Grip Strength in Patients with Gastrointestinal Diseases
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Study Procedure and Ethics
2.3. Statistics
3. Results
3.1. Patient Baseline Features
3.2. GS Decline and ECOG-PS and BMI
3.3. GS Decline and the SARC-F Score
3.4. GS Decline According to the Primary Origin of the Disease
3.5. GS Decline and the SARC-F Score in Patients with and without Advanced Cancer
3.6. GS Decline According to the Primary Disease Site in Patients with and without Advanced Cancer
3.7. Uni- and Multivariate Analysis of Variables for the GS Decline
3.8. ROC Analysis of Independent Parameters for the GS Decline
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Nishiguchi, S.; Higuchi, K. Pathophysiology and mechanisms of primary sarcopenia. Int. J. Mol. Med. 2021, 48, 156. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef]
- Raquel, L.R.; Vicente, R.P.; José, L.G.S.; Anxela, S.R. Prevalence and Factors Associated with Functional Limitations during Aging in a Representative Sample of Spanish Population. Phys. Occup. Ther. Geriatr. 2018, 36, 156–167. [Google Scholar]
- Chhetri, J.K.; de Souto Barreto, P.; Fougère, B.; Rolland, Y.; Vellas, B.; Cesari, M. Chronic inflammation and sarcopenia: A regenerative cell therapy perspective. Exp. Gerontol. 2018, 103, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Shaw, C. Management of diet in gastrointestinal cancer. Proc. Nutr. Soc. 2021, 80, 65–72. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Dunne, R.F.; Loh, K.P.; Williams, G.R.; Jatoi, A.; Mustian, K.M.; Mohile, S.G. Cachexia and Sarcopenia in Older Adults with Cancer: A Comprehensive Review. Cancers 2019, 11, 1861. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, R.; Xu, J.; Fang, K.; Abdelrahim, M.; Chang, L. Sarcopenia as a predictor of postoperative risk of complications, mortality and length of stay following gastrointestinal oncological surgery. Ann. R. Coll. Surg. Engl. 2021, 103, 630–637. [Google Scholar] [CrossRef]
- Meyer, F.; Valentini, L. Disease-Related Malnutrition and Sarcopenia as Determinants of Clinical Outcome. Visc. Med. 2019, 35, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, J.; Fukushima, T.; Tanaka, T.; Fu, J.B.; Morishita, S. Physical function predicts mortality in patients with cancer: A systematic review and meta-analysis of observational studies. Support Care Cancer 2021, 29, 5623–5634. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, T.W.; Oke, S.M.; Patel, H.; Smith, T.R. Getting to grips with sarcopenia: Recent advances and practical management for the gastroenterologist. Frontline Gastroenterol. 2020, 12, 53–61. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prospective Urban Rural Epidemiology (PURE) Study investigators. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all-cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Malmstrom, T.K.; Miller, D.K.; Simonsick, E.M.; Ferrucci, L.; Morley, J.E. SARC-F: A symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J. Cachexia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Ida, S.; Kaneko, R.; Murata, K. SARC-F for Screening of Sarcopenia Among Older Adults: A Meta-analysis of Screening Test Accuracy. J. Am. Med. Dir. Assoc. 2018, 19, 685–689. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Won, C.W. Validation of the Korean Version of the SARC-F Questionnaire to Assess Sarcopenia: Korean Frailty and Aging Cohort Study. J. Am. Med. Dir. Assoc. 2018, 19, 40–45.e41. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Kamiya, K.; Hamazaki, N.; Matsuzawa, R.; Nozaki, K.; Maekawa, E.; Noda, C.; Yamaoka-Tojo, M.; Matsunaga, A.; Masuda, T.; et al. Utility of SARC-F for Assessing Physical Function in Elderly Patients With Cardiovascular Disease. J. Am. Med. Dir. Assoc. 2017, 18, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Japan Society of the Study of Obesity. Available online: http://www.jasso.or.jp/index.html (accessed on 10 January 2022).
- Okubo, T.; Atsukawa, M.; Tsubota, A.; Ono, H.; Kawano, T.; Yoshida, Y.; Arai, T.; Hayama, K.; Itokawa, N.; Kondo, C.; et al. Effect of Vitamin D Supplementation on Skeletal Muscle Volume and Strength in Patients with Decompensated Liver Cirrhosis Undergoing Branched Chain Amino Acids Supplementation: A Prospective, Randomized, Controlled Pilot Trial. Nutrients 2021, 13, 1874. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Imai, K.; Suetugu, A.; Takai, K.; Shimizu, M. Usefulness of Carnitine Supplementation for the Complications of Liver Cirrhosis. Nutrients 2020, 12, 1915. [Google Scholar] [CrossRef] [PubMed]
- Tuzun, S.; Keles, A.; Okutan, D.; Yildiran, T.; Palamar, D. Assessment of musculoskeletal pain, fatigue and grip strength in hospitalized patients with COVID-19. Eur. J. Phys. Rehabil. Med. 2021, 57, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Hara, N.; Moriya, K.; Hino, K.; Koike, K. Reduced handgrip strength predicts poorer survival in chronic liver diseases: A large multicenter study in Japan. Hepatol. Res. 2021, 51, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.city.nerima.tokyo.jp/hokenfukushi/hoken/kenkodukuri/kenkoi7/20190305111627975.files/akuryokuheikinti.pdf (accessed on 10 January 2022).
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef]
- Colleluori, G.; Villareal, D.T. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp. Gerontol. 2021, 155, 111561. [Google Scholar] [CrossRef]
- Hsu, K.J.; Liao, C.D.; Tsai, M.W.; Chen, C.N. Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients 2019, 11, 2163. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. ldeal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15, 1–5. [Google Scholar]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Arai, H.; Inui, A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: Facts and numbers. J. Cachexia Sarcopenia Muscle 2021, 12, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Goto, M.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Cancer Cachexia: Its Mechanism and Clinical Significance. Int. J. Mol. Sci. 2021, 22, 8491. [Google Scholar] [CrossRef] [PubMed]
- Bielecka-Dabrowa, A.; Ebner, N.; Dos Santos, M.R.; Ishida, J.; Hasenfuss, G.; von Haehling, S. Cachexia, muscle wasting, and frailty in cardiovascular disease. Eur. J. Heart Fail. 2020, 22, 2314–2326. [Google Scholar] [CrossRef]
- Wyart, E.; Bindels, L.B.; Mina, E.; Menga, A.; Stanga, S.; Porporato, P.E. Cachexia, a Systemic Disease beyond Muscle Atrophy. Int. J. Mol. Sci. 2020, 21, 8592. [Google Scholar] [CrossRef] [PubMed]
- Voelker, S.N.; Michalopoulos, N.; Maier, A.B.; Reijnierse, E.M. Reliability and Concurrent Validity of the SARC-F and Its Modified Versions: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2021, 22, 1864–1876. [Google Scholar] [CrossRef]
- Kurita, N.; Wakita, T.; Kamitani, T.; Wada, O.; Mizuno, K. SARC-F Validation and SARC-F+EBM Derivation in Musculoskeletal Disease: The SPSS-OK Study. J. Nutr. Health Aging 2019, 23, 732–738. [Google Scholar] [CrossRef]
- Barbosa-Silva, T.G.; Menezes, A.M.; Bielemann, R.M.; Malmstrom, T.K.; Gonzalez, M.C.; Grupo de Estudos em Composição Corporal e Nutrição (COCONUT). Enhancing SARC-F: Improving Sarcopenia Screening in the Clinical Practice. J. Am. Med. Dir. Assoc. 2016, 17, 1136–1141. [Google Scholar] [CrossRef]
- Gi, Y.M.; Jung, B.; Kim, K.W.; Cho, J.H.; Ha, I.H. Low handgrip strength is closely associated with anemia among adults: A cross-sectional study using Korea National Health and Nutrition Examination Survey (KNHANES). PLoS ONE 2020, 15, e0218058. [Google Scholar] [CrossRef] [Green Version]
Variables | Number or Median (IQR) |
---|---|
Age (years) | 72 (64–79) |
Gender, male/female | 379/223 |
ECOG-PS | 0 (0–1) |
Grip strength (male, kg) | 28.8 (23.6–34.3) |
Grip strength (female, kg) | 17.5 (13.9–20.5) |
The SARC-F score | 0 (0–2) |
Body mass index (kg/m2) | 21.9 (19.6–24.4) |
Advanced cancer, yes/no | 145/457 |
Hemoglobin (g/dL) | 12.5 (11.1–13.8) |
Platelet count (×104/μL) | 21.9 (16.6–27.7) |
Total lymphocyte count (/μL) | 1330 (989–1822) |
ALT (IU/L) | 19 (13–32) |
eGFR (mL/min/1.73 m2) | 67 (55–81) |
Serum albumin (g/dL) | 3.8 (3.4–4.2) |
C reactive protein (mg/dL) | 0.18 (0.05–0.95) |
Variables | Grip Strength Decline (n = 291) | Grip Strength Non-Decline (n = 311) | p Value | Effect Size |
---|---|---|---|---|
Age (years) | 77 (71–82) | 68 (56–74) | <0.0001 | 0.15 |
Gender (male/female) | 169/122 | 210/101 | 0.0181 | 0.10 |
BMI (kg/m2) | 21.1 (19.0–23.9) | 22.7 (20.1–24.9) | 0.0002 | 0.15 |
ECOG-PS | 1 (0–2) | 0 (0–0) | <0.0001 | 0.36 |
Advanced cancer, yes/no | 74/217 | 71/240 | 0.5045 | 0.03 |
Primary origin of disease U-GD/L-GD/BP-D/L-D | 80/62/103/46 | 69/94/106/42 | 0.0737 | 0.11 |
SARC-F score | 1 (0–3) | 0 (0–0) | <0.0001 | 0.38 |
Hemoglobin (g/dL) | 11.7 (10.6–13.1) | 13.2 (11.8–14.3) | <0.0001 | 0.33 |
Platelet count (×104/μL) | 21.4 (15.8–28.0) | 22.4 (17.6–27.5) | 0.4667 | 0.0 |
Total lymphocyte count (/μL) | 1251 (900–1728) | 1480 (1092–1890) | <0.0001 | 0.16 |
Serum albumin (g/dL) | 3.6 (3.1–4.0) | 4.0 (3.7–4.3) | <0.0001 | 0.32 |
CRP (mg/dL) | 0.30 (0.07–2.32) | 0.13 (0.05–0.41) | <0.0001 | 0.19 |
ALT (IU/L) | 19 (12–32) | 19 (13–32) | 0.7145 | 0.01 |
eGFR (mL/min/1.73 m2) | 63 (51–79) | 71 (58–82) | 0.0003 | 0.15 |
Variables | Multivariate Analysis | ||
---|---|---|---|
HR | 95% CI | p Value | |
Age (per one year) | 1.052 | 1.033–1.072 | <0.0001 |
BMI (per one kg/m2) | 0.938 | 0.888–0.992 | 0.0223 |
ECOG-PS (per one) | 1.221 | 0.857–1.740 | 0.2678 |
Gender (female) | 1.294 | 0.852–1.966 | 0.2268 |
SARC-F score (per one) | 1.467 | 1.181–1.823 | 0.0003 |
Hemoglobin (per one g/dL) | 0.863 | 0.763–0.976 | 0.0186 |
Serum albumin (per one g/dL) | 0.622 | 0.405–0.954 | 0.0284 |
Total lymphocyte count (per one/μL) | 0.9999 | 0.9995–1.0002 | 0.4603 |
eGFR (per one mL/min/1.73 m2) | 0.996 | 0.985–1.006 | 0.4349 |
CRP (per one mg/dL) | 1.069 | 0.998–1.144 | 0.0331 |
Variables | AUC | Sensitivity (%) | Specificity (%) | Reference Value |
---|---|---|---|---|
Age (years) | 0.74 | 72.9 | 65.0 | 72 |
BMI (kg/m2) | 0.60 | 68.3 | 51.3 | 22.6 |
SARC-F score | 0.73 | 64.3 | 77.5 | 1 |
Hemoglobin (g/dL) | 0.70 | 65.6 | 66.2 | 12.4 |
Serum albumin (g/dL) | 0.70 | 80.8 | 49.8 | 4.0 |
CRP (mg/dL) | 0.60 | 44.0 | 76.5 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asaishi, K.; Matsui, M.; Nishikawa, H.; Goto, M.; Asai, A.; Ushiro, K.; Ogura, T.; Takeuchi, T.; Nakamura, S.; Kakimoto, K.; et al. Grip Strength in Patients with Gastrointestinal Diseases. J. Clin. Med. 2022, 11, 2079. https://doi.org/10.3390/jcm11082079
Asaishi K, Matsui M, Nishikawa H, Goto M, Asai A, Ushiro K, Ogura T, Takeuchi T, Nakamura S, Kakimoto K, et al. Grip Strength in Patients with Gastrointestinal Diseases. Journal of Clinical Medicine. 2022; 11(8):2079. https://doi.org/10.3390/jcm11082079
Chicago/Turabian StyleAsaishi, Ken, Masahiro Matsui, Hiroki Nishikawa, Masahiro Goto, Akira Asai, Kosuke Ushiro, Takeshi Ogura, Toshihisa Takeuchi, Shiro Nakamura, Kazuki Kakimoto, and et al. 2022. "Grip Strength in Patients with Gastrointestinal Diseases" Journal of Clinical Medicine 11, no. 8: 2079. https://doi.org/10.3390/jcm11082079
APA StyleAsaishi, K., Matsui, M., Nishikawa, H., Goto, M., Asai, A., Ushiro, K., Ogura, T., Takeuchi, T., Nakamura, S., Kakimoto, K., Miyazaki, T., Fukunishi, S., Ohama, H., Yokohama, K., Yasuoka, H., & Higuchi, K. (2022). Grip Strength in Patients with Gastrointestinal Diseases. Journal of Clinical Medicine, 11(8), 2079. https://doi.org/10.3390/jcm11082079