Is Increased Resting Heart Rate after Radiofrequency Pulmonary Vein Isolation a Predictor of Favorable Long-Term Outcome of the Procedure?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catheter Ablation Procedure
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef] [PubMed]
- Duytschaever, M.; De Pooter, J.; Demolder, A.; El Haddad, M.; Phlips, T.; Strisciuglio, T.; Debonnaire, P.; Wolf, M.; Vandekerckhove, Y.; Knecht, S.; et al. Long-term impact of catheter ablation on arrhythmia burden in low-risk patients with paroxysmal atrial fibrillation: The CLOSE to CURE study. Heart Rhythm 2020, 17, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Calkins, H.; Hindricks, G.; Cappato, R.; Kim, Y.H.; Saad, E.B.; Aguinaga, L.; Akar, J.G.; Badhwar, V.; Brugada, J.; Camm, J.; et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2017, 14, e275–e444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koźluk, E.; Zyśko, D.; Piątkowska, A.; Kiliszek, M.; Lodziński, P.; Małkowska, S.; Balsam, P.; Rodkiewicz, D.; Żukowska, M.; Opolski, G. Effectiveness comparison of various atrial fibrillation ablation methods in patients with common venous trunk. Adv. Clin. Exp. Med. 2019, 28, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, A.; Pilichowska-Paszkiet, E.; Zuk, A.; Piotrowski, R.; Kryński, T.; Baran, J.; Zaborska, B.; Kułakowski, P. Acceleration of sinus rhythm following ablation for atrial fibrillation: A simple parameter predicting ablation efficacy. Kardiol. Pol. 2019, 77, 960–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, Z.D.; Laczay, B.; Yenokyan, G.; Sivasambu, B.; Sinha, S.K.; Marine, J.E.; Ashikaga, H.; Berger, R.D.; Akhtar, T.; Spragg, D.D.; et al. Heart rate increase after pulmonary vein isolation predicts freedom from atrial fibrillation at 1 year. J. Cardiovasc. Electrophysiol. 2019, 30, 2818–2822. [Google Scholar] [CrossRef] [PubMed]
- Maj, R.; Borio, G.; Osório, T.G.; Iacopino, S.; Ströker, E.; Sieira, J.; Terasawa, M.; Rizzo, A.; Galli, A.; Varnavas, V.; et al. Predictors of cardiac neuromodulation achieved by cryoballoon ablation performed in patients with atrial fibrillation who were in sinus rhythm before the ablation. Int. J. Cardiol. 2020, 310, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Phlips, T.; Taghji, P.; El Haddad, M.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: The role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. EP Eur. 2018, 20, f419–f427. [Google Scholar] [CrossRef] [PubMed]
- Kornej, J.; Hindricks, G.; Kosiuk, J.; Arya, A.; Sommer, P.; Husser, D.; Rolf, S.; Richter, S.; Huo, Y.; Piorkowski, C.; et al. Comparison of CHADS2, R2CHADS2, and CHA2DS2-VASc scores for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation: The Leipzig Heart Center AF Ablation Registry. Circ. Arrhythm. Electrophysiol. 2014, 7, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodziński, P.; Kiliszek, M.; Koźluk, E.; Piątkowska, A.; Balsam, P.; Kochanowski, J.; Scisło, P.; Piątkowski, R.; Opolski, G. Does a blanking period after pulmonary vein isolation impact long-term results? Results after 55 months of follow-up. Cardiol. J. 2014, 21, 384–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Scherlag, B.J.; Edwards, J.; Jackman, W.M.; Lazzara, R.; Po, S.S. Gradients of Atrial Refractoriness and Inducibility of Atrial Fibrillation due to Stimulation of Ganglionated Plexi. J. Cardiovasc. Electrophysiol. 2007, 18, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Armour, J.A.; Murphy, D.A.; Yuan, B.X.; Macdonald, S.; Hopkins, D.A. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat. Rec. 1997, 247, 289–298. [Google Scholar] [CrossRef]
- Lemery, R.; Birnie, D.; Tang, A.S.; Green, M.; Gollob, M. Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm 2006, 3, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.H.; Chiou, C.W.; Wen, Z.C.; Wu, C.H.; Tai, C.T.; Tsai, C.F.; Ding, Y.A.; Chang, M.S.; Chen, S.A. Alterations of heart rate variability after radiofrequency catheter ablation of focal atrial fibrillation originating from pulmonary veins. Circulation 1999, 100, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Chen, X.; Pehrson, S.; Hilden, J.; Svendsen, J.H. Increased resting heart rate following radiofrequency catheter ablation for atrial fibrillation. EP Eur. 2005, 7, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Pokushalov, E.; Romanov, A.; Artyomenko, S.; Turov, A.; Shugayev, P.; Shirokova, N.; Katritsis, D.G. Ganglionated plexi ablation for longstanding persistent atrial fibrillation. Europace 2010, 12, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Katritsis, D.G.; Pokushalov, E.; Romanov, A.; Giazitzoglou, E.; Siontis, G.C.; Po, S.S.; Camm, A.J.; Ioannidis, J.P. Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: A randomized clinical trial. J. Am. Coll. Cardiol. 2013, 62, 2318–2325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessen, A.H.G.; Berger, W.R.; Krul, S.P.J.; van den Berg, N.W.E.; Neefs, J.; Piersma, F.R.; Chan Pin Yin, D.; de Jong, J.; van Boven, W.P.; de Groot, J.R. Ganglion Plexus Ablation in Advanced Atrial Fibrillation: The AFACT Study. J. Am. Coll. Cardiol. 2016, 68, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, M.S.; Ozeke, O.; Cay, S.; Ozcan, F.; Bayraktar, M.F.; Kara, M.; Vicdan, M.; Acar, B.; Aydogdu, S.; Topaloglu, S.; et al. The short-term impact of the catheter ablation on noninvasive autonomic nervous system parameters in patients with paroxysmal atrial fibrillation. Pacing Clin. Electrophysiol. 2017, 40, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
Variable | N = 146 |
---|---|
Age, years, median [IQR] | 60 [52–66] |
Females, n (%) | 56 (39.2%) |
Heart failure | 2 (1.4%) |
Hypertension | 85 (58.6%) |
Coronary artery disease | 14 (9.6%) |
Vascular disease | 4 (2.8%) |
Diabetes mellitus | 17 (11.7%) |
Smoking history | 36 (24.6%) |
CHA2DS2-VASc score, median [IQR] | 1.5 [1–2] 140 |
Thyroid disease | 18 (12.3%) |
Additional CTI ablation | 6 (4.1%) |
Any additional lines except CTI ablation | 21 (14.4%) |
BMI | 27.75 [25.8–30.3] 106 |
Family history of AF | 21 (14.5%) |
Cardioversion anytime during hospital stay | 24 (16.44%) |
eGFR | 60 [60–60] 122 |
RBC, median [IQR] | 4.75 [4.44–5.04] 106 |
RHR before PVI, median [IQR] | 64 [58.5–70] |
RHR before PVI, mean [SD] | 65.4 [13.5] |
RHR post PVI, median [IQR] | 72 [64.25–80] |
RHR post PVI, mean [SD] | 72 [10.9] |
Pharmacotherapy prior PVI | |
Beta-blockers | 96 (66.2%) |
Amiodarone | 13 (9%) |
Class I Antiarrhythmic drugs | 55 (37.9%) |
Sotalol | 21 (14.5%) |
Pharmacotherapy after PVI | |
Beta-blockers | 108 (74%) |
Amiodarone | 0 (0%) |
Class I Antiarrhythmic drugs | 10 (6.9%) |
Sotalol | 4 (2.7%) |
Recurrence of AF during follow up | 72 (49.3%) |
Variable | RHR Change-Rest of the Cohort N = 103 | RHR Change-Increase ≥ 15 bpm N = 43 | p Value |
---|---|---|---|
Age, years, median [IQR] | 60 [50–66] | 60 [53–66] | 0.98 |
Females, n (%) | 41 (41%) | 15 (34.9%) | 0.58 |
Heart failure | 2 (1.9%) | 0 (0%) | 1 |
Hypertension | 60 (58.8%) | 25 (58.1%) | 1 |
Coronary artery disease | 11 (10.68%) | 3 (6.98%) | 0.76 |
Vascular disease | 3 (2.9%) | 1 (2.38%) | 1 |
Diabetes mellitus | 11 (10.78%) | 6 (13.95%) | 0.58 |
Smoking history | 25 (24.27%) | 11 (25.58%) | 1 |
CHA2DS2-VASc score, median [IQR] | 2 [1–2] 98 | 1 [1–2.75] 42 | 0.74 |
Thyroid disease | 14 (13.59%) | 4 (9.30%) | 0.59 |
Additional CTI ablation | 4 (3.88%) | 2 (4.65%) | 1 |
Any additional lines except CTI ablation | 18 (17.48%) | 3 (6.98%) | 0.124 |
BMI, median [IQR] | 28.4 [25.8–30.8] 78 | 27.1 [25.6–29.5] 28 | 0.35 |
Family history of AF | 16 (16.49%) | 5 (12.2%) | 0.61 |
Cardioversion anytime during hospital stay | 18 (17.48%) | 6 (13.95%) | 0.81 |
eGFR | 60 [59.8–60] 87 | 60 [60–71.5] 35 | 0.027 |
RBC, median [IQR] | 4.77 [4.43–5.03] 78 | 4.60 [4.30–4.88] 28 | 0.257 |
Pharmacotherapy prior PVI | |||
Beta-blockers | 67 (65.7%) | 29 (67.44%) | 1 |
Amiodarone | 8 (7.84%) | 5 (11.63%) | 0.53 |
Class I Antiarrhythmic drugs | 38 (37.25%) | 17 (39.53%) | 0.85 |
Sotalol | 16 (15.69%) | 5 (11.63%) | 0.61 |
Pharmacotherapy after PVI | |||
Beta-blockers | 76 (73.79%) | 32 (74.41%) | 1 |
Amiodarone | 0 (0%) | 0 (0%) | 1 |
Class I Antiarrhythmic drugs | 8 (7.67%) | 2 (4.65%) | 0.72 |
Sotalol | 3 (2.91%) | 1 (2.33%) | 1 |
Recurrence of AF during follow up | 50 (48.54%) | 22 (51.16%) | 0.87 |
Variable | Primary Endpoint | ||
---|---|---|---|
HR | 95% CI | p-Value | |
HR increase (bpm) | 1.001 | 0.99–1.02 | 0.84 |
CHA2DS2VASc | 1.35 | 1.11–1.64 | 0.003 |
Cardioversion anytime during hospital stay | 2.41 | 1.34–4.32 | 0.003 |
Beta blockers change (no change in dosage as reference) | |||
Withdrawal or decrease in dosage | 1.36 | 0.55–3.43 | 0.50 |
Initiation or increase in dosage | 2.07 | 1.08–3.95 | 0.028 |
Variable | Primary Endpoint | ||
---|---|---|---|
HR | 95% CI | p-Value | |
Delta HR | 1.001 | 0.99–1.017 | 0.85 |
Age, years, median | 1.02 | 0.99–1.04 | 0.08 |
Female sex | 1.58 | 0.99–2.53 | 0.054 |
Heart failure | 2.82 | 0.70–11.6 | 0.15 |
Hypertension | 1.19 | 0.74–1.91 | 0.47 |
Coronary artery disease | 1.77 | 0.90–3.45 | 0.10 |
Vascular disease | 1.02 | 0.25–4.15 | 0.98 |
Diabetes mellitus | 1.39 | 0.71–2.71 | 0.33 |
Smoking history | 1.06 | 0.63–1.80 | 0.82 |
CHA2DS2-VASc score | 1.31 | 1.08–1.58 | 0.006 |
Thyroid disease | 1.11 | 0.55–2.23 | 0.77 |
Additional cavotricuspid isthmus ablation | 1.83 | 0.67–5.01 | 0.24 |
Any additional lines except cavotricuspid isthmus ablation | 1.35 | 0.74–2.47 | 0.32 |
BMI | 1.02 | 0.96–1.09 | 0.55 |
Family history of AF | 0.70 | 0.35–1.42 | 0.33 |
Cardioversion anytime during hospital stay | 1.80 | 1.03–3.14 | 0.04 |
eGFR | 1.004 | 0.98–1.02 | 0.72 |
AF duration since first documented AF (months) | 0.999 | 0.99–1.004 | 0.94 |
Amiodarone change | |||
Withdrawal or decrease in dose | 1.72 | 0.82–3.59 | 0.15 |
Initiation or increase in dose | NA | NA | NA |
Antiarrhythmic class I change | |||
Withdrawal or decrease in dose | 0.63 | 0.37–1.09 | 0.10 |
Initiation or increase in dose | NA | NA | NA |
Sotalol change | |||
Withdrawal or decrease in dose | 1.03 | 0.51–2.07 | 0.93 |
Initiation or increase in dose | 3.82 | 0.52–27.97 | 0.19 |
Beta blockers change | |||
Withdrawal or decrease in dose | 1.28 | 0.51–3.20 | 0.60 |
Initiation or increase in dose | 2.11 | 1.17–3.81 | 0.01 |
Study | Number of Patients | Pre-PVI RHR, bpm (Mean, SD) | Post-PVI RHR, bpm (Mean, SD) | Freedom from AF at 1-Year |
---|---|---|---|---|
Goff, et al. | 257 | 60.6 [11.3] | 70.7 [12.0] | 52% |
Sikorska, et al. | 111 | 57 [8.8] | 71.4 [11.1] | 67% |
Maj, et al. | 472 | 60.2 [10.4] | 75.5 [12.0] | NA |
Kuyumcu, et al. | 45 | 82.5 [15.23] | 85.5 [11.16] | NA |
Maciejewski, et al. | 146 | 65.4 [13.5] | 72 [10.9] | 62.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewski, C.; Peller, M.; Lodziński, P.; Koźluk, E.; Piątkowska, A.; Rodkiewicz, D.; Sierakowska, I.; Roman, N.; Wiśniewska, D.; Żółcińska, D.; et al. Is Increased Resting Heart Rate after Radiofrequency Pulmonary Vein Isolation a Predictor of Favorable Long-Term Outcome of the Procedure? J. Clin. Med. 2022, 11, 2159. https://doi.org/10.3390/jcm11082159
Maciejewski C, Peller M, Lodziński P, Koźluk E, Piątkowska A, Rodkiewicz D, Sierakowska I, Roman N, Wiśniewska D, Żółcińska D, et al. Is Increased Resting Heart Rate after Radiofrequency Pulmonary Vein Isolation a Predictor of Favorable Long-Term Outcome of the Procedure? Journal of Clinical Medicine. 2022; 11(8):2159. https://doi.org/10.3390/jcm11082159
Chicago/Turabian StyleMaciejewski, Cezary, Michał Peller, Piotr Lodziński, Edward Koźluk, Agnieszka Piątkowska, Dariusz Rodkiewicz, Izabela Sierakowska, Natalia Roman, Diana Wiśniewska, Dominika Żółcińska, and et al. 2022. "Is Increased Resting Heart Rate after Radiofrequency Pulmonary Vein Isolation a Predictor of Favorable Long-Term Outcome of the Procedure?" Journal of Clinical Medicine 11, no. 8: 2159. https://doi.org/10.3390/jcm11082159
APA StyleMaciejewski, C., Peller, M., Lodziński, P., Koźluk, E., Piątkowska, A., Rodkiewicz, D., Sierakowska, I., Roman, N., Wiśniewska, D., Żółcińska, D., Rymaszewska, D., Opolski, G., Grabowski, M., & Balsam, P. (2022). Is Increased Resting Heart Rate after Radiofrequency Pulmonary Vein Isolation a Predictor of Favorable Long-Term Outcome of the Procedure? Journal of Clinical Medicine, 11(8), 2159. https://doi.org/10.3390/jcm11082159