Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
- Severe nonpenetrating, TBI, with a lowest nonsedated Glasgow Coma Scale (GCS) [19] score of 3–8 in the first 24 h after injury;
- Age at injury: 18–65 years;
- Injury requiring neurosurgical intensive care or collaborative care with a neurosurgeon in another intensive care unit.
2.1. Participants
2.2. Procedure
2.3. Instruments
2.3.1. BNIS
2.3.2. TMT
2.3.3. MPAI-4
2.3.4. CRASH Model
2.3.5. GOSE
2.4. Analysis
2.5. Ethics
3. Results
3.1. Demographics
3.2. Screening Instruments and MPAI-4 in Relation to Demographic Variables
3.3. Relationships between Neuropsychological Screening and MPAI-4
3.4. Regression Analysis
4. Discussion
Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iaccarino, C.; Carretta, A.; Nicolosi, F.; Morselli, C. Epidemiology of severe traumatic brain injury. J. Neurosurg. Sci. 2018, 62, 535–541. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222, Erratum in Lancet 2020, 396, 1562. [Google Scholar] [CrossRef]
- Rosenfeld, J.V.; Maas, A.I.; Bragge, P.; Morganti-Kossmann, M.C.; Manley, G.T.; Gruen, R.L. Early management of severe traumatic brain injury. Lancet 2012, 380, 1088–1098. [Google Scholar] [CrossRef]
- Vallat-Azouvi, C.; Swaenepoël, M.; Ruet, A.; Bayen, E.; Ghout, I.; Nelson, G.; Pradat-Diehl, P.; Meaude, L.; Aegerter, P.; Charanton, J.; et al. Relationships between neuropsychological impairments and functional outcome eight years after severe traumatic brain injury: Results from the PariS-TBI study. Brain Inj. 2021, 35, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, J.; Draper, K.; Schönberger, M. Functional outcome 10 years after traumatic brain injury: Its relationship with demographic, injury severity, and cognitive and emotional status. J. Int. Neuropsychol. Soc. 2016, 14, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruet, A.; Bayen, E.; Jourdan, C.; Ghout, I.; Meaude, L.; Lalanne, A.; Pradat-Diehl, P.; Nelson, G.; Charanton, J.; Aegerter, P.; et al. A Detailed Overview of Long-Term Outcomes in Severe Traumatic Brain Injury Eight Years Post-injury. Front. Neurol. 2019, 10, 120. [Google Scholar] [CrossRef] [Green Version]
- Stålnacke, B.M.; Saveman, B.I.; Stenberg, M. Long-term follow-up of disability, cognitive, and emotional impairments after severe traumatic brain injury. Behav. Neurol. 2019, 2019, 9216931. [Google Scholar] [CrossRef]
- Rabinowitz, A.R.; Hart, T.; Whyte, J.; Kim, J. Neuropsychological Recovery Trajectories in Moderate to Severe Traumatic Brain Injury: Influence of Patient Characteristics and Diffuse Axonal Injury. J. Int. Neuropsychol. Soc. 2018, 24, 237–246. [Google Scholar] [CrossRef]
- Denvall, V.; Elmståhl, S.; Prigatano, G.P. Replication and construct validation of the Barrow Neurological Institute Screen for Higher Cerebral Function with a Swedish population. J. Rehabil. Med. 2002, 34, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Stenberg, M.; Godbolt, A.K.; Nygren De Boussard, C.; Levi, R.; Stålnacke, B.M. Cognitive impairment after severe traumatic brain injury, clinical course and impact on outcome: A Swedish-icelandic study. Behav. Neurol. 2015, 2015, 680308. [Google Scholar] [CrossRef] [Green Version]
- Malec, J.; Lezak, M. Manual for the Mayo-Portland Adaptability Inventory (Mpai-4) for Adults, Children And Adolescents; 2003; The center of Outcome Measurement In Brain Injury. pp. 1–84. Available online: tbims.org/combi/mpai (accessed on 30 January 2022).
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Hannay, J.H.; Fischer, J.S. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Kean, J.; Malec, J.F.; Altman, I.M.; Swick, S. Rasch Measurement Analysis of the Mayo-Portland Adaptability Inventory (MPAI-4) in a Community-Based Rehabilitation Sample. J. Neurotrauma 2011, 28, 745–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitz, G.; Ponsford, J.L.; Rudzki, D.; Maller, J.J. Association between cognitive performance and functional outcome following traumatic brain injury: A longitudinal multilevel examination. Neuropsychology 2012, 26, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Struchen, M.A.; Clark, A.N.; Sander, A.M.; Mills, M.R.; Evans, G.; Kurtz, D. Relation of executive functioning and social communication measures to functional outcomes following traumatic brain injury. NeuroRehabilitation 2008, 23, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Algethamy, H. Baseline Predictors of Survival, Neurological Recovery, Cognitive Function, Neuropsychiatric Outcomes, and Return to Work in Patients after a Severe Traumatic Brain Injury: An Updated Review. Mater. Socio Med. 2020, 32, 148–157. [Google Scholar] [CrossRef]
- Hofgren, C. Screening of Cognitive Functions Evaluation of Methods and their Applicability in Neurological Rehabilitation. Ph.D. Thesis, University of Gothenburg, Gothenburg, Sweden, 2009. [Google Scholar]
- Mostert, C.Q.B.; Singh, R.D.; Gerritsen, M.; Kompanje, E.J.O.; Ribbers, G.M.; Peul, W.C.; van Dijck, J.T.J.M. Long-term outcome after severe traumatic brain injury: A systematic literature review. Acta Neurochir. 2022, 164, 599–613. [Google Scholar] [CrossRef]
- Teasdale, G.; Maas, A.; Lecky, F.; Manley, G.; Stocchetti, N.; Murray, G. The Glasgow Coma Scale at 40 years: Standing the test of time. Lancet Neurol. 2014, 13, 844–854. [Google Scholar] [CrossRef]
- Drane, D.L.; Yuspeh, R.L.; Huthwaite, J.S.; Klingler, L.K. Demographic characteristics and normative observations for derived-Trail Making Test indices. Neuropsychiatry Neuropsychol. Behav. Neurol. 2002, 15, 39–43. [Google Scholar]
- Jacobsson, L.; Lexell, J. Functioning and disability from 10 to 16 years after traumatic brain injury. Acta Neurol. Scand. 2020, 141, 115–122. [Google Scholar] [CrossRef]
- Godbolt, A.K.; Stenberg, M.; Jakobsson, J.; Sorjonen, K.; Krakau, K.; Stålnacke, B.-M.; DeBoussard, C.N. Subacute complications during recovery from severe traumatic brain injury: Frequency and associations with outcome. BMJ Open 2015, 5, e007208. [Google Scholar] [CrossRef]
- MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: Practical prognostic models based on large cohort of international patients. BMJ 2008, 336, 425–429. [Google Scholar] [CrossRef] [Green Version]
- McMillan, T.; Wilson, L.; Ponsford, J.; Levin, H.; Teasdale, G.; Bond, M. The Glasgow Outcome Scale—40 years of application and refinement. Nat. Publ. Group 2016, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- The Jamovi Project. Jamovi, Version 1.6; Idaho State University: Pocatello, ID, USA, 2021. [Google Scholar]
- Manoli, R.; Delecroix, H.; Daveluy, W.; Moroni, C. Impact of cognitive and behavioural functioning on vocational outcome following traumatic brain injury: A systematic review. Disabil. Rehabil. 2019, 43, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Draper, K.; Ponsford, J. Long-term outcome following traumatic brain injury: A comparison of subjective reports by those injured and their relatives. Neuropsychol. Rehabil. 2009, 19, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Bonds, B.; Dhanda, A.; Wade, C.; Diaz, C.; Massetti, J.; Stein, D.M. Prognostication of Mortality and Long-Term Functional Outcomes Following Traumatic Brain Injury: Can We Do Better? J. Neurotrauma 2021, 38, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.E.; Fountain-Zaragoza, S.; Dennis, M.; Taylor, H.G.; Bigler, E.D.; Rubin, K.; Vannatta, K.; Gerhardt, C.A.; Stancin, T.; Yeates, K. Executive Functions and Theory of Mind as Predictors of Social Adjustment in Childhood Traumatic Brain Injury. J. Neurotrauma 2014, 31, 1835–1842. [Google Scholar] [CrossRef] [Green Version]
- Sherer, M.; Stouter, J.; Hart, T.; Nakase-Richardson, R.; Olivier, J.; Manning, E.; Yablon, S.A. Computed tomography findings and early cognitive outcome after traumatic brain injury. Brain Inj. 2006, 20, 997–1005. [Google Scholar] [CrossRef]
- Fraser, E.E.; Downing, M.G.; Biernacki, K.; McKenzie, D.P.; Ponsford, J.L. Cognitive reserve and age predict cognitive recovery after mild to severe traumatic brain injury. J. Neurotrauma 2019, 36, 2753–2761. [Google Scholar] [CrossRef]
- Stenberg, J.; Håberg, A.K.; Follestad, T.; Olsen, A.; Iverson, G.L.; Terry, D.P.; Karlsen, R.H.; Saksvik, S.B.; Karaliute, M.; Ek, J.A.; et al. Cognitive Reserve Moderates Cognitive Outcome After Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2020, 101, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Donders, J.; Stout, J. The Influence of Cognitive Reserve on Recovery from Traumatic Brain Injury. Arch. Clin. Neuropsychol. 2018, 34, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Pettemeridou, E.; Constantinidou, F. The Association Between Brain Reserve, Cognitive Reserve, and Neuropsychological and Functional Outcomes in Males With Chronic Moderate-to-Severe Traumatic Brain Injury. Am. J. Speech Lang. Pathol. 2021, 30, 883–893. [Google Scholar] [CrossRef]
Total n = 41 | Low Education n = 13 | High Education n = 25 | Effect Size Cohen’s d | |
---|---|---|---|---|
Age * | 35.6 (13.7) | 46.5 (11.2) | 35.6 (13.7) | 0.85 |
Gender (M/F) | 30/11 | 11/2 | 17/8 | |
CRASH | 73 (55.5–83) | 76 (49–80) | 66 (56–85) | 0.006 |
BNIS total score * | 42 (35–46) | 39 (34–42) | 44 (39–47) | 0.66 |
Cognitive Flexibility (TMTB-TMTA) ** | 53 (32–82) | 68 (32–97) | 43 (32–59) | 0.85 |
MPAI-4 total score ** | 21 (5–36) | 19 (5–40) | 22 (3–31) | 0.20 |
MPAI-4 ability ** | 7 (2–16) | 4 (2–13) | 6 (2–14) | 0.06 |
MPAI-4 adjustment ** | 8 (1–17) | 7 (1–18) | 8 (1–15) | 0.08 |
MPAI-4 participation * | 5 (0–8) | 6 (0–12) | 4 (0–7) | 0.30 |
GOSE ** | 7 (5–8) | 6 (5–8) | 7 (5–8) | 0.04 |
BNIS n = 41 | Cognitive Flexibility (TMTB-TMTA) n = 32 | MPAI-4 Total Score n = 41 | MPAI-4 Ability n = 41 | MPAI-4 Adjustment n = 41 | MPAI-4 Participation n = 41 | |
---|---|---|---|---|---|---|
Age | −0.33 * | 0.052 | −0.14 | −0.23 | −0.20 | 0.13 |
GCS | 0.041 | 0.097 | 0.14 | −0.19 | −0.053 | −0.22 |
CRASH with CT | −0.007 | 0.11 | −0.38 * | −0.36 * | −0.44 ** | −0.26 |
MPAI-4 Total Score | MPAI-4 Ability | MPAI-4 Adjustment | MPAI-4 Participation | |
---|---|---|---|---|
BNIS (n = 42) | −0.32 * | −0.28 | −0.15 | −0.39 * |
Cognitive flexibility (TMTB-TMTA) (n = 32) | 0.36 * | 0.36 * | 0.36 * | 0.34 § |
Unadjusted | Adjusted | R-Square | ||||
---|---|---|---|---|---|---|
Est. | 95% CI | Est. | 95% CI | Adjusted Model | ||
MPAI-4 ability | BNIS | −0.32 | −0.72–0.077 | −00.26 | −0.73–0.20 | 0.12 |
Cognitive Flexibility (TMTB-TMTA) | 0.060 ** | 0.016–0.10 | 0.059 * | 0.0026–0.11 | 0.25 | |
MPAI-4 adjustment | BNIS | −0.10 | −0.50–0.30 | −0.18 | −0.66–0.30 | 0.18 |
Cognitive Flexibility (TMTB-TMTA) | 0.068 ** | 0.020–0.12 | 0.076 ** | 0.021–0.13 | 0.41 | |
MPAI-4 participation | BNIS | −0.32 * | −0.59–0.057 | −0.41 * | −0.74–−0.074 | 0.21 |
Cognitive Flexibility (TMTB-TMTA) | 0.033 * | 0.00034–0.067 | 0.029 | −0.012–0.070 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekdahl, N.; Godbolt, A.K.; Deboussard, C.N.; Lannsjö, M.; Stålnacke, B.-M.; Stenberg, M.; Ulfarsson, T.; Möller, M.C. Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury. J. Clin. Med. 2022, 11, 2046. https://doi.org/10.3390/jcm11072046
Ekdahl N, Godbolt AK, Deboussard CN, Lannsjö M, Stålnacke B-M, Stenberg M, Ulfarsson T, Möller MC. Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury. Journal of Clinical Medicine. 2022; 11(7):2046. https://doi.org/10.3390/jcm11072046
Chicago/Turabian StyleEkdahl, Natascha, Alison K. Godbolt, Catharina Nygren Deboussard, Marianne Lannsjö, Britt-Marie Stålnacke, Maud Stenberg, Trandur Ulfarsson, and Marika C. Möller. 2022. "Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury" Journal of Clinical Medicine 11, no. 7: 2046. https://doi.org/10.3390/jcm11072046
APA StyleEkdahl, N., Godbolt, A. K., Deboussard, C. N., Lannsjö, M., Stålnacke, B. -M., Stenberg, M., Ulfarsson, T., & Möller, M. C. (2022). Cognitive Reserve, Early Cognitive Screening, and Relationship to Long-Term Outcome after Severe Traumatic Brain Injury. Journal of Clinical Medicine, 11(7), 2046. https://doi.org/10.3390/jcm11072046