google Scholar] [CrossRef]
- Baldo, J.V.; Schwartz, S.; Wilkins, D.; Dronkers, N.F. Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J. Int. Neuropsychol. Soc. 2006, 12, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.; Shallice, T.; Bozzali, M.; Cipolotti, L. The differing roles of the frontal cortex in fluency tests. Brain 2012, 135, 2202–2214. [Google Scholar] [CrossRef]
- Stuss, D.T.; Alexander, M.P.; Hamer, L.; Palumbo, C.; Dempster, R.; Binns, M.; Levine, B.; Izukawa, D. The effects of focal anterior and posterior brain lesions on verbal fluency. J. Int. Neuropsychol. Soc. 1998, 4, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Van der Elst, W.; Wassenberg, R.; Meijs, C.; Hurks, P.; Van Boxtel, M.; Jolles, J. On the mediating effects of pregnancy and birth stress events on the relation between lateral preferences and cognitive functioning in healthy school-aged children. J. Clin. Exp. Neuropsychol. 2011, 33, 548–558. [Google Scholar] [CrossRef]
- Fenger, M.M.; Gade, A.; Adams, K.H.; Hansen, E.S.; Bolwig, T.G.; Knudsen, G.M. Cognitive deficits in obsessive-compulsive disorder on tests of frontal lobe functions. Nord. J. Psychiatry 2005, 59, 39–44. [Google Scholar] [CrossRef]
- Mataix-Cols, D.; Barrios, M.; Sanchez-Turet, M.; Vallejo, C.; Junque, C. Reduced design fluency in a subclinical obsessive-compulsive sample. J. Neuropsychiatry Clin. Neurosci. 1999, 11, 395–397. [Google Scholar] [CrossRef]
- Robinson, T.; Tripp, G. Neuropsychological functioning in children with ADHD: Symptom persistence is linked to poorer performance on measures of executive and nonexecutive function. Jpn. Psychol. Res. 2013, 55, 154–167. [Google Scholar] [CrossRef]
- Shin, N.Y.; Lee, T.Y.; Kim, E.; Kwon, J.S. Cognitive functioning in obsessive-compulsive disorder: A meta-analysis. Psychol. Med. 2014, 44, 1121–1130. [Google Scholar] [CrossRef]
- Mahone, E.M.; Koth, C.W.; Cutting, L.; Singer, H.S.; Denckla, M.B. Executive function in fluency and recall measures among children with Tourette syndrome or ADHD. J. Int. Neuropsychol. Soc. 2001, 7, 102–111. [Google Scholar] [CrossRef]
- Müller, S.V.; Johannes, S.; Wieringa, B.; Weber, A.; Müller-Vahl, K.; Matzke, M.; Kolbe, H.; Dengler, R.; Münte, T.F. Disturbed monitoring and response inhibition in patients with Gilles de la Tourette syndrome and co-morbid obsessive compulsive disorder. Behav. Neurol. 2003, 14, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Sowell, E.R.; Kan, E.; Yoshii, J.; Thompson, P.M.; Bansal, R.; Xu, D.; Toga, A.W.; Peterson, B.S. Thinning of sensorimotor cortices in children with Tourette syndrome. Nat. Neurosci. 2008, 11, 637–639. [Google Scholar] [CrossRef] [Green Version]
- Loge, D.V.; Staton, R.D.; Beatty, W.W. Performance of Children with ADHD on Tests Sensitive to Frontal Lobe Dysfunction. J. Am. Acad. Child Adolesc. Psychiatry 1990, 29, 540–545. [Google Scholar] [CrossRef]
- Reiter, A.; Tucha, O.; Lange, K.W. Executive functions in children with dyslexia. Dyslexia 2005, 11, 116–131. [Google Scholar] [CrossRef]
- Vélez-van-Meerbeke, A.; Zamora, I.P.; Guzmán, G.; Figueroa, B.; López Cabra, C.A.; Talero-Gutiérrez, C. Evaluación de la función ejecutiva en una población escolar con síntomas de déficit de atención e hiperactividad. Neurologia 2013, 28, 348–355. [Google Scholar] [CrossRef]
- Reynolds, C.R.; Kamphaus, R.W. Behavior Assessment System for Children, 2nd ed.; BASC-2; American Guidance Service: Circle Pines, MN, USA, 2004. [Google Scholar]
- Skalla, J.R. Using the Quantified Process Approach in Examination of the Five Point Test; Cleveland State University: Cleveland, OH, USA, 2012; Available online: https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?referer=https://www.google.ca/&httpsredir=1&article=1608&context=etdarchive (accessed on 31 January 2022).
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Wechsler, D. Échelle d’intelligence de Wechsler pour enfants—Cinquième édition: Version pour francophones du Canada; Pearson Canada Assessment: Toronto, ON, Canada, 2015. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children–Fifth Edition Technical and Interpretive Manual; NCS Pearson: San Antonio, TX, USA, 2014. [Google Scholar]
- Leckman, J.F.; Riddle, M.A.; Hardin, M.T.; Ort, S.I.; Swartz, K.L.; Stevenson, J.; Cohen, D.J. The Yale Global Tic Severity Scale: Initial testing of a clinician-rated scale of tic severity. J. Am. Acad. Child Adolesc. Psychiatry 1989, 28, 566–573. [Google Scholar] [CrossRef]
- Conners, C.K.; Sitarenios, G.; Parker, J.D.A.; Epstein, J.N. The Revised Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. J. Abnorm. Child Psychol. 1998, 26, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Bornstein, R.A.; Baker, G.B.; Bazylewich, T.; Douglass, A.B. Tourette syndrome and neuropsychological performance. Acta Psychiatr. Scand. 1991, 84, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, L.H.; Sahakian, B.J.; Robertson, M.M.; Veale, D.M.; Rogers, R.D.; Pickard, K.M.; Aitken, M.R.F.; Robbins, T.W. Executive function in Tourette’s syndrome and obsessive-compulsive disorder. Psychol. Med. 2005, 35, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goebel, S.; Fischer, R.; Ferstl, R.; Mehdorn, H.M. Normative data and psychometric properties for qualitative and quantitative scoring criteria of the Five-point Test. Clin. Neuropsychol. 2009, 23, 675–690. [Google Scholar] [CrossRef]
- Hurks, P.P.M.; Schrans, D.; Meijs, C.; Wassenberg, R.; Feron, F.J.M.; Jolles, J. Developmental changes in semantic verbal fluency: Analyses of word productivity as a function of time, clustering, and switching. Child Neuropsychol. 2010, 16, 366–387. [Google Scholar] [CrossRef]
- O’Connor, K.P. A cognitive-behavioral/psychophysiological model of tic disorders. Behav. Res. Ther. 2002, 40, 1113–1142. [Google Scholar] [CrossRef]
- O’Connor, K.P.; Lavoie, M.E.; Schoendorff, B. Managing Tic and Habit Disorders: A Cognitive Psychophysiological Treatment Approach with Acceptance Strategies; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Leclerc, J.B.; O’Connor, K.P.; J-Nolin, G.; Valois, P.; Lavoie, M.E. The effect of a new therapy for children with tics targeting underlying cognitive, behavioral, and physiological processes. Front. Psychiatry 2016, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Leclerc, J.B.; Valois, P.; Bombardier, M.; Ouellette, S.; O’Connor, K.P. A therapy for tics in children managing underlying processes: A pilot study. J. Dev. Phys. Disabil. 2016, 28, 581–593. [Google Scholar] [CrossRef]
- O’Connor, K.P.; Lavoie, M.E.; Blanchet, P.; St-Pierre-Delorme, M.-E. Evaluation of a cognitive psychophysiological model for management of tic disorders: An open trial. Br. J. Psychiatry 2016, 209, 76–83. [Google Scholar] [CrossRef]
- Maria, M.; Martin, J.; Morrow, C.; Gouvier, W. On the duration of spatial fluency measures. Int. J. Neurosci. 2001, 106, 125–130. [Google Scholar] [CrossRef]
- Bornstein, R.A.; King, G.; Carroll, A. Neuropsychological abnormalities in Gilles de la Tourette’s syndrome. J. Nerv. Ment. Dis. 1983, 171, 497–502. [Google Scholar] [CrossRef]
- Debes, N.M.; Lange, T.; Jessen, T.L.; Hjalgrim, H.; Skov, L. Performance on Wechsler intelligence scales in children with Tourette syndrome. Eur. J. Paediatr. Neurol. 2011, 15, 146–154. [Google Scholar] [CrossRef]
- Incagnoli, T.; Kane, R. Neuropsychological functioning in Gilles de la Tourette’s Syndrome. J. Clin. Neuropsychol. 1981, 3, 165–169. [Google Scholar] [CrossRef]
- Shapiro, A.K.; Shapiro, E.S.; Young, J.G.; Feinberg, T.E. Gilles de la Tourette Syndrome, 2nd ed.; Raven Press: New York, NY, USA, 1988. [Google Scholar]
- Thompson, R.J.; O’Quinn, A.N.; Logue, P.E. Gilles de la Tourette’s syndrome: A review and neuropsychological aspects of four cases. Soc. Pediatr. Psychol. 1979, 4, 371–387. [Google Scholar] [CrossRef]
- Bornstein, R.A.; Matarazzo, J.D. Wechsler VIQ versus PIQ differences in cerebral dysfunction: A literature review with emphasis on sex differences. J. Clin. Exp. Neuropsychol. 1982, 4, 319–334. [Google Scholar] [CrossRef]
- Matarazzo, J.D. Wechsler’s Measurement and Appraisal of Adult Intelligence: 5th and Enlarged Edition; Williams & Wilkins: Baltimore, MD, USA, 1972. [Google Scholar]
- Dye, C.D.; Walenski, M.; Mostofsky, S.H.; Ullman, M.T. A verbal strength in children with Tourette syndrome? Evidence from a non-word repetition task. Brain Lang. 2016, 160, 61–70. [Google Scholar] [CrossRef]
- Eddy, C.M.; Cavanna, A.E. Set-shifting deficits: A possible neurocognitive endophenotype for Tourette syndrome without ADHD. J. Atten. Disord. 2017, 21, 824–834. [Google Scholar] [CrossRef]
- Jurado, M.B.; Rosselli, M. The elusive nature of executive functions: A review of our current understanding. Neuropsychol. Rev. 2007, 17, 213–233. [Google Scholar] [CrossRef]
- Welsh, M.C.; Pennington, B.F.; Groisser, D.B. A normative-developmental study of executive function: A window on prefrontal function in children. Dev. Neuropsychol. 1991, 7, 131–149. [Google Scholar] [CrossRef]
- Anderson, P. Assessment and development of executive function (EF) during childhood. Child Neuropsychol. 2002, 8, 71–82. [Google Scholar] [CrossRef]
- Vik, P.; Ruff, R.R. Children’s figural fluency performance: Development of strategy use. Dev. Neuropsychol. 1988, 4, 63–74. [Google Scholar] [CrossRef]
- Peterson, B.S.; Pine, D.S.; Cohen, P.; Brook, J.S. Prospective, longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 685–695. [Google Scholar] [CrossRef]
Variables | TS (n = 28) | Control (n = 33) | p | ||||
---|---|---|---|---|---|---|---|
Male (%) | 19 (67.9%) | 19 (57.6%) | ns | ||||
M (SD) | Min | Max | M (SD) | Min | Max | ||
Age (years, months) | 10.7 (1.9) | 6.7 | 13.11 | 10.1 (1.9) | 7.4 | 15.3 | ns |
Verbal IQ | 12.4 (3.0) | 6 | 18 | 12.2 (2.5) | 7 | 19 | ns |
Non verbal IQ | 10.9 (2.5) | 6 | 18 | 11.6 (2.3) | 7 | 16 | ns |
Age of 1st tic (months) | 5.9 (2.4) | 1.0 | 9.7 | ||||
YGTSS—motor tics | 11.1 (3.8) | 0 | 17 | - | - | - | - |
YGTSS—phonic tics | 6.6 (4.4) | 0 | 16 | - | - | - | - |
YGTSS—total score | 30.6 (15.2) | 7 | 67 | - | - | - | - |
Conners—Inattention | 61.5 (12.0) | 42 | 90 | - | - | - | - |
Conners—Hyperactivity | 62.9 (13.7) | 44 | 90 | - | - | - | - |
Conners—AD-H | 61.4 (14.7) | 9 | 88 | - | - | - | - |
Strategies | |||||||
---|---|---|---|---|---|---|---|
Total Designs | Repetitions | Ratio Repetitions | Unique Designs | Numerical | Spatial | Total | |
Age | 0.376 ** | −0.083 | −0.243 | 0.418 ** | 0.186 | 0.303 * | 0.340 ** |
TS | 0.479 ** | 0.004 | −0.371 | 0.490 ** | 0.074 | 0.439 * | 0.418 * |
Controls | 0.344 * | −0.101 | −0.172 | 0.418 * | 0.353 * | 0.167 | 0.308 |
Sex | 0.038 | 0.123 | 0.140 | 0.008 | −0.159 | 0.073 | 0.021 |
TS | 0.023 | −0.121 | 0.047 | 0.038 | −0.276 | 0.075 | 0.022 |
Controls | 0.014 | 0.200 | 0.190 | −0.069 | −0.178 | 0.066 | −0.009 |
Verbal IQ | 0.050 | −0.110 | −0.152 | 0.082 | 0.051 | 0.077 | 0.088 |
TS | 0.064 | −0.115 | −0.154 | 0.079 | 0.076 | 0.101 | 0.107 |
Controls | 0.050 | −0.121 | −0.159 | 0.105 | 0.064 | 0.049 | 0.074 |
Non-verbal IQ | 0.304 * | −0.075 | −0.171 | 0.340 ** | 0.075 | 0.273 * | 0.279 * |
TS | 0.437 * | 0.047 | −0.212 | 0.441 * | 0.145 | 0.341 | 0.341 |
Controls | 0.098 | −0.162 | −0.161 | 0.174 | −0.025 | 0.191 | 0.176 |
Age of 1st tic | −0.248 | 0.262 | 0.321 | −0.286 | −0.246 | −0.317 | −0.338 |
YGTSS—motor tics | 0.042 | −0.359 | −0.345 | 0.086 | −0.156 | 0.204 | 0.159 |
YGTSS—phonic tics | −0.211 | 0.242 | 0.340 | −0.245 | 0.151 | −0.314 | −0.263 |
YGTSS–total | 0.006 | 0.029 | 0.002 | 0.002 | 0.169 | 0.009 | 0.041 |
Conners—Inattention | −0.002 | −0.023 | −0.011 | 0.000 | −0.006 | −0.035 | −0.029 |
Conners—Hyperactivity | 0.320 | 0.127 | −0.076 | 0.312 | 0.132 | 0.252 | 0.255 |
Conners—AD-H | 0.127 | 0.179 | 0.139 | 0.109 | 0.109 | 0.011 | 0.033 |
M (SD) | Min | Max | ||||
---|---|---|---|---|---|---|
Global Measures | TS | Controls | TS | Controls | TS | Controls |
Total designs (T) | 38.93 (15.63) | 44.18 (11.18) | 12 | 19 | 80 | 65 |
Repetitions (R) | 2.43 (1.83) | 3.30 (4.28) | 0 | 0 | 7 | 24 |
Repetitions-ratio (rR) | 0.07 (0.05) | 0.07 (0.07) | 0 | 0 | 0.17 | 0.37 |
Unique designs (U) | 36.50 (15.28) | 40.88 (10.23) | 10 | 18 | 79 | 60 |
Numerical strategies (NS) | 2.57 (2.30) | 4.73 (3.92) | 0 | 0 | 8 | 18 |
Spatial strategies (SS) | 13.18 (11.89) | 13.94 (9.25) | 0 | 0 | 52 | 36 |
Total strategies (S) | 15.71 (12.89) | 18.67 (9.51) | 1 | 3 | 55 | 38 |
I1 | I2 | I3 | I4 | I5 | Interval | Group | Interaction (Interval × Group) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | p | η2partial | p | η2partial | p | η2partial | |
Total designs (T) | 12.2 (4.40) | 8.89 (3.68) | 7.70 (2.92) | 6.39 (3.37) | 6.57 (3.67) | <0.001 ** | 0.435 | 0.132 | 0.038 | 0.773 | 0.008 |
Repetitions (R) | 0.230 (0.616) | 0.541 (1.232) | 0.426 (0.670) | 0.852 (1.123) | 0.852 (1.262) | <0.001 ** | 0.093 | 0.319 | 0.017 | 0.884 | 0.005 |
Repetitions-ratio (rR) | 0.019 (0.044) | 0.057 (0.108) | 0.061 (0.094) | 0.134 (0.168) | 0.143 (0.183) | <0.001 ** | 0.167 | 0.880 | 0.000 | 0.592 | 0.012 |
Unique designs (U) | 11.983 (4.319) | 8.344 (3.568) | 7.279 (2.972) | 5.541 (3.243) | 5.721 (3.503) | <0.001 ** | 0.480 | 0.188 | 0.029 | 0.840 | 0.006 |
Numerical strategies (NS) | 0.853 (1.152) | 0.738 (0.964) | 0.689 (1.009) | 0.623 (1.019) | 0.836 (1.368) | 0.651 | 0.010 | 0.013 * | 0.100 | 0.164 | 0.027 |
Spatial strategies (SS) | 4.164 (4.325) | 2.984 (2.790) | 2.525 (2.307) | 1.951 (2.383) | 1.951 (1.919) | <0.001 ** | 0.147 | 0.770 | 0.001 | 0.570 | 0.012 |
Total strategies (S) | 5.016 (4.319) | 3.721 (2.922) | 3.213 (2.497) | 2.574 (2.642) | 2.787 (2.325) | <0.001 ** | 0.154 | 0.308 | 0.018 | 0.924 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessier, M.; Desmarais, A.; Leclerc, J.B.; Lavoie, M.E.; O’Connor, K.P.; Gauthier, B. Capturing Subtle Neurocognitive Differences in Children with and without Tourette Syndrome through a Fine-Grained Analysis of Design Fluency Profiles. J. Clin. Med. 2022, 11, 1946. https://doi.org/10.3390/jcm11071946
Tessier M, Desmarais A, Leclerc JB, Lavoie ME, O’Connor KP, Gauthier B. Capturing Subtle Neurocognitive Differences in Children with and without Tourette Syndrome through a Fine-Grained Analysis of Design Fluency Profiles. Journal of Clinical Medicine. 2022; 11(7):1946. https://doi.org/10.3390/jcm11071946
Chicago/Turabian StyleTessier, Mélina, Annie Desmarais, Julie B. Leclerc, Marc E. Lavoie, Kieron P. O’Connor, and Bruno Gauthier. 2022. "Capturing Subtle Neurocognitive Differences in Children with and without Tourette Syndrome through a Fine-Grained Analysis of Design Fluency Profiles" Journal of Clinical Medicine 11, no. 7: 1946. https://doi.org/10.3390/jcm11071946
APA StyleTessier, M., Desmarais, A., Leclerc, J. B., Lavoie, M. E., O’Connor, K. P., & Gauthier, B. (2022). Capturing Subtle Neurocognitive Differences in Children with and without Tourette Syndrome through a Fine-Grained Analysis of Design Fluency Profiles. Journal of Clinical Medicine, 11(7), 1946. https://doi.org/10.3390/jcm11071946