First-Trimester Fetal Hepatic Artery Examination for Adverse Outcome Prediction
Abstract
:1. Introduction
2. Patients and Methods
- (1)
- Image magnification covering the upper torso and the lower chest of the fetus.
- (2)
- Longitudinal plane going through the right ventricle of the fetus.
- (3)
- Color Doppler showing the inferior vena cava, the ductus venosus and the hepatic artery.
- (4)
- Sample volume width–1.0 mm placed in the hepatic artery.
- (5)
- Angle of insonation < 30 degrees.
- (6)
- Wall filter (WF) set to 120 Hz.
- (7)
- Time-axis (sweep speed) 2–3 cm/s.
- (8)
- Pulse repetition frequency 2.2–3.3 Hz.
- (1)
- Congenital heart defect (CHD), being any of the following: AVSD (atrioventricular septal defect), VSD (ventricular septal defect), CoA (aortic coarctation), TAC (truncus arteriosus communis), HLHS (hypoplastic left heart syndrome), DORV (double outlet right ventricle), ToF (tetralogy of Fallot), PA (pulmonary atresia), TGA (transposition of the great vessels).
- (2)
- Another congenital defect, being any of the following: CDH (congenital diaphragmatic hernia), omphalocele, gastroschisis, cleft lip, orofacial cleft, spina bifida, duodenal atresia.
- (1)
- Pregnancy ended in miscarriage, i.e., before 22 gestational week. In this case, the karyotype was additionally determined in the fetuses in which no such determination had been made during the AC.
- (2)
- Pregnancy was terminated due to a specific chromosomal abnormality (trisomy 21, trisomy 18, trisomy 13, Turner syndrome) or congenital defects detected during first- or second-trimester ultrasound examination that provided grounds for termination.
- (3)
- Pregnancy ended with intrauterine fetal death (IUFD).
- (4)
- Pregnancy ended in preterm labor, i.e., before 37 gestational week.
- (5)
- Pregnancy ended in a full-term live birth, i.e., >37 gestational week, with congenital defects or karyotype abnormalities identified.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karagiannis, G.; Akolekar, R.; Sarquis, R.; Wright, D.; Nicolaides, K.H. Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11–13 weeks. Fetal Diagn. Ther. 2011, 29, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kagan, K.O.; Wright, D.; Valencia, C.; Maiz, N.; Nicolaides, K.H. Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free β-hCG and pregnancy-associated plasma protein-A. Hum. Reprod. 2008, 23, 1968–1975. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.Y.; Syngelaki, A.; Poon, L.C.; Rolnik, D.L.; O’Gorman, N.; Delgado, J.L.; Akolekar, R.; Konstantinidou, L.; Tsavdaridou, M.; Galeva, S.; et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, K.H. Turning the pyramid of prenatal care. Fetal Diagn. Ther. 2011, 29, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Zvanca, M.; Gielchinsky, Y.; Abdeljawad, F.; Bilardo, C.M.; Nicolaides, K.H. Hepatic artery Doppler in trisomy 21 and euploid fetuses at 11–13 weeks. Prenat. Diagn. 2011, 31, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Kilavuz, Ö.; Vetter, K. Is the liver of the fetus the 4th preferential organ for arterial blood supply besides brain, heart, and adrenal glands? J. Perinat. Med. 1999, 27, 103–106. [Google Scholar] [CrossRef]
- Ebbing, C.; Rasmussen, S.; Godfrey, K.M.; Hanson, M.A.; Kiserud, T. Redistribution pattern of fetal liver circulation in intrauterine growth restriction. Acta Obstet. Gynecol. Scand. 2009, 88, 1118–1123. [Google Scholar] [CrossRef]
- Ebbing, C.; Rasmussen, S.; Godfrey, K.M.; Hanson, M.A.; Kiserud, T. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod. Sci. 2008, 15, 166–178. [Google Scholar] [CrossRef] [Green Version]
- Togrul, C.; Ozaksit, G.M.; Seckin, K.D.; Baser, E.; Karsli, M.F.; Gungor, T. Is there a role for fetal ductus venosus and hepatic artery Doppler in screening for fetal aneuploidy in the first trimester? J. Matern.-Fetal Neonatal Med. 2015, 28, 1716–1719. [Google Scholar] [CrossRef]
- Bilardo, C.M.; Timmerman, E.; Robles De Medina, P.G.; Clur, S.A. Low-resistance hepatic artery flow in first-trimester fetuses: An ominous sign. Ultrasound Obstet. Gynecol. 2011, 37, 438–443. [Google Scholar] [CrossRef]
- Kunisaki, S.M.; Azpurua, H.; Fuchs, J.R.; Graves, S.C.; Zurakowski, D.; Fauza, D.O. Fetal hepatic haematopoiesis is modulated by arterial blood flow to the liver. Br. J. Haematol. 2006, 134, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Schwanitz, G.; Niesen, M.; Gembruch, U.; Hansmann, M.; Waldherr, R. Prenatal diagnosis of acute non-lymphoblastic leukaemia in Down syndrome. Lancet 1990, 335, 117. [Google Scholar] [CrossRef]
- Hamada, H.; Yamada, N.; Watanabe, H.; Okuno, S.; Fujiki, Y.; Kubo, T. Hypoechoic hepatomegaly associated with transient abnormal myelopoiesis provides clues to trisomy 21 in the third-trimester fetus. Ultrasound Obstet. Gynecol. 2001, 17, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Hojo, S.; Tsukimori, K.; Kitade, S.; Nakanami, N.; Hikino, S.; Hara, T.; Wake, N. Prenatal sonographic findings and hematological abnormalities in fetuses with transient abnormal myelopoiesis with Down syndrome. Prenat. Diagn. 2007, 27, 507–511. [Google Scholar] [CrossRef]
- Tunstall-Pedoe, O.; Roy, A.; Karadimitris, A.; De La Fuente, J.; Fisk, N.M.; Bennett, P.; Norton, A.; Vyas, P.; Roberts, I. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood 2008, 112, 4507–4511. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.T.; Opalinska, J.B.; Yao, Y.; Fernandes, M.A.; Kalota, A.; Brooks, J.S.J.; Choi, J.K.; Gewirtz, A.M.; Danet-Desnoyers, G.A.; Nemiroff, R.L.; et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood 2008, 112, 4503–4506. [Google Scholar] [CrossRef]
- Valentin, L.; Perez, L.; Masand, P. Hepatoblastoma Associated with Trisomy 18. J. Pediatr. Genet. 2015, 04, 204–206. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.H.; Lai, A.; Chen, C.K.; Chang, K.T.E.; Tan, A.M. Association of trisomy 18 with hepatoblastoma and its implications. Eur. J. Pediatr. 2014, 173, 1595–1598. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- Romero, R.; Nicolaides, K.H.; Conde-Agudelo, A.; O’brien, J.M.; Cetingoz, E.; Da Fonseca, E.; Creasy, G.W.; Hassan, S.S.; Romero, D.R. Vaginal progesterone decreases preterm birth ≤ 34 weeks of gestation in women with a singleton pregnancy and a short cervix: An updated meta-analysis including data from the OPPTIMUM study. Ultrasound Obstet. Gynecol. 2016, 48, 308–317. [Google Scholar] [CrossRef]
- Jarde, A.; Lutsiv, O.; Beyene, J.; McDonald, S.D. Vaginal progesterone, oral progesterone, 17-OHPC, cerclage, and pessary for preventing preterm birth in at-risk singleton pregnancies: An updated systematic review and network meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likis, F.E.; Edwards, D.R.V.; Andrews, J.C.; Woodworth, A.L.; Jerome, R.N.; Fonnesbeck, C.J.; McKoy, J.N.; Hartmann, K.E. Progestogens for preterm birth prevention: A systematic review and meta-analysis. Obstet. Gynecol. 2012, 120, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Maiz, N.; Valencia, C.; Emmanuel, E.E.; Staboulidou, I.; Nicolaides, K.H. Screening for adverse pregnancy outcome by Ductus venosus Doppler at 11–13 + 6 weeks of gestation. Obstet. Gynecol. 2008, 112, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Maiz, N.; Valencia, C.; Kagan, K.O.; Wright, D.; Nicolaides, K.H. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz Baran, Ş.; Kalaycı, H.; Doğan Durdağ, G.; Yetkinel, S.; Arslan, A.; Bulgan Kılıçdağ, E. Does abnormal ductus venosus pulsatility index at the first-trimester effect on adverse pregnancy outcomes? J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101851. [Google Scholar] [CrossRef] [PubMed]
- Kagan, K.O.; Valencia, C.; Livanos, P.; Wright, D.; Nicolaides, K.H. Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 18–22. [Google Scholar] [CrossRef]
- Kagan, K.O.; Cicero, S.; Staboulidou, I.; Wright, D.; Nicolaides, K.H. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 259–264. [Google Scholar] [CrossRef]
- Czuba, B.; Zarotyński, D.; Dubiel, M.; Borowski, D.; Wegrzyn, P.; Cnota, W.; Reska-Nycz, M.; Maczka, M.; Wielgoś, M.; Sodowski, K.; et al. Screening for trisomy 21 based on maternal age, nuchal translucency measurement, first trimester biochemistry and quantitative and qualitative assessment of the flow in the DV—The assessment of efficacy. Ginekol. Pol. 2017, 88, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Czuba, B.; Nycz-Reska, M.; Cnota, W.; Jagielska, A.; Wloch, A.; Borowski, D.; Wegrzyn, P. Quantitative and qualitative Ductus Venosus blood flow evaluation in the screening for Trisomy 18 and 13—Suitability study. Ginekol. Pol. 2020, 91, 144–148. [Google Scholar] [CrossRef]
- McBrien, A.; Sands, A.; Craig, B.; Dornan, J.; Casey, F. Major congenital heart disease: Antenatal detection, patient characteristics and outcomes. J. Matern.-Fetal Neonatal Med. 2009, 22, 101–105. [Google Scholar] [CrossRef]
- Tegnander, E.; Williams, W.; Johansens, O.J.; Blaas, H.G.K.; Eik-Nes, S.H. Prenatal detection of heart defects in a non-selected population of 30149 fetuses—Detection rates and outcome. Ultrasound Obstet. Gynecol. 2006, 27, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Chelemen, T.; Syngelaki, A.; Maiz, N.; Allan, L.; Nicolaides, K.H. Contribution of ductus venosus doppler in first-trimester screening for major cardiac defects. Fetal Diagn. Ther. 2011, 29, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, E.; Clur, S.A.; Pajkrt, E.; Bilardo, C.M. First-trimester measurement of the ductus venosus pulsatility index and the prediction of congenital heart defects. Ultrasound Obstet. Gynecol. 2010, 36, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Borrell, A.; Grande, M.; Bennasar, M.; Borobio, V.; Jimenez, J.M.; Stergiotou, I.; Martinez, J.M.; Cuckle, H. First-trimester detection of major cardiac defects with the use of ductus venosus blood flow. Ultrasound Obstet. Gynecol. 2013, 42, 51–57. [Google Scholar] [CrossRef]
Adverse Pregnancy Outcome | |||
---|---|---|---|
Yes (n = 381) | No (n = 1460) | p | |
Median (Min–Max) | Median (Min–Max) | ||
FHR | 161.00 (138.00–191.00) | 160.00 (143.00–197.00) | 0.017 |
NT | 2.10 (1.10–13.00) | 1.75 (0.80–10.50) | <0.001 |
HA-PI | 1.43 (0.11–2.70) | 1.47 (1.01–2.70) | <0.001 |
HA-PSV | 12.27 (7.12–43.00) | 11.45 (5.41–26.30) | <0.001 |
DVPI | 1.20 (0.56–2.43) | 1.10 (0.61–9.92) | <0.001 |
beta-HCG MoM | 1.01 (0.04–7.26) | 1.04 (0.17–7.68) | 0.56 |
PAPP-A MoM | 0.68 (0.05–3.54) | 0.94 (0.15–4.32) | <0.001 |
Mean ± SD | Mean ± SD | ||
Age | 31.77 ± 5.97 | 30.5 ± 5.25 | <0.001 |
Weight | 65.05 ± 10.46 | 65.21 ± 7.9 | 0.006 |
Karyotype | |||
---|---|---|---|
Abnormal (n = 93) | Normal (n = 1741) | p | |
Median (Min–Max) | Median (Min–Max) | ||
FHR | 159.00 (142.00–182.00) | 160.00 (138.00–197.00) | 0.93 |
NT | 4.00 (1.40–12.00) | 1.80 (0.80–13.00) | <0.001 |
HA-PI | 0.84 (0.54–2.53) | 1.47 (0.11–2.70) | <0.001 |
HA-PSV | 20.90 (7.79–43.00) | 11.55 (5.41–28.70) | <0.001 |
DVPI | 1.65 (0.78–2.43) | 1.10 (0.56–9.92) | <0.001 |
beta-HCG MoM | 1.12 (0.12–4.37) | 1.03 (0.04–7.68) | 0.85 |
PAPP-A MoM | 0.44 (0.09–2.09) | 0.92 (0.05–4.32) | <0.001 |
Mean ± SD | Mean ± SD | ||
Age | 32.09 ± 6.69 | 30.69 ± 5.35 | 0.14 |
Weight | 65.15 ± 8.36 | 65.64 ± 10.83 | 0.65 |
Karyotype | |||
---|---|---|---|
Abnormal (n = 93) | Normal (n = 288) | p | |
Median (Min–Max) | Median (Min–Max) | ||
FHR | 159.00 (142.00–182.00) | 161.00 (138.00–191.00) | 0.44 |
NT | 4.00 (1.40–12.00) | 1.90 (1.10–13.00) | <0.001 |
HA-PI | 0.84 (0.54–2.53) | 1.47 (0.11–2.70) | <0.001 |
HA-PSV | 20.90 (7.79–43.00) | 11.90 (7.12–28.70) | <0.001 |
DVPI | 1.65 (0.78–2.43) | 1.11 (0.56–2.10) | <0.001 |
beta-HCG MoM | 1.12 (0.12–4.37) | 1.01 (0.04–7.26) | 0.91 |
PAPP-A MoM | 0.44 (0.09–2.09) | 0.80 (0.05–3.54) | <0.001 |
Mean ± SD | Mean ± SD | ||
Age | 32.09 ± 6.69 | 31.67 ± 5.72 | 0.96 |
Weight | 65.15 ± 8.36 | 64.86 ± 10.36 | 0.43 |
Karyotype Defect | |||||
---|---|---|---|---|---|
T13 † (n = 10) | T18 †† (n = 17) | T21 ††† (n = 57) | Turner Syndrome †††† (n = 9) | p | |
Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | ||
FHR | 172.5 (142–182) | 158 (150–169) | 157 (142–182) | 178 (160–180) | <0.001 |
NT | 5.55 (2.00–8.00) | 4.40 (1.70–9.60) | 3.40 (1.40–9.50) | 8.90 (5.80–12.00) | <0.001 |
HA-PI | 1.04 (0.75–1.99) | 0.85 (0.68–1.90) | 0.82 (0.54–2.53) | 0.92 (0.76–1.45) | 0.098 |
HA-PSV | 20.90 (8.57–23.10) | 23.20 (19.70–43.00) | 20.70 (7.79–42.20) | 20.40 (10.66–33.20) | 0.066 |
DVPI | 1.56 (1.17–1.99) | 1.65 (1.08–2.40) | 1.65 (0.78–2.43) | 1.24 (0.99–1.92) | 0.3 |
beta-HCG MoM | 0.51 (0.38–3.45) | 0.45 (0.12–1.92) | 1.30 (0.33–4.37) | 1.50 (0.24–2.65) | <0.001 |
PAPP-A MoM | 0.28 (0.22–1.45) | 0.32 (0.09–0.73) | 0.58 (0.15–2.09) | 0.46 (0.22–1.52) | 0.0012 |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
Age | 29.2 ± 6.86 | 29.64 ± 5.07 | 33.43 ± 7.08 | 31.44 ± 4.74 | 0.11 |
Weight | 64.9 ± 8.06 | 67 ± 11.44 | 66.01 ± 11.59 | 61.55 ± 7.09 | 0.64 |
Pregnancy Outcome | ||||||
---|---|---|---|---|---|---|
Labor at Term † (n = 1483) | IUFD †† (n = 15) | Miscarriage ††† (n = 75) | Terminated Pregnancy †††† (n = 74) | Preterm Labor ††††† (n = 187) | p | |
Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | ||
FHR | 160 (143–197) | 160 (146–177) | 162 (144–190) | 162 (138–191) | 161 (142–189) | 0.053 |
NT | 1.80 (0.80–10.50) | 1.80 (1.10–9.50) | 2.00 (1.20–12.00) | 4.25 (1.10–13.00) | 1.90 (1.10–10.80) | <0.001 |
HA-PI | 1.46 (0.54–2.70) | 1.52 (0.72–2.66) | 1.43 (0.11–2.69) | 1.11 (0.68–2.58) | 1.46 (0.66–2.70) | <0.001 |
HA-PSV | 11.50 (5.41–33.20) | 11.30 (7.43–41.20) | 12.85 (7.54–28.70) | 20.11 (7.79–42.20) | 11.74 (7.12–43.00) | <0.001 |
DVPI | 1.10 (0.61–9.92) | 1.20 (0.80–1.86) | 1.30 (0.70–2.43) | 1.51 (0.87–2.40) | 1.10 (0.56–1.95) | <0.001 |
beta-HCG MoM | 1.04 (0.17–7.68) | 0.93 (0.14–3.10) | 1.09 (0.04–7.26) | 1.17 (0.12–6.07) | 0.99 (0.14–5.73) | 0.76 |
PAPP-A MoM | 0.94 (0.15–4.32) | 0.73 (0.05–1.90) | 0.59 (0.05–3.54) | 0.41 (0.09–3.03) | 0.84 (0.12–3.41) | <0.001 |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
Age | 30.59 ± 5.32 | 29.33 ± 6.62 | 33.46 ± 5.11 | 31.41 ± 5.88 | 30.84 ± 5.83 | <0.001 |
Weight | 65.21 ± 7.98 | 62.46 ± 10.81 | 64.74 ± 9.08 | 64.7 ± 9.88 | 65.51 ± 11.1 | 0.049 |
CHD | |||
---|---|---|---|
Yes (n = 56) | No (n = 1785) | p | |
Median (Min–Max) | Median (Min–Max) | ||
FHR | 160.00 (142.00–180.00) | 160.00 (138.00–197.00) | 0.68 |
NT | 2.35 (1.10–12.00) | 1.80 (0.80–13.00) | <0.001 |
HA-PI | 1.30 (0.54–2.65) | 1.46 (0.11–2.70) | <0.001 |
HA-PSV | 13.82 (7.43–43.00) | 11.65 (5.41–42.20) | <0.001 |
DVPI | 1.30 (0.78–2.11) | 1.10 (0.56–9.92) | <0.001 |
beta-HCG MoM | 0.89 (0.12–4.44) | 1.04 (0.04–7.68) | 0.08 |
PAPP-A MoM | 0.63 (0.10–2.24) | 0.91 (0.05–4.32) | <0.001 |
Mean ± SD | Mean ± SD | ||
Age | 32.01 ± 6.84 | 30.72 ± 5.37 | 0.18 |
Weight | 64.66 ± 9.91 | 65.19 ± 8.45 | 0.24 |
Labor at Term | IUFD | Miscarriage | Termination of Pregnancy | Preterm Labor | ||
---|---|---|---|---|---|---|
FHR | HA-PI | p < 0.001 R = 0.31 | p < 0.001 R = 0.73 | ns | ns | p < 0.001 R = 0.36 |
HA-PSV | p < 0.001 R = −0.33 | ns | ns | ns | p < 0.001 R = −0.3 | |
NT | HA-PI | p < 0.001 R = −0.55 | ns | p < 0.01 R = −0.29 | ns | p < 0.001 R = −0.5 |
HA-PSV | p < 0.001 R = 0.57 | ns | p < 0.001 R = 0.61 | p < 0.001 R = 0.38 | p < 0.001 R = 0.56 | |
DVPI | HA-PI | p < 0.02 R = −0.05 | p < 0.02 R = −0.58 | p < 0.03 R = −0.24 | p < 0.002 R = −0.34 | ns |
HA-PSV | p < 0.01 R = 0.06 | p < 0.03 R = 0.54 | ns | ns | ns | |
beta-HCG MoM | HA-PI | ns | ns | ns | ns | ns |
HA-PSV | ns | ns | ns | ns | ns | |
PAPP-A MoM | HA-PI | ns | ns | ns | ns | ns |
HA-PSV | ns | ns | ns | ns | ns |
Abnormal Karyotype | Normal Karyotype | Adverse Outcome | Normal Outcome | ||
---|---|---|---|---|---|
FHR | HA-PI | p < 0.01 R = 0.25 | p < 0.001 R = 0.31 | p < 0.001 R = 0.21 | p < 0.001 R = 0.33 |
HA-PSV | ns | p < 0.001 R = −0.3 | p < 0.01 R = −0.12 | p < 0.001 R = −0.34 | |
NT | HA-PI | ns | p < 0.001 R = −0.51 | p < 0.001 R = −0.47 | p < 0.001 R = −0.54 |
HA-PSV | ns | p < 0.001 R = 0.58 | p < 0.001 R = 0.62 | p < 0.001 R = 0.56 | |
DVPI | HA-PI | ns | p < 0.02 R = −0.05 | p < 0.001 R = −0.32 | ns |
HA-PSV | ns | p < 0.001 R = 0.07 | p < 0.001 R = 0.26 | p < 0.03 R = 0.05 | |
beta-HCG MoM | HA-PI | ns | ns | ns | ns |
HA-PSV | ns | ns | ns | ns | |
PAPP-A MoM | HA-PI | ns | ns | p < 0.001 R = 0.17 | ns |
HA-PSV | ns | ns | p < 0.001 R = −0.17 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czuba, B.; Tousty, P.; Cnota, W.; Borowski, D.; Jagielska, A.; Dubiel, M.; Fuchs, A.; Fraszczyk-Tousty, M.; Dzidek, S.; Kajdy, A.; et al. First-Trimester Fetal Hepatic Artery Examination for Adverse Outcome Prediction. J. Clin. Med. 2022, 11, 2095. https://doi.org/10.3390/jcm11082095
Czuba B, Tousty P, Cnota W, Borowski D, Jagielska A, Dubiel M, Fuchs A, Fraszczyk-Tousty M, Dzidek S, Kajdy A, et al. First-Trimester Fetal Hepatic Artery Examination for Adverse Outcome Prediction. Journal of Clinical Medicine. 2022; 11(8):2095. https://doi.org/10.3390/jcm11082095
Chicago/Turabian StyleCzuba, Bartosz, Piotr Tousty, Wojciech Cnota, Dariusz Borowski, Agnieszka Jagielska, Mariusz Dubiel, Anna Fuchs, Magda Fraszczyk-Tousty, Sylwia Dzidek, Anna Kajdy, and et al. 2022. "First-Trimester Fetal Hepatic Artery Examination for Adverse Outcome Prediction" Journal of Clinical Medicine 11, no. 8: 2095. https://doi.org/10.3390/jcm11082095
APA StyleCzuba, B., Tousty, P., Cnota, W., Borowski, D., Jagielska, A., Dubiel, M., Fuchs, A., Fraszczyk-Tousty, M., Dzidek, S., Kajdy, A., Świercz, G., & Kwiatkowski, S. (2022). First-Trimester Fetal Hepatic Artery Examination for Adverse Outcome Prediction. Journal of Clinical Medicine, 11(8), 2095. https://doi.org/10.3390/jcm11082095