Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation
Abstract
:1. Introduction
- -
- Does tES consistently enhance numerical cognition?
- -
- What are the numerical cognition aspects (i.e., number vs. arithmetic processing) in which tES techniques would be more effective?
- -
- What tES technique would be more effective at ameliorating certain numerical cognition aspects? Under which stimulated brain regions?
1.1. Neurocognitive Bases of Numerical Cognition
1.1.1. Non-Symbolic and Symbolic Number Processes
1.1.2. Arithmetic Processes
1.2. Basic Principles of tES
2. Materials and Methods
2.1. Study Selection
2.2. Search Procedure
2.3. Data Extraction
- (1)
- First author, country, and year of publication;
- (2)
- Information of population characteristics: nonclinical (typically developing children, adolescents, and healthy adults and elderly individuals) and clinical (elderly individuals, adults, adolescents, children with numerical cognition difficulties) population; sample size; age (mean and standard deviation or age range, when provided); gender (males/females), handedness;
- (3)
- Study design characteristics: randomized or non-randomized, blinded or non-blinded studies/clinical trials;
- (4)
- tES protocol characteristics: type of tES (tDCS or HD-tDCS, tRNS, tACS); current intensity (mA) and frequency (Hz) when appropriate, i.e., tRNS or tACS; target electrode sizes (cm2); references electrode sizes (cm2); duration (in minutes); number of sessions; brain target and reference target; montage and conditions (bilateral; anodal, or cathodal) and conditions (real vs. sham);
- (5)
- Timing of the task/training (offline, i.e., pre-/post- tES session(s) or online, i.e., during tES session(s));
- (6)
- Outcomes and results: numerical cognition outcome(s), i.e., accuracy and/or speed (reaction times, RTs) and/or efficiency of training or tasks targeting non-symbolic and symbolic number and arithmetic processes.
3. Results
3.1. Study Selection
3.2. Summary of Study Characteristics
3.3. Non-Symbolic and Symbolic Number Processes
3.3.1. tDCS
3.3.2. HD-tDCS
3.3.3. tRNS
3.3.4. tACS
3.4. Arithmetic Processes
3.4.1. tDCS
3.4.2. tRNS
- The most effective tES set-up:
- →
- Non-symbolic and symbolic number processes:
- -
- Anodal tDCS over (left or right) parietal regions;
- -
- Bilateral tDCS over frontal regions;
- -
- Bilateral tRNS over parietal and frontal regions.
- →
- Arithmetic processes:
- -
- Bilateral tDCS over parietal regions (addition problems);
- -
- Anodal tDCS over parietal regions (subtraction and multiplication problems);
- -
- Bilateral and left anodal tDCS over frontal regions;
- -
- Bilateral tRNS over parietal and frontal regions.
- Short-, medium-, and long-term effects after tES interventions.
- Little evidence of transfer effect (specificity of tES on trained materials).
- tES is more effective during challenging and demanding conditions.
- tDCS effect varies by hemispheric lateralization of the engaged process, individual traits, performance at baseline.
4. Discussion
4.1. Does tES Consistently Enhance Numerical Cognition?
4.2. What Are the Numerical Cognition Aspects in Which tES Would Be More Effective? What tES Technique Would Be More Effective in Ameliorating Certain Numerical Cognition Aspects and under Which Stimulated Brain Regions?
4.3. Considerations for Clinical Translation and Future Research
- Optimizing tES protocols. Further studies are needed to clarify the optimal tES parameters and procedures to alleviate or enhance some aspects of numerical cognition. However, taking our results together, we suggest that anodal tDCS (regardless of lateralization) over parietal regions, bilateral tDCS (regardless of polarity/lateralization) over frontal regions, and tRNS (regardless of brain regions) should be further investigated and validated as promising brain stimulation protocols to consistently improve non-symbolic and symbolic number processes. Within arithmetic processes, we suggest that bilateral tDCS over parietal regions be explored to specifically enhance addition calculation as well as left anodal tDCS and tRNS over parietal regions for subtraction and/or multiplication problems. Left anodal or bilateral tDCS and tRNS over frontal regions should be further investigated as effective protocols to enhance calculation skills, under demanding conditions. These considerations allow one to personalize and focus tES intervention on the specific individual weaknesses of numerical cognition areas, such as the number or arithmetic processes. It augments the potentiality for an individualized treatment. However, our findings show that tACS improves arithmetic learning faster than tDCS [95]. Further research with cutting-edge tES techniques, such as tACS, should be applied in the field to provide more focal, brain-tuned, and personalized brain stimulation and hopefully reduce the variability of the findings.
- Investigating long-term improvements following tES interventions. Overall, only a few studies included follow-up assessments after a time window from the end of the tES intervention. Interestingly, in all of these studies, the beneficial effects appeared to be short-, medium- or long-lived. Of importance, it seems that only a few sessions of tES (e.g., from two to six) produced robust improvements that persisted even at the 2-month follow-up [79], at the 4-month follow-up [77,78] and the 6-month follow-up [70,92], regardless of the target processes (numerical or arithmetic) and tES technique (tDCS or tRNS). However, it is noteworthy to note that in all of these studies, tES was delivered online, together with a concomitant activity (i.e., cognitive training). Converging evidence suggests that tES has the potential to prompt training or task-induced neuroplasticity, facilitating brain activity underlying the engaged cerebral network [97,98]. The persistent beneficial outcomes could be due to the potential synergy between tES and concomitant training or tasks [13,97]. If we consider that short and intensive interventions (including only a handful of tES sessions combined with cognitive training) turn out to have long-term beneficial consequences, it becomes clear that the potential for translating tES interventions in clinical settings would be high and advantageous for patients, clinicians, and the healthcare system in terms of compliance, money, time, and resources. We, therefore, recommend implementing brain stimulation treatments combined with concomitant training, and assessing long-term effects following tES interventions, stand-alone and (especially) when combined with cognitive training, to validate their long-lasting effects on numerical cognition processes.
- Evaluating the transfer effects. Another variable that would advance the application of tES in clinical settings is the transferability of training-related performance gains achieved during stimulation. What most people would expect of a tES intervention combined with cognitive training is improvements in their training-related cognitive abilities, useful in other contexts or other tasks, not just a better performance specific to the trained task. The transfer effect of tES combined with cognitive training remains a major criticism. Out of the eight studies assessing transfer effects of tES plus cognitive training, only four support the transferability of training-related performance improvement during stimulation to untrained skills [88,92,93,94]. The basic theory behind the transfer explains that if a brain network that is activated during cognitive training overlaps with networks related to untrained training/tasks, these neural networks will also be reinforced following the Hebbian learning rule and, consequently, produce enhanced cognitive performance on the untrained training/tasks [99]. A possible hypothesis for the unsuccessful transfer could be the insufficient practice on the trained tasks to generalize competencies or the fact that the training was not strong enough to induce the cortical changes that facilitate the generalization of learned skills or the use of inappropriate untrained skills/tasks [100]. Future research should focus on the optimal factors in terms of the number of sessions, reliability of the training, tES parameters that induce the transferability, and the maintaining of the training-related improvement achieved during stimulation.
- Exploring neurobiological and neurophysiological tES effects. Investigating the neurobiological changes during or after tES intervention could clarify mechanisms underlying the behavioral changes and null or unclear results. While in some studies behavioral effects were found, in others, neurophysiological changes were detected without clear behavioral effects (i.e., Hauser et al. [87]). It seems that, although not immediately apparent from behavioral data, neurophysiological changes could be generated anyway and lead to long-term behavioral changes. There is a primary need to clarify whether neurophysiological effects appear immediately after a single session or emerge after multiple sessions of tES and their relation to the behavioral changes. Moreover, the functional reorganization of neural networks, along with the improvements of numerical and arithmetical abilities following tES interventions, are still open points in the literature.
- Considering individual variability. It is well-recognized that the effects exerted by tES critically depend on the individual pre-conditions and online brain activity [101]. Accordingly, inter-individual variability of baseline performance and neurophysiological state could have affected tES impact on numerical cognition. Consistently, two reviewed studies showed that tES outcomes depend on individual traits, such as mathematical anxiety [83] and performance at baseline as mental calculation abilities [90].
- Considering cognitive costs. The study by Iuculano and Cohen Kadosh [76] demonstrated that applying tES during numerical learning can lead to cognitive enhancement but also cognitive impairment. Namely, tDCS over bilateral dlPFC improved the automaticity of learned material but negatively affected the learning rate. Conversely, tDCS over bilateral PPC enhanced the learning rate but worsened automaticity. These findings suggest that the inclusion of diverse tasks could help to better understand the possible cost(s) and limitations of tES on cognitive processes. Researchers should then develop optimal stimulation parameters for cognitive enhancement, to better consider the cognitive costs of tES.
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parsons, S.; Bynner, J. Does Numeracy Matter More; NRDC: London, UK, 2006; pp. 1–44. [Google Scholar]
- Ritchie, S.J.; Bates, T.C. Enduring Links From Childhood Mathematics and Reading Achievement to Adult Socioeconomic Status. Psychol. Sci. 2013, 24, 1301–1308. [Google Scholar] [CrossRef]
- Castro, E.; Cotov, M.; Brovedani, P.; Coppola, G.; Meoni, T.; Papini, M.; Terlizzi, T.; Vernucci, C.; Pecini, C.; Muratori, P. Associations between Learning and Behavioral Difficulties in Second-Grade Children. Children 2020, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pellicioni, M.; Núñez-Peña, M.I.; Colomé, À. Math Anxiety: A Review of Its Cognitive Consequences, Psychophysiological Correlates, and Brain Bases. Cogn. Affect. Behav. Neurosci. 2016, 16, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, B.; Cohen Kadosh, R. Can Transcranial Electrical Stimulation Improve Learning Difficulties in Atypical Brain Development? A Future Possibility for Cognitive Training. Dev. Cogn. Neurosci. 2013, 6, 176–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsalidou, M.; Taylor, M.J. Is 2 + 2 = 4? Meta-Analyses of Brain Areas Needed for Numbers and Calculations. NeuroImage 2011, 54, 2382–2393. [Google Scholar] [CrossRef]
- Arsalidou, M.; Pawliw-Levac, M.; Sadeghi, M.; Pascual-Leone, J. Brain Areas Associated with Numbers and Calculations in Children: Meta-Analyses of FMRI Studies. Dev. Cogn. Neurosci. 2018, 30, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.; De Smedt, B. Arithmetic in the Developing Brain: A Review of Brain Imaging Studies. Dev. Cogn. Neurosci. 2018, 30, 265–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, A.J.; Antal, A.; Bikson, M.; Boggio, P.S.; Brunoni, A.R.; Celnik, P.; Cohen, L.G.; Fregni, F.; Herrmann, C.S.; Kappenman, E.S.; et al. A Technical Guide to TDCS, and Related Non-Invasive Brain Stimulation Tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Cohen Kadosh, R. Transcranial Electrical Stimulation and Numerical Cognition. Can. J. Exp. Psychol. 2016, 70, 41–58. [Google Scholar] [CrossRef]
- Looi, C.Y.; Cohen Kadosh, R. Brain Stimulation, Mathematical, and Numerical Training. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 227, pp. 353–388. [Google Scholar] [CrossRef]
- Schroeder, P.A.; Dresler, T.; Bahnmueller, J.; Artemenko, C.; Cohen Kadosh, R.; Nuerk, H.-C. Cognitive Enhancement of Numerical and Arithmetic Capabilities: A Mini-Review of Available Transcranial Electric Stimulation Studies. J. Cogn. Enhanc. 2017, 1, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Simonsmeier, B.A.; Grabner, R.H.; Hein, J.; Krenz, U.; Schneider, M. Electrical Brain Stimulation (TES) Improves Learning More than Performance: A Meta-Analysis. Neurosci. Biobehav. Rev. 2018, 84, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Haberstroh, S.; Schulte-Körne, G. The Diagnosis and Treatment of Dyscalculia. Dtsch. Arztebl. Int. 2019, 116, 107–114. [Google Scholar] [CrossRef]
- Kroeger, L.A.; Brown, R.D.; O’Brien, B.A. Connecting Neuroscience, Cognitive, and Educational Theories and Research to Practice: A Review of Mathematics Intervention Programs. Early Educ. Dev. 2012, 23, 37–58. [Google Scholar] [CrossRef]
- Castaldi, E.; Piazza, M.; Iuculano, T. Learning Disabilities: Developmental Dyscalculia. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 174, pp. 61–75. [Google Scholar]
- Kucian, K.; von Aster, M. Developmental dyscalculia. Eur. J. Pediatr. 2015, 174, 1–13. [Google Scholar] [CrossRef]
- Vogel, S.E.; De Smedt, B. Developmental brain dynamics of numerical and arithmetic abilities. NPJ Sci. Learn. 2021, 6, 22. [Google Scholar] [CrossRef]
- Butterworth, B. Foundational Numerical Capacities and the Origins of Dyscalculia. Trends Cogn. Sci. 2010, 14, 534–541. [Google Scholar] [CrossRef]
- Barth, H.; Beckmann, L.; Spelke, E.S. Nonsymbolic, Approximate Arithmetic in Children: Abstract Addition Prior to Instruction. Dev. Psychol. 2008, 44, 1466–1477. [Google Scholar] [CrossRef] [Green Version]
- DeWind, N.K.; Brannon, E.M. Malleability of the Approximate Number System: Effects of Feedback and Training. Front. Hum. Neurosci. 2012, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Feigenson, L.; Libertus, M.E.; Halberda, J. Links Between the Intuitive Sense of Number and Formal Mathematics Ability. Child Dev. Perspect. 2013, 7, 74–79. [Google Scholar] [CrossRef]
- Halberda, J.; Mazzocco, M.M.M.; Feigenson, L. Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature 2008, 455, 665–668. [Google Scholar] [CrossRef]
- Starr, A.; Libertus, M.E.; Brannon, E.M. Number Sense in Infancy Predicts Mathematical Abilities in Childhood. Proc. Nat. Acad. Sci. USA 2013, 110, 18116–18120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene, S.; Cohen, L. Cerebral Pathways for Calculation: Double Dissociation between Rote Verbal and Quantitative Knowledge of Arithmetic. Cortex 1997, 33, 219–250. [Google Scholar] [CrossRef]
- Booth, J.L.; Siegler, R.S. Numerical Magnitude Representations Influence Arithmetic Learning. Child Dev. 2008, 79, 1016–1031. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Izard, V.; Spelke, E.; Pica, P. Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures. Science 2008, 320, 1217–1220. [Google Scholar] [CrossRef] [Green Version]
- Rugani, R.; Vallortigara, G.; Priftis, K.; Regolin, L. Experimental Evidence From Newborn Chicks Enriches Our Knowledge on Human Spatial-Numerical Associations. Cogn. Sci. 2017, 41, 2275–2279. [Google Scholar] [CrossRef]
- Skorupski, P.; MaBouDi, H.; Galpayage Dona, H.S.; Chittka, L. Counting Insects. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160513. [Google Scholar] [CrossRef]
- Agrillo, C.; Bisazza, A. Understanding the Origin of Number Sense: A Review of Fish Studies. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20160511. [Google Scholar] [CrossRef] [Green Version]
- Lyons, I.M.; Bugden, S.; Zheng, S.; De Jesus, S.; Ansari, D. Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Dev. Psychol. 2018, 54, 440–457. [Google Scholar] [CrossRef] [Green Version]
- Siegler, R.S.; Opfer, J.E. The Development of Numerical Estimation: Evidence for Multiple Representations of Numerical Quantity. Psychol. Sci. 2003, 14, 237–250. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. Towards an anatomical and functional model of number processing. Math. Cogn. 1995, 1, 83–120. [Google Scholar]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef] [Green Version]
- Ansari, D.; Dhital, B. Age-Related Changes in the Activation of the Intraparietal Sulcus during Nonsymbolic Magnitude Processing: An Event-Related Functional Magnetic Resonance Imaging Study. J. Cogn. Neurosci. 2006, 18, 1820–1828. [Google Scholar] [CrossRef]
- Faye, A.; Jacquin-Courtois, S.; Reynaud, E.; Lesourd, M.; Besnard, J.; Osiurak, F. Numerical Cognition: A Meta-Analysis of Neuroimaging, Transcranial Magnetic Stimulation and Brain-Damaged Patients Studies. NeuroImage Clin. 2019, 24, 102053. [Google Scholar] [CrossRef]
- Lussier, C.A.; Cantlon, J.F. Developmental Bias for Number Words in the Intraparietal Sulcus. Dev. Sci. 2017, 20, e12385. [Google Scholar] [CrossRef]
- Rivera, S.M.; Reiss, A.L.; Eckert, M.A.; Menon, V. Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cereb. Cortex 2005, 15, 1779–1790. [Google Scholar] [CrossRef]
- Nys, J.; Content, A.; Leybaert, J. Impact of Language Abilities on Exact and Approximate Number Skills Development: Evidence From Children With Specific Language Impairment. J. Speech Lang. Hear. Res. 2013, 56, 956–970. [Google Scholar] [CrossRef] [Green Version]
- De Visscher, A.; Noël, M.-P.; De Smedt, B. The Role of Physical Digit Representation and Numerical Magnitude Representation in Children’s Multiplication Fact Retrieval. J. Exp. Child Psychol. 2016, 152, 41–53. [Google Scholar] [CrossRef]
- Menon, V. Memory and Cognitive Control Circuits in Mathematical Cognition and Learning. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 227, pp. 159–186. [Google Scholar] [CrossRef] [Green Version]
- Grabner, R.H.; Ansari, D.; Reishofer, G.; Stern, E.; Ebner, F.; Neuper, C. Individual Differences in Mathematical Competence Predict Parietal Brain Activation during Mental Calculation. NeuroImage 2007, 38, 346–356. [Google Scholar] [CrossRef]
- De Smedt, B.; Holloway, I.D.; Ansari, D. Effects of Problem Size and Arithmetic Operation on Brain Activation during Calculation in Children with Varying Levels of Arithmetical Fluency. NeuroImage 2011, 57, 771–781. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miniussi, C.; Vallar, G. Brain Stimulation and Behavioural Cognitive Rehabilitation: A New Tool for Neurorehabilitation? Neuropsychol. Rehabil. 2011, 21, 553–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of Transcranial Direct Current Stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Gan, L.S.; Alrazi, T.; Monchi, O. Theta band high definition transcranial alternating current stimulation, but not transcranial direct current stimulation, improves associative memory performance. Sci. Rep. 2019, 9, 8562. [Google Scholar] [CrossRef]
- Vulić, K.; Bjekić, J.; Paunović, D.; Jovanović, M.; Milanović, S.; Filipović, S.R. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Sci. Rep. 2021, 11, 3013. [Google Scholar] [CrossRef]
- Paulus, W. Transcranial Electrical Stimulation (TES–TDCS; TRNS, TACS) Methods. Neuropsychol. Rehabil. 2011, 21, 602–617. [Google Scholar] [CrossRef]
- Villamar, M.F.; Volz, M.S.; Bikson, M.; Datta, A.; DaSilva, A.F.; Fregni, F. Technique and Considerations in the Use of 4x1 Ring High-Definition Transcranial Direct Current Stimulation (HD-TDCS). J. Vis. Exp. 2013, e50309. [Google Scholar] [CrossRef]
- Kuo, H.-I.; Bikson, M.; Datta, A.; Minhas, P.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring TDCS: A Neurophysiological Study. Brain Stimul. 2013, 6, 644–648. [Google Scholar] [CrossRef]
- Datta, A.; Bansal, V.; Diaz, J.; Patel, J.; Reato, D.; Bikson, M. Gyri-Precise Head Model of Transcranial Direct Current Stimulation: Improved Spatial Focality Using a Ring Electrode versus Conventional Rectangular Pad. Brain Stimul. 2009, 2, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Stefan, K.; Kunesch, E.; Benecke, R.; Cohen, L.G.; Classen, J. Mechanisms of Enhancement of Human Motor Cortex Excitability Induced by Interventional Paired Associative Stimulation. J. Physiol. 2002, 543, 699–708. [Google Scholar] [CrossRef]
- Wolters, A.; Sandbrink, F.; Schlottmann, A.; Kunesch, E.; Stefan, K.; Cohen, L.G.; Benecke, R.; Classen, J. A Temporally Asymmetric Hebbian Rule Governing Plasticity in the Human Motor Cortex. J. Neurophysiol. 2003, 89, 2339–2345. [Google Scholar] [CrossRef]
- Terney, D.; Chaieb, L.; Moliadze, V.; Antal, A.; Paulus, W. Increasing Human Brain Excitability by Transcranial High-Frequency Random Noise Stimulation. J. Neurosci. 2008, 28, 14147–14155. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Abbott, D. What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology. PLoS Comput. Biol. 2009, 5, e1000348. [Google Scholar] [CrossRef] [Green Version]
- Reed, T.; Cohen Kadosh, R. Transcranial Electrical Stimulation (TES) Mechanisms and Its Effects on Cortical Excitability and Connectivity. J. Inherit. Metab. Dis. 2018, 41, 1123–1130. [Google Scholar] [CrossRef] [Green Version]
- Santarnecchi, E.; Brem, A.-K.; Levenbaum, E.; Thompson, T.; Kadosh, R.C.; Pascual-Leone, A. Enhancing Cognition Using Transcranial Electrical Stimulation. Curr. Opin. Behav. Sci. 2015, 4, 171–178. [Google Scholar] [CrossRef]
- Fröhlich, F.; McCormick, D.A. Endogenous Electric Fields May Guide Neocortical Network Activity. Neuron 2010, 67, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Schutter, D.J.; Hortensius, R. Brain Oscillations and Frequency-Dependent Modulation of Cortical Excitability. Brain Stimul. 2011, 4, 97–103. [Google Scholar] [CrossRef]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE 2010, 5, e13766. [Google Scholar] [CrossRef] [Green Version]
- Vossen, A.; Gross, J.; Thut, G. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-TACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimul. 2015, 8, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Wischnewski, M.; Engelhardt, M.; Salehinejad, M.A.; Schutter, D.J.L.G.; Kuo, M.-F.; Nitsche, M.A. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb. Cortex 2019, 29, 2924–2931. [Google Scholar] [CrossRef]
- Vogeti, S.; Boetzel, C.; Herrmann, C.S. Entrainment and Spike-Timing Dependent Plasticity—A Review of Proposed Mechanisms of Transcranial Alternating Current Stimulation. Front. Syst. Neurosci. 2022, 16, 827353. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, D.; Green, S.; Higgins, J.P.T. Chapter 5: Defining the review question and developing criteria for including studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.0; [Updated February, 2008]; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: London, UK, 2008. [Google Scholar]
- Looi, C.Y.; Lim, J.; Sella, F.; Lolliot, S.; Duta, M.; Avramenko, A.A.; Cohen Kadosh, R. Transcranial Random Noise Stimulation and Cognitive Training to Improve Learning and Cognition of the Atypically Developing Brain: A Pilot Study. Sci. Rep. 2017, 7, 4633. [Google Scholar] [CrossRef]
- Cohen Kadosh, R.; Soskic, S.; Iuculano, T.; Kanai, R.; Walsh, V. Modulating Neuronal Activity Produces Specific and Long-Lasting Changes in Numerical Competence. Curr. Biol. 2010, 20, 2016–2020. [Google Scholar] [CrossRef] [Green Version]
- Hauser, T.U.; Rotzer, S.; Grabner, R.H.; Mérillat, S.; Jäncke, L. Enhancing Performance in Numerical Magnitude Processing and Mental Arithmetic Using Transcranial Direct Current Stimulation (TDCS). Front. Hum. Neurosci. 2013, 7, 244. [Google Scholar] [CrossRef] [Green Version]
- Li, L.M.; Leech, R.; Scott, G.; Malhotra, P.; Seemungal, B.; Sharp, D.J. The effect of oppositional parietal transcranial direct current stimulation on lateralized brain functions. Eur. J. Neurosci. 2015, 42, 2904–2914. [Google Scholar] [CrossRef] [Green Version]
- Brezis, N.; Bronfman, Z.Z.; Jacoby, N.; Lavidor, M.; Usher, M. Transcranial Direct Current Stimulation over the Parietal Cortex Improves Approximate Numerical Averaging. J. Cogn. Neurosci. 2016, 28, 1700–1713. [Google Scholar] [CrossRef]
- Hartmann, M.; Singer, S.; Savic, B.; Müri, R.M.; Mast, F.W. Anodal High-Definition Transcranial Direct Current Stimulation over the Posterior Parietal Cortex Modulates Approximate Mental Arithmetic. J. Cogn. Neurosci. 2020, 32, 862–876. [Google Scholar] [CrossRef]
- Labree, B.; Corrie, H.; Karolis, V.; Didino, D.; Cappelletti, M. Parietal alpha-based inhibitory abilities are causally linked to numerosity discrimination. Behav. Brain Res. 2020, 387, 112564. [Google Scholar] [CrossRef]
- Iuculano, T.; Cohen Kadosh, R. The Mental Cost of Cognitive Enhancement. J. Neurosci. 2013, 33, 4482–4486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelletti, M.; Gessaroli, E.; Hithersay, R.; Mitolo, M.; Didino, D.; Kanai, R.; Cohen Kadosh, R.; Walsh, V. Transfer of Cognitive Training across Magnitude Dimensions Achieved with Concurrent Brain Stimulation of the Parietal Lobe. J. Neurosci. 2013, 33, 14899–14907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelletti, M.; Pikkat, H.; Upstill, E.; Speekenbrink, M.; Walsh, V. Learning to Integrate versus Inhibiting Information Is Modulated by Age. J. Neurosci. 2015, 35, 2213–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Looi, C.Y.; Duta, M.; Brem, A.-K.; Huber, S.; Nuerk, H.-C.; Cohen Kadosh, R. Combining Brain Stimulation and Video Game to Promote Long-Term Transfer of Learning and Cognitive Enhancement. Sci. Rep. 2016, 6, 22003. [Google Scholar] [CrossRef]
- Clemens, B.; Jung, S.; Zvyagintsev, M.; Domahs, F.; Willmes, K. Modulating Arithmetic Fact Retrieval: A Single-Blind, Sham-Controlled TDCS Study with Repeated FMRI Measurements. Neuropsychologia 2013, 51, 1279–1286. [Google Scholar] [CrossRef]
- Kasahara, K.; Tanaka, S.; Hanakawa, T.; Senoo, A.; Honda, M. Lateralization of Activity in the Parietal Cortex Predicts the Effectiveness of Bilateral Transcranial Direct Current Stimulation on Performance of a Mental Calculation Task. Neurosci. Lett. 2013, 545, 86–90. [Google Scholar] [CrossRef]
- Klein, E.; Mann, A.; Huber, S.; Bloechle, J.; Willmes, K.; Karim, A.A.; Nuerk, H.C.; Moeller, K. Bilateral bi-cephalic tDCS with two active electrodes of the same polarity modulates bilateral cognitive processes differentially. PLoS ONE 2013, 8, e71607. [Google Scholar] [CrossRef]
- Sarkar, A.; Dowker, A.; Cohen Kadosh, R. Cognitive Enhancement or Cognitive Cost: Trait-Specific Outcomes of Brain Stimulation in the Case of Mathematics Anxiety. J. Neurosci. 2014, 34, 16605–16610. [Google Scholar] [CrossRef]
- Pope, P.A.; Brenton, J.W.; Miall, R.C. Task-Specific Facilitation of Cognition by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex. Cereb. Cortex 2015, 25, 4551–4558. [Google Scholar] [CrossRef] [Green Version]
- Artemenko, C.; Moeller, K.; Huber, S.; Klein, E. Differential influences of unilateral tDCS over the intraparietal cortex on numerical cognition. Front. Hum. Neurosci. 2015, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Rütsche, B.; Hauser, T.U.; Jäncke, L.; Grabner, R.H. When Problem Size Matters: Differential Effects of Brain Stimulation on Arithmetic Problem Solving and Neural Oscillations. PLoS ONE 2015, 10, e0120665. [Google Scholar] [CrossRef]
- Hauser, T.U.; Rütsche, B.; Wurmitzer, K.; Brem, S.; Ruff, C.C.; Grabner, R.H. Neurocognitive Effects of Transcranial Direct Current Stimulation in Arithmetic Learning and Performance: A Simultaneous TDCS-FMRI Study. Brain Stimul. 2016, 9, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, A. Transcranial Random Noise Stimulation Benefits Arithmetic Skills. Neurobiol. Learn. Mem. 2016, 133, 7–12. [Google Scholar] [CrossRef]
- Bieck, S.M.; Artemenko, C.; Moeller, K.; Klein, E. Low to No Effect: Application of Trns During Two-Digit Addition. Front. Neurosci. 2018, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Krause, B.; Dresler, M.; Looi, C.Y.; Sarkar, A.; Cohen Kadosh, R. Neuroenhancement of High-Level Cognition: Evidence for Homeostatic Constraints of Non-Invasive Brain Stimulation. J. Cogn. Enhanc. 2019, 3, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Mosbacher, J.A.; Brunner, C.; Nitsche, M.A.; Grabner, R.H. Effects of Anodal TDCS on Arithmetic Performance and Electrophysiological Activity. Front. Hum. Neurosci. 2020, 14, 17. [Google Scholar] [CrossRef]
- Snowball, A.; Tachtsidis, I.; Popescu, T.; Thompson, J.; Delazer, M.; Zamarian, L.; Zhu, T.; Cohen Kadosh, R. Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation. Curr. Biol. 2013, 23, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabner, R.H.; Rütsche, B.; Ruff, C.C.; Hauser, T.U. Transcranial Direct Current Stimulation of the Posterior Parietal Cortex Modulates Arithmetic Learning. Eur. J. Neurosci. 2015, 42, 1667–1674. [Google Scholar] [CrossRef] [Green Version]
- Popescu, T.; Krause, B.; Terhune, D.B.; Twose, O.; Page, T.; Humphreys, G.; Cohen Kadosh, R. Transcranial Random Noise Stimulation Mitigates Increased Difficulty in an Arithmetic Learning Task. Neuropsychologia 2016, 81, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Mosbacher, J.A.; Halverscheid, S.; Pustelnik, K.; Danner, M.; Prassl, C.; Brunner, C.; Vogel, S.E.; Nitsche, M.A.; Grabner, R.H. Theta Band Transcranial Alternating Current Stimulation Enhances Arithmetic Learning: A Systematic Comparison of Different Direct and Alternating Current Stimulations. Neuroscience 2021, 477, 89–105. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Elmasry, J.; Loo, C.; Martin, D. A Systematic Review of Transcranial Electrical Stimulation Combined with Cognitive Training. Restor. Neurol. Neurosci. 2015, 33, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, G.; Di Pino, G.; Capone, F.; Ranieri, F.; Florio, L.; Todisco, V.; Tedeschi, G.; Funke, K.; Di Lazzaro, V. Neurobiological After-Effects of Non-Invasive Brain Stimulation. Brain Stimul. 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Taya, F.; Sun, Y.; Babiloni, F.; Thakor, N.; Bezerianos, A. Brain Enhancement through Cognitive Training: A New Insight from Brain Connectome. Front. Syst. Neurosci. 2015, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Boot, W.R.; Basak, C.; Voss, M.W.; Prakash, R.S.; Neider, M.; Erickson, K.I.; Simons, D.J.; Fabiani, M.; Gratton, G.; et al. Performance Gains from Directed Training Do Not Transfer to Untrained Tasks. Acta Psychol. 2012, 139, 146–158. [Google Scholar] [CrossRef]
- Fertonani, A.; Miniussi, C. Transcranial Electrical Stimulation: What We Know and Do Not Know About Mechanisms. Neuroscientist 2017, 23, 109–123. [Google Scholar] [CrossRef]
- Bjekić, J.; Živanović, M.; Filipović, S.R. Transcranial Direct Current Stimulation (tDCS) for Memory Enhancement. J. Vis. Exp. 2021, 175, e62681. [Google Scholar] [CrossRef]
- Bikson, M.; Brunoni, A.R.; Charvet, L.E.; Clark, V.P.; Cohen, L.G.; Deng, Z.-D.; Dmochowski, J.; Edwards, D.J.; Frohlich, F.; Kappenman, E.S.; et al. Rigor and Reproducibility in Research with Transcranial Electrical Stimulation: An NIMH-Sponsored Workshop. Brain Stimul. 2018, 11, 465–480. [Google Scholar] [CrossRef] [Green Version]
- Lazzaro, G.; Battisti, A.; Varuzza, C.; Celestini, L.; Pani, P.; Costanzo, F.; Vicari, S.; Kadosh, R.C.; Menghini, D. Boosting Numerical Cognition in Children and Adolescents with Mathematical Learning Disabilities by a Brain-Based Intervention: A Study Protocol for a Randomized, Sham-Controlled Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 10969. [Google Scholar] [CrossRef]
First Author, Year, Country | Population Characteristics | Study Design | tES Protocol | Outcomes | Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tES | Current (Frequency) | Target Electrodes Size | Ref Electrodes Size | Duration | Session(s) | Brain Target | Ref Target | Montage and Conditions | Timing | |||||
Cohen Kadosh et al., 2010 United Kingdom | A total of 15 healthy adults, a.r. 20–22 y, M/F NR, right-handed | Between-subjects, randomized, single-blind | tDCS | 1 mA | 9 cm2 | - | 20 min | 6 | PPC | - | Left anodal P3/Right cathodal P4 + training Left cathodal P3/Right anodal P4 + training Sham + training | Offline | Numerical Stroop task with artificial digits (RTs) Number line task with artificial digits (accuracy) | Left cathodal/right anodal tDCS improved both outcome measures |
Offline | Numerical Stroop task with everyday digits (RTs) Number line task with everyday digits (accuracy) | No effects a | ||||||||||||
Offline b | Numerical Stroop task with artificial digits (RTs) Number line task with artificial digits (accuracy) | Left cathodal/ right anodal tDCS maintained the effects | ||||||||||||
Iuculano and Cohen Kadosh, 2013 United Kingdom | A total of 19 healthy adults, a.r. 20–31 y, 10 M/9 F, handedness NR | Between-subjects, randomized, single-blind | tDCS | 1 mA | 9 cm2 | - | 20 min | 6 | PPC dlPFC | - | Left anodal P3/Right cathodal P4 Left anodal F3/Right cathodal F4 Sham | Online | Artificial symbols training (RTs) | Left anodal/right cathodal over PPC improved performance |
Offline | Numerical Stroop task with artificial digits (RTs) | Left anodal/right cathodal over dlPFC improved performance | ||||||||||||
Offline | Numerical Stroop task with everyday digits (RTs) | No effects a | ||||||||||||
Hauser et al., 2013 Switzerland | Exp 1: 16 healthy adults, 22.8 ± 3.1 y, 10 M/11 F, right-handed | Within-subjects, counterbalanced, single-blind | tDCS | 1 mA | 35 cm2 | 100 cm2 | 20 min | 1 | PPC | cSO/ right eyebrow | Anodal P3/P4 Cathodal P3/P4 Left anodal P3 Left cathodal P3 Sham | Offline | Double-digit number comparison task Double-digit subtraction task (accuracy, RTs) | Left anodal tDCS improved both outcome measures |
Exp 2: 16 healthy adults, 23.6 ± 2.4 y, 7/9, right-handed | Within-subjects, counterbalanced, single-blind | tDCS | 1 mA | 35 cm2 | 100 cm2 | 20 min | 1 | PPC | cSO | Right anodal P4 Sham | Offline | Double-digit number comparison task Double-digit subtraction task (accuracy, RTs) | No effects | |
Li et al., 2015 Japan | A total of 18 healthy adults, a.r. 20–42 y, 9 M/9 F, right-handed | Within-subjects, counterbalanced, single-blind | tDCS | 1 mA | 35 cm2 | - | 30 min | 1 | PPC | - | Left anodal P3/Right cathodal P4 Left cathodal P3/Right anodal P4 Sham | Online | Number comparison task (RTs) | Left cathodal/right anodal tDCS worsened the performance |
Brezis et al., 2016 Israel | Exp. 3: 12 healthy adults, age NR, M/F NR, right-handed | Within-subjects, counterbalanced, single-blind | tDCS | 1 mA | 9 cm2 | 15 cm2 | 25 min | 1 | PPC dlPFC | cSO | Right anodal P4 Right anodal F4 Sham | Online | Numerical averaging task (accuracy) | Right anodal tDCS over PPC improved performance |
Looi et al., 2016 United Kingdom | A total of 30 healthy adults, 24.2 ± 2.10 y, 10 M/20 F, right-handed | Between-subjects, randomized, single-blind | tDCS | 1 mA | 35 cm2 | - | 30 min | 2 | dlPFC | - | Left cathodal F3/Right anodal F4 Sham | Online | Number line training (accuracy, RTs) | Left cathodal/right anodal tDCS improved performance |
Offline c | Number line training (accuracy, RTs) | Left cathodal/right anodal tDCS maintained the effects | ||||||||||||
Hartmann et al., 2020 Switzerland | A total of 18 healthy adults, a.r. 22–30 y, 10 M/8 F, handedness NR | Within-subjects, counterbalanced, single-blind | HD-tDCS | A: 2 mA; C: −0.5 mA | 0.79 cm2 | - | 25 min | 1 | PPC | - | Left anodal P3 Right anodal P4 Sham | Online | Non-symbolic approximate arithmetic task (accuracy) | Right anodal tDCS improved performance |
Cappelletti et al., 2013 United Kingdom | A total of 40 healthy adults, a.r. 19–36 y, 18 M/22 F, right-handed | Between-subjects, randomized, double-blind | tRNS | ±1 mA (0–250 Hz) | 35 cm2 | - | 20 min | 5 | PPC Motor areas | - | P3/P4 + training C3/C4 + training P3/P4 Sham + training | Online/ Offline | Numerosity discrimination training (wf) | tRNS over PPC improved performance |
Offline | Numerical Stroop task Non-symbolic approximate arithmetic task Arithmetical processing task (accuracy, RTs) | No effects a | ||||||||||||
Offline d | Numerosity discrimination training (wf) | tRNS over PPC improved performance | ||||||||||||
Cappelletti et al., 2015 United Kingdom | A total of 60 healthy adults, a.r. 19–73 y, 25 M/35 F, right-handed | Between-subjects, randomization NR, double-blind | tRNS | ±1 mA (0.1–640 Hz) | 35 cm2 | - | 20 min | 5 | PPC Motor areas | - | P3/P4 + training C3/C4 + training Sham + training | Online/ Offline | Numerosity discrimination training (wf) | tRNS over PPC improved performance |
Offline | Numerical Stroop task Non-symbolic approximate arithmetic task Arithmetical processing task (accuracy, RTs) | No effects a | ||||||||||||
Offline d | Numerosity discrimination training (wf) | tRNS over PPC improved performance | ||||||||||||
Numerical Stroop task Non-symbolic approximate arithmetic task Arithmetical processing task (accuracy, RTs) | No effects | |||||||||||||
Labree et al., 2020 United Kingdom | Exp 1: 31 healthy adults, a.r. 18–34 y, 9 M/22 F, right-handed | Within-subjects, counterbalanced, double-blind | tACS | ±1.5 mA (in-phase 0°) | 35 cm2 | - | 10 min (fade in/out period of 20 s) | 1 | PPC | - | Theta-tACS P3/P4 Alpha-tACS P3/P4 Beta-tACS P3/P4 Sham | Online | Numerosity discrimination task (wf) | Alpha-tACS over PPC specifically worsened performance |
Exp 2: 25 healthy adults, a.r. 18–37 y, 4 M/21 F, right-handed | Within-subjects, counterbalanced, double-blind | tACS | ±1.5 mA (in-phase 0°) | 35 cm2 | - | 10 min (fade in/out period of 20 s) | 1 | PPC dlPFC | - | Alpha-tACS P3/P4 or F3/F4 Sham | Online | Numerosity discrimination task (wf) | Alpha-tACS over PPC specifically worsened performance |
First Author, Year, Country | Population Characteristics | Study Design | tES Protocol | Outcomes | Results | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tES | Current (Frequency) | Target Electrodes Size | Ref Electrodes Size | Duration | Session(s) | Brain Target | Ref Target | Montage and Conditions | Timing | |||||
Clemens et al., 2013 Germany | A total of 10 healthy adults, 43 ± 12.4 y, 10 M/0 F, right-handed | Within-subjects, counterbalanced, single-blind | tDCS | 2 mA | 35 cm2 | 35 cm2 | 20 min | 1 | PPC | cSO | Right anodal CP4 Sham | Offline | Simple multiplications verification task (efficiency) | No effects |
Klein et al., 2013 Germany | A total of 24 healthy adults, a.r. 20–44 y, 10 M/14 F, 23 right-handed and 1 left-handed | Within-subjects, counterbalanced, blinding NR | tDCS | 1 mA | 35 cm2 | 100 cm2 | 20 min | 1 | PPC | cSO | Anodal P3/P4 Cathodal P3/P4 Sham | Online | Addition task (RTs) | Bilateral anodal tDCS improved performance |
Kasahara et al., 2013 Japan | A total of 16 healthy adults, a.r. 20–23 y, 11 M/5 F, right-handed | Crossover design (2 groups: LPHD group vs BPHD group), randomization NR, single-blind | tDCS | 2 mA | 35 cm2 | - | 10 min | 1 | PPC | - | Left anodal P3/ Right cathodal P4 Left anodal P3/ Right cathodal P4 Sham | Online | Mental calculation task (RTs) | Only in LPHD group, Left anodal/right cathodal tDCS improved performance |
Offline | Mental calculation task (RTs) | No effects | ||||||||||||
Sarkar et al., 2014 United Kingdom | A total of 45 healthy adults, 22.47 ± 3.31 y, 23 M/22 F, left-handed | Crossover design (2 groups: HMAnx Group vs. LMAnx Group), randomized, double blind | tDCS | 1 mA | 25 cm2 | - | 30 min | 2 | dlPFC | - | Left anodal F3/Right cathodal F4 Sham | Online | Simple arithmetic decision task (RTs) | In HMAnx Group, Left anodal/right cathodal tDCS improved performance |
Grabner et al., 2015 Switzerland | A total of 60 healthy adults, 21.98 ± 2.99 y, 30 M/30 F, right-handed | Between-subjects, randomized, double-blind | tDCS | 1.5 mA | 35 cm2 | 100 cm2 | 30 min | 1 | PPC | cSO | Left anodal P5-CP5 Left cathodal P5-CP5 Sham | Online | Complex multiplications and subtractions (accuracy, RTs) | Left anodal tDCS improved accuracy in subtractions; left cathodal tDCS increased RTs in both tasks |
Offline b | Complex multiplications subtractions (trained and untrained problems, accuracy, RTs) | The negative effects of left cathodal tDCS were maintained only in trained problems a | ||||||||||||
Rütsche et al., 2015 Switzerland | A total of 23 healthy adults, 21.8 ± 2.66 y, 6 M/17 F, right-handed | Within-subjects, randomized, single-blind | tDCS | 1.5 mA | 35 cm2 | 100 cm2 | 30 min | 1 | PPC | cSO | Left anodal P5-CP5 Sham | Online | Additions and subtractions (small vs. large, RTs) | Left anodal tDCS improved performance |
Pope et al., 2015 United Kingdom | A total of 59 healthy adults, 21.8 ± 3.7 y, 18 M/41 F, handedness NR | Between-subjects, randomized, single-blind | tDCS | 2 mA | 25 cm2 | 25 cm2 | 20 min | 1 | dlPFC | deltoid muscle | Left anodal F3 Left cathodal F3 Sham | Offline | PASAT/ PASST (accuracy, RTs) | Left anodal tDCS improved performance in the PASST |
Artemenko et al., 2015 Germany | A total of 25 healthy adults 23.28 ± 4.51 y, 3 M/22 F, right-handed | Within-subjects, counterbalanced, blinding NR | tDCS | 1 mA | 35 cm2 | 100 cm2 | 20 min | 1 | PPC | cSO | Left cathodal P3 Left anodal P3 Right cathodal P4 Right anodal P4 Sham | Online | Addition task (RTs) | No effects |
Hauser et al., 2016 Switzerland | A total of 40 healthy adults, 22.40 ± 3.3 y, 20 M/20 F, right-handed | Between-subjects, randomized, double-blind | tDCS | 1 mA | 35 cm2 | 50 cm2 | 30 min | 1 | PPC | Fpz-AF8 | Left anodal P5-CP5 Sham | Online | Complex subtractions (arithmetic facts retrieval, calculations; accuracy, RTs) | No effects |
Offline | Complex multiplications subtractions (trained and untrained problems; accuracy, RTs) | No effects | ||||||||||||
Mosbacher et al., 2020 Austria | A total of 62 healthy adults, 25.9 ± 5.1 y, 24 M/38 F, right-handed | Between-subjects, randomized, double-blind | tDCS | 1 mA | 9 cm2 | 35 cm2 | 25 min | 1 | PPC dlPFC | cSO | Left anodal P3 or F3 Sham | Online | Additions and subtractions (small vs. large; RTs) | Left anodal tDCS over dlPFC improved performance only in the large subtractions |
Offline | Additions and subtractions (small vs. large; RTs) | Left anodal tDCS over dlPFC improved performance only in the large subtractions | ||||||||||||
Mosbacher et al., 2021 Austria | A total of 137 healthy adults, 22.5 ± 3.8 y, 48 M/89 F, right-handed | Between-subjects, randomized, double-blind | tDCS | 1 mA | 9 cm2 | 35 cm2 | 25 min | 1 | PPC dlPFC | cSO | Left anodal P3 or F3 Sham | Online | Arithmetic learning training (RTs) | No effects |
Offline | Arithmetic learning training (RTs) | No effects | ||||||||||||
tACS | 1–1.5 mA (100 periods of fade in/out phase) | 9 cm2 | 35 cm2 | 25 min | 1 | PPC dlPFC | shoulder | Alpha-tACS P3 or F3 Theta-tACS P3 or F3 Sham | Online | Arithmetic learning training (RTs) | Theta-tACS over dlPFC reduced the repetitions needed to learn novel facts | |||
Offline | Arithmetic learning training (RTs) | Theta-tACS over dlPFC and PPC improved performance | ||||||||||||
Snowball et al., 2013 United Kingdom | A total of 25 healthy adults, 21.17 ± 2.67 y, 12 M/13 F, right-handed | Between-subjects, randomized, double-blind | tRNS | 1 mA (100–600 Hz) | 25 cm2 | - | 20 min | 5 | dlPFC | - | F3/F4 Sham | Online | Calculation learning training; Drill learning training (accuracy, RTs) | Bilateral tRNS improved performance |
Offline c | Calculation learning training; Drill learning training (accuracy, RTs) | The effect was maintained only for calculation RTs for trained and untrained problems a | ||||||||||||
Popescu et al., 2016 United Kingdom | A total of 32 healthy adults, 22.38 ± 3.37 y, 18 M/14 F, right-handed | Between-subjects, randomized, double-blind | tRNS | 1 mA (100–640 Hz) | 16 cm2 | - | 20 min | 5 | PPC dlPFC | - | P3/P4 + F3/F4 Sham | Online | Calculation learning training; Drill learning training (accuracy, RTs) | Bilateral tRNS improved performance |
Offline | Calculation learning training; Drill learning training (accuracy, RTs) | Bilateral tRNS improved performance a | ||||||||||||
Pasqualotto, 2016 Turkey | A total of 54 healthy adults, 21.5 ± 3.37 y, 27 M/27 F, handedness NR | Between-subjects, randomized, double-blind | tRNS | 1 mA (100–600 Hz) | 25 cm2 | - | 20 min | 1 | PPC dlPFC | - | P3/P4 F3/F4 Sham | Online | Subtractions verification task (RTs) | Bilateral tRNS over PPC and dlPFC improved performance |
Offline d | Subtractions verification task (trained + untrained; accuracy, RTs) | Bilateral tRNS over PPC and dlPFC improved performance in accuracy a | ||||||||||||
Bieck et al., 2018 Germany | A total of 48 healthy adults 23.48 ± 3.30 y 19 M/29 F right-handed | Within-subjects, counterbalanced, single-blind | tRNS | ±0.5 mA (100–640 Hz) | 35 cm2 | - | 20 min | 1 | PPC dlPFC | - | P3/P4 F3/F4 Sham | Online | Addition task (RTs) | Bilateral tRNS over dlPFC produced a light improvement |
Krause et al., 2019 United Kingdom | Exp. 2: 6 high proficient healthy adults, 28 ± 4.47 y, handedness NR | Within-subjects, counterbalanced, double-blind | tRNS | 1 mA (0.1–500 Hz) | 25 cm2 | - | 20 min | 1 | dlPFC | - | F3/F4 Sham | Online | Complex calculations task (accuracy) | Bilateral tRNS negatively affected performance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazzaro, G.; Fucà, E.; Caciolo, C.; Battisti, A.; Costanzo, F.; Varuzza, C.; Vicari, S.; Menghini, D. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. J. Clin. Med. 2022, 11, 2082. https://doi.org/10.3390/jcm11082082
Lazzaro G, Fucà E, Caciolo C, Battisti A, Costanzo F, Varuzza C, Vicari S, Menghini D. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. Journal of Clinical Medicine. 2022; 11(8):2082. https://doi.org/10.3390/jcm11082082
Chicago/Turabian StyleLazzaro, Giulia, Elisa Fucà, Cristina Caciolo, Andrea Battisti, Floriana Costanzo, Cristiana Varuzza, Stefano Vicari, and Deny Menghini. 2022. "Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation" Journal of Clinical Medicine 11, no. 8: 2082. https://doi.org/10.3390/jcm11082082
APA StyleLazzaro, G., Fucà, E., Caciolo, C., Battisti, A., Costanzo, F., Varuzza, C., Vicari, S., & Menghini, D. (2022). Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. Journal of Clinical Medicine, 11(8), 2082. https://doi.org/10.3390/jcm11082082