Classification of Chemotherapy-Related Subjective Cognitive Complaints in Breast Cancer Using Brain Functional Connectivity and Activity: A Machine Learning Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Cognitive Assessment
2.3. MRI Data Acquisition
2.4. MRI Data Preprocessing
2.5. Feature Extraction
- (1)
- FC can reflect the temporal correlation between neurophysiological activities in different brain regions spatially. The mean time courses of each regions of interest (ROI) were attained by averaging the rs-fMRI time series of all the voxels within the ROI. Pearson’s correlation analysis was performed on all pairs of ROIs time courses, and then the correlation coefficients were transformed into z-values with Fisher’s r-to-z transformation. Total 4005 z-transformed correlation coefficients were taken as the FCs between all pairs of ROIs.
- (2)
- ALFF and fALFF reflect the intensity of intrinsic spontaneous brain oscillatory activity. ALFF was achieved as the averaged square root in a voxel over the preceding frequency range, while fALFF was calculated as the ratio between ALFF and the average square root of the power spectrum within the entire frequency range. We calculated individual ALFF/fALFF values within each voxel and then matched the mean to the brain maps. Fisher’s r-to-z transformation was performed to obtain zALFF/zfALFF map of the whole brain. Finally, we obtained 90 zALFF/zfALFF values using the AAL atlas.
- (3)
- ReHo as a local brain connectivity metric is measured to detect the regional temporal homogeneity of neural intrinsic activity. After spatial normalization, all images were then band-pass filtered as described at step 7 and smoothing would be conducted. We calculated individual ReHo values within each voxel and adjacent 26 voxels, then the mean be segmented into 90 ROIs. Fisher’s r-to-z transformation was performed to obtain zReHo map of the whole brain as well. Thus, we obtained 90 zReHo values.
- (4)
- VMHC can reflect the functional connectivity of mirrored voxels in two hemispheres. Individual VMHC values within each voxel were calculated, then segmented into 90 ROIs. After performing Fisher’s r-to-z transformation, we obtained 90 zVMHC values of brain map.
- (5)
- DC reflects the importance of this brain region by calculating the number of functional connections directly connected with this brain region in the whole brain. Each region’s DC with positive binary values of AAL atlas would be calculated and transformed to zDC values, then we obtained 90 zDC values.
2.6. Feature Selection
2.7. SVM Classification
2.8. Statistical Analyses
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Feature Selection
3.3. SVM Classification
4. Discussion
4.1. SVM Classification
4.2. Rs-fMRI Features
4.3. Comparison of Subjective and Objective Cognition between the SCC and BC Group
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Licaj, I.; Clarisse, B.; Humbert, X.; Grellard, J.M.; Tron, L.; Joly, F. Cognitive complaints in cancer survivors and expectations for support: Results from a web-based survey. Cancer Med. 2019, 8, 2654–2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019, 5, 1749–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutmann, D.H. Clearing the Fog surrounding Chemobrain. Cell 2019, 176, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Lepage, C.; Smith, A.M.; Moreau, J.; Barlow-Krelina, E.; Wallis, N.; Collins, B.; MacKenzie, J.; Scherling, C. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus 2014, 3, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Chen, H.; Lv, Y.; Chao, H.H.; Gong, L.; Li, C.R.; Cheng, H. Diminished gray matter density mediates chemotherapy dosage-related cognitive impairment in breast cancer patients. Sci. Rep. 2018, 8, 13801. [Google Scholar] [CrossRef]
- Mo, C.; Lin, H.; Fu, F.; Lin, L.; Zhang, J.; Huang, M.; Wang, C.; Xue, Y.; Duan, Q.; Lin, W.; et al. Chemotherapy-induced changes of cerebral activity in resting-state functional magnetic resonance imaging and cerebral white matter in diffusion tensor imaging. Oncotarget 2017, 8, 81273–81284. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Lin, H.; Yan, Y.; Xu, X.; Wang, L.; Zhang, J.; Yu, Y. Impairment of the executive function in breast cancer patients receiving chemotherapy treatment: A functional MRI study. Eur. J. Cancer Care 2017, 26, e12553. [Google Scholar] [CrossRef]
- Chen, B.T.; Jin, T.; Patel, S.K.; Ye, N.; Ma, H.; Wong, C.W.; Rockne, R.C.; Root, J.C.; Saykin, A.J.; Ahles, T.A.; et al. Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: A pilot longitudinal study. Breast Cancer Res. Treat. 2019, 176, 181–189. [Google Scholar] [CrossRef]
- Miao, H.; Chen, X.; Yan, Y.; He, X.; Hu, S.; Kong, J.; Wu, M.; Wei, Y.; Zhou, Y.; Wang, L.; et al. Functional connectivity change of brain default mode network in breast cancer patients after chemotherapy. Neuroradiology 2016, 58, 921–928. [Google Scholar] [CrossRef]
- Dumas, J.A.; Makarewicz, J.; Schaubhut, G.J.; Devins, R.; Albert, K.; Dittus, K.; Newhouse, P.A. Chemotherapy altered brain functional connectivity in women with breast cancer: A pilot study. Brain Imaging Behav. 2013, 7, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Apple, A.C.; Schroeder, M.P.; Ryals, A.J.; Wagner, L.I.; Cella, D.; Shih, P.A.; Reilly, J.; Penedo, F.J.; Voss, J.L.; Wang, L. Hippocampal functional connectivity is related to self-reported cognitive concerns in breast cancer patients undergoing adjuvant therapy. Neuroimage Clin. 2018, 20, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Wefel, J.S.; Hosseini, S.M.; Cheung, M.; Watson, C.L.; Hoeft, F. Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proc. Natl. Acad. Sci. USA 2013, 110, 11600–11605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Yan, C.; Wang, Z.; Wang, J.; Xia, M.; Li, K.; He, Y. Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). Neuroimage 2012, 59, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- de Vos, F.; Koini, M.; Schouten, T.M.; Seiler, S.; van der Grond, J.; Lechner, A.; Schmidt, R.; de Rooij, M.; Rombouts, S. A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. Neuroimage 2018, 167, 62–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, L.I.; Sweet, J.; Butt, Z.; Lai, J.S.; Cella, D. Measuring patient self-reported cognitive function: Development of the Functional Assessment of Cancer Therapy–Cognitive Function Instrument. J. Support Oncol. 2009, 7, W32–W39. [Google Scholar]
- Yu, J.; Li, J.; Huang, X. The Beijing version of the Montreal Cognitive Assessment as a brief screening tool for mild cognitive impairment: A community-based study. BMC Psychiatry 2012, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- Llinas-Regla, J.; Vilalta-Franch, J.; Lopez-Pousa, S.; Calvo-Perxas, L.; Torrents Rodas, D.; Garre-Olmo, J. The Trail Making Test: Association with other neuropsychological measures and normative values for adults aged 55 years and older from a Spanish-speaking population-based sample. Assessment 2017, 24, 183–196. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary; American Chemical Society: Washington, DC, USA, 2006. [Google Scholar]
- Rey, A. L’examen clinique en psychologie. In The Clinical Examination in Psychology; Presses Universitaries De France: Oxford, UK, 1958; p. 222. [Google Scholar]
- Smith, A. Symbol Digit Modalities Test; Western Psychological Services: Los Angeles, CA, USA, 1973. [Google Scholar]
- Brodaty, H.; Moore, C.M. The Clock Drawing Test for dementia of the Alzheimer’s type: A comparison of three scoring methods in a memory disorders clinic. Int. J. Geriatr. Psychiatry 1997, 12, 619–627. [Google Scholar] [CrossRef]
- Bosscher, R.J.; Koning, H.; Van Meurs, R. Reliability and validity of the Beck Depression Inventory in a Dutch college population. Psychol. Rep. 1986, 58, 696–698. [Google Scholar] [CrossRef]
- Yan, C.-G.; Zang, Y. DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI. Front. Syst. Neurosci. 2010, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Kesler, S.R. Multivariate pattern analysis of FMRI in breast cancer survivors and healthy women. J. Int. Neuropsychol. Soc. 2014, 20, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesler, S.R.; Petersen, M.L.; Rao, V.; Harrison, R.A.; Palesh, O. Functional connectome biotypes of chemotherapy-related cognitive impairment. J. Cancer Surviv. 2020, 14, 483–493. [Google Scholar] [CrossRef]
- Shen, X.; Finn, E.S.; Scheinost, D.; Rosenberg, M.D.; Chun, M.M.; Papademetris, X.; Constable, R.T. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 2017, 12, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.C.; Lin, T.Y.; Yeh, D.C.; Chai, J.W.; Weng, J.C. Predicting chemo-brain in breast cancer survivors using multiple MRI features and machine-learning. Magn. Reson. Med. 2019, 81, 3304–3313. [Google Scholar] [CrossRef]
- Chen, V.C.; Lin, T.Y.; Yeh, D.C.; Chai, J.W.; Weng, J.C. Functional and Structural Connectome Features for Machine Learning Chemo-Brain Prediction in Women Treated for Breast Cancer with Chemotherapy. Brain Sci. 2020, 10, 851. [Google Scholar] [CrossRef]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Anticevic, A.; Cole, M.W.; Murray, J.D.; Corlett, P.R.; Wang, X.J.; Krystal, J.H. The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 2012, 16, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Tuluhong, D.; Shi, Z.; Zheng, L.J.; Chen, T.; Lu, G.M.; Wang, S.; Zhang, L.J. Postchemotherapy hippocampal functional connectivity patterns in patients with breast cancer: A longitudinal resting state functional MR imaging study. Brain Imaging Behav. 2020, 14, 1456–1467. [Google Scholar] [CrossRef]
- Johnson, M.H. Subcortical face processing. Nat. Rev. Neurosci. 2005, 6, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Utter, A.A.; Basso, M.A. The basal ganglia: An overview of circuits and function. Neurosci. Biobehav. Rev. 2008, 32, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C.; Kringelbach, M.L. Pleasure systems in the brain. Neuron 2015, 86, 646–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickart, K.C.; Wright, C.I.; Dautoff, R.J.; Dickerson, B.C.; Barrett, L.F. Amygdala volume and social network size in humans. Nat. Neurosci. 2011, 14, 163–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.L.; Kahn, I.; Snyder, A.Z.; Raichle, M.E.; Buckner, R.L. Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity. J. Neurophysiol. 2008, 100, 3328–3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, H.; Li, J.; Hu, S.; He, X.; Partridge, S.C.; Ren, J.; Bian, Y.; Yu, Y.; Qiu, B. Long-term cognitive impairment of breast cancer patients after chemotherapy: A functional MRI study. Eur. J. Radiol. 2016, 85, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.C.; Lin, K.Y.; Tsai, Y.H.; Weng, J.C. Connectome analysis of brain functional network alterations in breast cancer survivors with and without chemotherapy. PLoS ONE 2020, 15, e0232548. [Google Scholar] [CrossRef]
- Dosenbach, N.U.; Fair, D.A.; Miezin, F.M.; Cohen, A.L.; Wenger, K.K.; Dosenbach, R.A.; Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E.; et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 11073–11078. [Google Scholar] [CrossRef] [Green Version]
- Sridharan, D.; Levitin, D.J.; Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. USA 2008, 105, 12569–12574. [Google Scholar] [CrossRef] [Green Version]
- Pergolizzi, D.; Root, J.C.; Pan, H.; Silbersweig, D.; Stern, E.; Passik, S.D.; Ahles, T.A. Episodic memory for visual scenes suggests compensatory brain activity in breast cancer patients: A prospective longitudinal fMRI study. Brain Imaging Behav. 2019, 13, 1674–1688. [Google Scholar] [CrossRef]
- Ahles, T.A.; Root, J.C.; Ryan, E.L. Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J. Clin. Oncol. 2012, 30, 3675–3686. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.T.; Foo, Y.L.; Shwe, M.; Tan, Y.P.; Fan, G.; Yong, W.S.; Madhukumar, P.; Ooi, W.S.; Chay, W.Y.; Dent, R.A.; et al. Minimal clinically important difference (MCID) for the functional assessment of cancer therapy: Cognitive function (FACT-Cog) in breast cancer patients. J. Clin. Epidemiol. 2014, 67, 811–820. [Google Scholar] [CrossRef] [PubMed]
SCC (N = 40) | BC (N = 49) | HC (N = 34) | p Values | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Age (years) | 47.85 | 6.87 | 46.98 | 6.64 | 46.38 | 9.88 | 0.712 |
Education (years) | 4.60 | 3.63 | 5.58 | 3.86 | 5.74 | 3.12 | 0.317 |
Stage of tumor (I, II, III, IV) | 0, 24, 15, 1 | 8, 27, 11, 3 | |||||
From the start of chemotherapy (days) | 205.21 | 272.17 | |||||
Head motion (mm) | 0.11 | 0.05 | 0.10 | 0.04 | 0.10 | 0.05 | 0.585 |
Beck Depression Inventory scores | 14.63 | 7.91 | 12.04 | 9.50 | 0.173 | ||
FACT-Cog total scores | 95.89 | 16.44 | 106.94 | 10.95 | <0.001 | ||
Perceived cognitive impairment | 53.13 | 9.74 | 60.79 | 6.39 | <0.001 | ||
Quality of life | 12.23 | 3.02 | 13.31 | 3.40 | 0.120 | ||
Comments from others | 14.13 | 2.63 | 15.42 | 1.03 | 0.002 | ||
Perceived cognitive abilities | 16.41 | 3.66 | 17.42 | 3.80 | 0.210 | ||
Montreal Cognitive Assessment scores | 20.83 | 4.52 | 20.51 | 4.44 | 0.742 | ||
Trail making test—A (s) | 36.28 | 57.23 | 20.40 | 21.04 | 0.163 | ||
Trail making test—B (s) | 198.10 | 89.21 | 186.66 | 84.47 | 0.638 | ||
CWT—word test (s) | 31.16 | 18.29 | 28.95 | 11.66 | 0.525 | ||
CWT—color test (s) | 40.22 | 9.19 | 41.09 | 14.49 | 0.766 | ||
CWT—color-word test (s) | 78.69 | 20.69 | 74.57 | 23.06 | 0.425 | ||
AVLT—immediate recall | 40.23 | 12.37 | 40.45 | 11.14 | 0.944 | ||
AVLT—delayed recall | 9.88 | 3.56 | 9.16 | 3.03 | 0.311 | ||
Clock drawing test | 19.08 | 6.15 | 20.72 | 7.84 | 0.284 | ||
Symbol digital modalities test | 29.79 | 14.42 | 32.79 | 14.78 | 0.344 |
ID | Features | Brain Network | SCC (N = 40) | BC (N = 49) | p Values | Weight | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
1 | Pallidum_R–Angular_R | Subcortical-DMN | 0.222 | 0.179 | 0.115 | 0.158 | 0.004 | 5.629 |
2 | Temporal_Mid_R–Cingulum_Post_L | DMN-DMN | 0.467 | 0.271 | 0.602 | 0.189 | 0.007 | −3.573 |
3 | Insula_R–Frontal_Inf_Tri_R | CON-SN | 0.439 | 0.233 | 0.560 | 0.188 | 0.008 | −2.735 |
4 | Pallidum_L–Precuneus_L | Subcortical-DMN | 0.295 | 0.191 | 0.295 | 0.191 | 0.006 | 2.221 |
5 | Pallidum_L–Cingulum_Post_R | Subcortical-DMN | 0.264 | 0.166 | 0.15 | 0.158 | 0.001 | 2.159 |
6 | Cingulum_Post_L–Frontal_Inf_Tri_R | DMN-SN | 0.154 | 0.227 | 0.023 | 0.228 | 0.008 | 2.144 |
7 | Putamen_L–Frontal_Inf_Orb_L | Subcortical-Other regions | 0.337 | 0.208 | 0.44 | 0.143 | 0.007 | −1.888 |
8 | Parietal_Inf_L–ParaHippocampal_L | FPCN-Other regions | 0.156 | 0.229 | 0.287 | 0.167 | 0.002 | −1.867 |
9 | Thalamus_L–Rectus_R | Subcortical-Other regions | 0.125 | 0.203 | 0.229 | 0.160 | 0.008 | −1.433 |
10 | Angular_L–Olfactory_L | DMN-Subcortical | 0.145 | 0.210 | 0.281 | 0.224 | 0.004 | −1.284 |
11 | Temporal_Inf_R–Fusiform_L | DMN-Other regions | 0.709 | 0.296 | 0.864 | 0.217 | 0.005 | −1.150 |
12 | Insula_R–Insula_L | CON-CON | 1.134 | 0.215 | 1.261 | 0.232 | 0.009 | −1.063 |
13 | ParaHippocampal_L–Rectus_L | Other regions-Other regions | 0.401 | 0.264 | 0.543 | 0.197 | 0.005 | −1.027 |
14 | Parietal_Inf_L–Frontal_Sup_Orb_R | FPCN-Other regions | 0.293 | 0.191 | 0.410 | 0.162 | 0.002 | −0.993 |
15 | Temporal_Mid_R–Precuneus_L | DMN-DMN | 0.557 | 0.282 | 0.688 | 0.183 | <0.010 | −0.918 |
16 | SupraMarginal_R–Insula_R | AN-CON | 0.593 | 0.241 | 0.744 | 0.219 | 0.003 | −0.880 |
17 | Cingulum_Post_L–Frontal_Sup_L | DMN-DMN | 0.591 | 0.202 | 0.712 | 0.224 | <0.010 | −0.690 |
18 | Parietal_Inf_L–Frontal_Sup_Orb_L | FPCN-Other regions | 0.352 | 0.202 | 0.463 | 0.194 | 0.009 | 0.678 |
19 | Temporal_Mid_R–Frontal_Mid_Orb_R | DMN-DMN | 0.447 | 0.229 | 0.588 | 0.184 | 0.002 | −0.526 |
20 | Pallidum_R–Cingulum_Post_L | Subcortical-DMN | 0.245 | 0.184 | 0.144 | 0.159 | 0.007 | 0.481 |
21 | SupraMarginal_L–Insula_R | AN-CON | 0.521 | 0.246 | 0.66 | 0.209 | 0.005 | 0.377 |
22 | Occipital_Mid_L–Olfactory_L | VN-Subcortical | 0.301 | 0.256 | 0.439 | 0.187 | 0.004 | −0.342 |
23 | Putamen_L–Frontal_Inf_Orb_R | Subcortical-AN | 0.302 | 0.194 | 0.409 | 0.154 | 0.005 | −0.337 |
24 | Temporal_Mid_L–Frontal_Sup_L | DMN-DMN | 0.637 | 0.282 | 0.791 | 0.216 | 0.005 | 0.243 |
25 | Occipital_Inf_R–Frontal_Sup_Medial_L | VN-DMN | 0.332 | 0.280 | 0.482 | 0.192 | 0.004 | 0.151 |
26 | zALFF of Frontal_Mid_R | FPCN | −0.052 | 0.149 | 0.048 | 0.166 | 0.004 | −1.345 |
27 | zALFF of Frontal_Mid_L | FPCN | −0.022 | 0.170 | 0.079 | 0.185 | 0.009 | 1.064 |
28 | zALFF of Cingulum_Mid_R | SN | −0.081 | 0.169 | 0.019 | 0.178 | 0.008 | −0.965 |
29 | zALFF of Frontal_Inf_Oper_R | FPCN | −0.209 | 0.123 | −0.116 | 0.132 | 0.001 | −0.781 |
30 | zALFF of Frontal_Inf_Tri_R | SN | −0.242 | 0.118 | −0.156 | 0.115 | 0.001 | 0.265 |
31 | zALFF of Cingulum_Post_L | DMN | 0.406 | 0.369 | 0.664 | 0.461 | 0.005 | 0.260 |
32 | zfALFF of Occipital_Mid_L | VN | 0.894 | 0.371 | 0.69 | 0.316 | 0.006 | 3.148 |
33 | zfALFF of Occipital_Mid_R | VN | 0.927 | 0.367 | 0.717 | 0.376 | 0.009 | 0.389 |
34 | zReHo of Occipital_Sup_R | VN | 0.586 | 0.300 | 0.412 | 0.311 | 0.009 | −2.314 |
35 | zReHo of Caudate_R | Subcortical | −0.307 | 0.239 | −0.109 | 0.253 | <0.001 | −1.966 |
36 | zReHo of Cingulum_Mid_R | SN | 0.227 | 0.150 | 0.342 | 0.156 | 0.001 | −1.272 |
37 | zReHo of Cingulum_Ant_R | DMN | −0.004 | 0.188 | 0.110 | 0.211 | <0.010 | −1.158 |
38 | zVMHC of Insula_R | CON | 0.414 | 0.122 | 0.485 | 0.130 | <0.010 | −0.542 |
ID | Features | Brain Network | SCC (N = 40) | HC (N = 34) | p Values | Weight | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
1 | Cingulum_Ant_R–Frontal_Mid_Orb_R | DMN–DMN | 0.607 | 0.260 | 0.783 | 0.263 | 0.005 | −3.121 |
2 | Temporal_Sup_L–Insula_L | AN–CON | 0.822 | 0.202 | 0.650 | 0.246 | 0.001 | 2.750 |
3 | Temporal_Pole_Sup_R–ParaHippocampal_R | DMN–Other regions | 0.653 | 0.215 | 0.491 | 0.224 | 0.002 | 2.677 |
4 | Cingulum_Ant_R–Frontal_Sup_Medial_R | DMN–DMN | 0.756 | 0.171 | 0.922 | 0.203 | <0.001 | −2.285 |
5 | Temporal_Sup_R–Insula_L | VAN–CON | 0.604 | 0.211 | 0.457 | 0.253 | 0.008 | 1.639 |
6 | Frontal_Mid_Orb_L–Frontal_Sup_Orb_R | DMN–Other regions | 0.852 | 0.326 | 0.774 | 0.303 | 0.008 | 1.233 |
7 | Temporal_Pole_Sup_L–ParaHippocampal_R | DMN–Other regions | 0.606 | 0.254 | 0.430 | 0.248 | 0.004 | 0.004 |
8 | zALFF of Frontal_Inf_Oper_R | FPCN | −0.209 | 0.123 | 0.080 | 0.189 | 0.001 | −3.947 |
9 | zALFF of Frontal_Inf_Oper_L | FPCN | −0.162 | 0.129 | 0.010 | 0.223 | <0.001 | 0.633 |
10 | zfALFF of Frontal_Inf_Tri_L | FPCN | 0.166 | 0.223 | 0.327 | 0.241 | 0.004 | −3.043 |
11 | zfALFF of Insula_L | CON | 0.220 | 0.232 | 0.383 | 0.264 | 0.006 | −1.225 |
12 | zfALFF of Temporal_Pole_Sup_R | DMN | 0.471 | 0.236 | −0.314 | 0.270 | 0.009 | 1.139 |
13 | zfALFF of Frontal_Inf_Oper_L | FPCN | 0.075 | 0.367 | 0.360 | 0.456 | 0.004 | −0.546 |
14 | zReHo of Frontal_Mid_R | FPCN | −0.446 | 0.250 | −0.262 | 0.196 | 0.001 | −3.864 |
15 | zReHo of Insula_L | CON | −0.401 | 0.172 | −0.279 | 0.179 | 0.004 | −1.580 |
16 | zReHo of Rolandic_Oper_L | AN | 0.369 | 0.182 | 0.528 | 0.188 | <0.001 | −0.434 |
17 | zDC of Cingulum_Ant_R | DMN | −0.527 | 0.110 | −0.418 | 0.148 | 0.001 | −3.346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhu, Y.; Wu, L.; Zhuang, Y.; Zeng, J.; Zhou, F. Classification of Chemotherapy-Related Subjective Cognitive Complaints in Breast Cancer Using Brain Functional Connectivity and Activity: A Machine Learning Analysis. J. Clin. Med. 2022, 11, 2267. https://doi.org/10.3390/jcm11082267
Wang L, Zhu Y, Wu L, Zhuang Y, Zeng J, Zhou F. Classification of Chemotherapy-Related Subjective Cognitive Complaints in Breast Cancer Using Brain Functional Connectivity and Activity: A Machine Learning Analysis. Journal of Clinical Medicine. 2022; 11(8):2267. https://doi.org/10.3390/jcm11082267
Chicago/Turabian StyleWang, Lei, Yanyan Zhu, Lin Wu, Ying Zhuang, Jinsheng Zeng, and Fuqing Zhou. 2022. "Classification of Chemotherapy-Related Subjective Cognitive Complaints in Breast Cancer Using Brain Functional Connectivity and Activity: A Machine Learning Analysis" Journal of Clinical Medicine 11, no. 8: 2267. https://doi.org/10.3390/jcm11082267
APA StyleWang, L., Zhu, Y., Wu, L., Zhuang, Y., Zeng, J., & Zhou, F. (2022). Classification of Chemotherapy-Related Subjective Cognitive Complaints in Breast Cancer Using Brain Functional Connectivity and Activity: A Machine Learning Analysis. Journal of Clinical Medicine, 11(8), 2267. https://doi.org/10.3390/jcm11082267