Baseline Pro-Inflammatory Cytokine Levels Moderate Psychological Inflexibility in Behavioral Treatment for Chronic Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Procedure
2.2. Self-Reportsed Items and Questionnaires
2.2.1. Pain Interference
2.2.2. Pain Intensity
2.2.3. Psychological Inflexibility
2.2.4. Anxiety and Depressive Symptoms
2.3. Cytokine Analyses
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics, Procedure and Missing Data
3.2. Treatment-Related Effects
3.3. Effect of Inflammation on Treatment Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar] [CrossRef] [PubMed]
- Interagency Pain Research Coordinating Committee. National Pain Strategy: A Comprehensive Population Health-Level Strategy for Pain; National Institutes of Health: Bethesda, MD, USA, 2016. [Google Scholar]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Korff, M.; Scher, A.I.; Helmick, C.; Carter-Pokras, O.; Dodick, D.W.; Goulet, J.; Hamill-Ruth, R.; LeResche, L.; Porter, L.; Tait, R.; et al. United States National Pain Strategy for Population Research: Concepts, Definitions, and Pilot Data. J. Pain 2016, 17, 1068–1080. [Google Scholar] [CrossRef] [Green Version]
- DeVon, H.A.; Piano, M.R.; Rosenfeld, A.G.; Hoppensteadt, D.A. The association of pain with protein inflammatory biomarkers: A review of the literature. Nurs. Res. 2014, 63, 51–62. [Google Scholar] [CrossRef]
- Andres-Rodriguez, L.; Borras, X.; Feliu-Soler, A.; Perez-Aranda, A.; Angarita-Osorio, N.; Moreno-Peral, P.; Montero-Marin, J.; Garcia-Campayo, J.; Carvalho, A.F.; Maes, M.; et al. Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression. Brain Behav. Immun. 2020, 87, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.L.; Lim, M.; Doshi, T.L. Targeting cytokines for treatment of neuropathic pain. Scand. J. Pain 2017, 17, 287–293. [Google Scholar] [CrossRef]
- Khan, A.N.; Jacobsen, H.E.; Khan, J.; Filippi, C.G.; Levine, M.; Lehman, R.A., Jr.; Riew, K.D.; Lenke, L.G.; Chahine, N.O. Inflammatory biomarkers of low back pain and disc degeneration: A review. Ann. N. Y. Acad. Sci. 2017, 1410, 68–84. [Google Scholar] [CrossRef]
- Williams, A.C.C.; Fisher, E.; Hearn, L.; Eccleston, C. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database Syst. Rev. 2020, 8, CD007407. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.; Morley, S. Cognitive-behavioral treatments for chronic pain: What works for whom? Clin. J. Pain 2005, 21, 1–8. [Google Scholar] [CrossRef]
- Hayes, S.C.; Luoma, J.B.; Bond, F.W.; Masuda, A.; Lillis, J. Acceptance and commitment therapy: Model, processes and outcomes. Behav. Res. Ther. 2006, 44, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Kemani, M.K.; Hesser, H.; Olsson, G.L.; Lekander, M.; Wicksell, R.K. Processes of change in Acceptance and Commitment Therapy and Applied Relaxation for long-standing pain. Eur. J. Pain 2016, 20, 521–531. [Google Scholar] [CrossRef] [PubMed]
- Gentili, C.; Rickardsson, J.; Zetterqvist, V.; Simons, L.E.; Lekander, M.; Wicksell, R.K. Psychological Flexibility as a Resilience Factor in Individuals With Chronic Pain. Front. Psychol. 2019, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Wicksell, R.K.; Lekander, M.; Sorjonen, K.; Olsson, G.L. The Psychological Inflexibility in Pain Scale (PIPS)—Statistical properties and model fit of an instrument to assess change processes in pain related disability. Eur. J. Pain 2010, 14, 771.e1–771.e14. [Google Scholar] [CrossRef] [PubMed]
- Wicksell, R.K.; Olsson, G.L.; Hayes, S.C. Psychological flexibility as a mediator of improvement in Acceptance and Commitment Therapy for patients with chronic pain following whiplash. Eur. J. Pain 2010, 14, 1059.e1–1059.e11. [Google Scholar] [CrossRef]
- McCracken, L.M.; Vowles, K.E. Psychological flexibility and traditional pain management strategies in relation to patient functioning with chronic pain: An examination of a revised instrument. J. Pain 2007, 8, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Zetterqvist, V.; Holmstrom, L.; Maathz, P.; Wicksell, R.K. Pain avoidance predicts disability and depressive symptoms three years later in individuals with whiplash complaints. Acta Anaesthesiol. Scand. 2017, 61, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Kemani, M.K.; Zetterqvist, V.; Kanstrup, M.; Holmstrom, L.; Wicksell, R.K. A validation of the pain interference index in adults with long-standing pain. Acta Anaesthesiol. Scand. 2016, 60, 250–258. [Google Scholar] [CrossRef]
- Kemani, M.K.; Olsson, G.L.; Lekander, M.; Hesser, H.; Andersson, E.; Wicksell, R.K. Efficacy and Cost-effectiveness of Acceptance and Commitment Therapy and Applied Relaxation for Longstanding Pain: A Randomized Controlled Trial. Clin. J. Pain 2015, 31, 1004–1016. [Google Scholar] [CrossRef]
- Karshikoff, B.; Tadros, M.A.; Mackey, S.; Zouikr, I. Neuroimmune modulation of pain across the developmental spectrum. Curr. Opin. Behav. Sci. 2019, 28, 85–92. [Google Scholar] [CrossRef]
- Kraynak, T.E.; Marsland, A.L.; Wager, T.D.; Gianaros, P.J. Functional neuroanatomy of peripheral inflammatory physiology: A meta-analysis of human neuroimaging studies. Neurosci. Biobehav. Rev. 2018, 94, 76–92. [Google Scholar] [CrossRef]
- Lasselin, J.; Lekander, M.; Axelsson, J.; Karshikoff, B. Sex differences in how inflammation affects behavior: What we can learn from experimental inflammatory models in humans. Front. Neuroendocrinol. 2018, 50, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Schedlowski, M.; Karshikoff, B.; Engler, H.; Lekander, M.; Konsman, J.P. Comparison of bacterial lipopolysaccharide-induced sickness behavior in rodents and humans: Relevance for symptoms of anxiety and depression. Neurosci. Biobehav. Rev. 2020, 115, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Osimo, E.F.; Pillinger, T.; Rodriguez, I.M.; Khandaker, G.M.; Pariante, C.M.; Howes, O.D. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5166 patients and 5083 controls. Brain Behav. Immun. 2020, 87, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Kemani, M.K.; Kanstrup, M.; Olsson, G.L.; Axelsson, J.; Andreasson, A.; Lekander, M.; Wicksell, R.K. Low-grade inflammation may moderate the effect of behavioral treatment for chronic pain in adults. J. Behav. Med. 2016, 39, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, L.A.; Torre, J.P.; Papadopoulos, A.S.; Poon, L.; Juruena, M.F.; Markopoulou, K.; Cleare, A.J.; Pariante, C.M. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J. Affect. Disord. 2012, 148, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Haroon, E.; Daguanno, A.W.; Woolwine, B.J.; Goldsmith, D.R.; Baer, W.M.; Wommack, E.C.; Felger, J.C.; Miller, A.H. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 2018, 95, 43–49. [Google Scholar] [CrossRef]
- Jeng, J.S.; Li, C.T.; Chen, M.H.; Lin, W.C.; Bai, Y.M.; Tsai, S.J.; Su, T.P.; Chang, W.H.; Sung, Y.J. Repeated Low-Grade Infections Predict Antidepressant-Resistant Depression: A Nationwide Population-Based Cohort Study. J. Clin. Psychiatry 2018, 79, 17454. [Google Scholar] [CrossRef]
- Andres-Rodriguez, L.; Borras, X.; Feliu-Soler, A.; Perez-Aranda, A.; Rozadilla-Sacanell, A.; Montero-Marin, J.; Maes, M.; Luciano, J.V. Immune-inflammatory pathways and clinical changes in fibromyalgia patients treated with Mindfulness-Based Stress Reduction (MBSR): A randomized, controlled clinical trial. Brain Behav. Immun. 2019, 80, 109–119. [Google Scholar] [CrossRef]
- O’Toole, M.S.; Bovbjerg, D.H.; Renna, M.E.; Lekander, M.; Mennin, D.S.; Zachariae, R. Effects of psychological interventions on systemic levels of inflammatory biomarkers in humans: A systematic review and meta-analysis. Brain Behav. Immun. 2018, 74, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Rickardsson, J.; Gentili, C.; Holmstrom, L.; Zetterqvist, V.; Andersson, E.; Persson, J.; Lekander, M.; Ljotsson, B.; Wicksell, R.K. Internet-delivered acceptance and commitment therapy as microlearning for chronic pain: A randomized controlled trial with 1-year follow-up. Eur. J. Pain 2021, 25, 1012–1030. [Google Scholar] [CrossRef]
- Wicksell, R.K.; Renofalt, J.; Olsson, G.L.; Bond, F.W.; Melin, L. Avoidance and cognitive fusion--central components in pain related disability? Development and preliminary validation of the Psychological Inflexibility in Pain Scale (PIPS). Eur. J. Pain 2008, 12, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Lowe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9—Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Schafer, J.L.; Graham, J.W. Missing data: Our view of the state of the art. Psychol. Methods 2002, 7, 147–177. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 10 November 2021).
- Yoshida, K. Tableone: Create “Table 1” to Describe Baseline Characteristics. R Package Version 0.10.0. 2019. Available online: https://cran.r-project.org/package=tableone (accessed on 10 November 2021).
- Gentili, C.; Zetterqvist, V.; Rickardsson, J.; Holmstrom, L.; Simons, L.E.; Wicksell, R.K. ACTsmart—Development and feasibility of digital Acceptance and Commitment Therapy for adults with chronic pain. NPJ Digit. Med. 2020, 3, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentili, C.; Zetterqvist, V.; Rickardsson, J.; Holmstrom, L.; Simons, L.E.; Wicksell, R.K. ACTsmart: Guided Smartphone-Delivered Acceptance and Commitment Therapy for Chronic Pain-A Pilot Trial. Pain Med 2020, 22, 315–328. [Google Scholar] [CrossRef]
- Holmberg, J.; Kemani, M.K.; Holmstrom, L.; Ost, L.G.; Wicksell, R.K. Psychological Flexibility and Its Relationship to Distress and Work Engagement Among Intensive Care Medical Staff. Front. Psychol. 2020, 11, 603986. [Google Scholar] [CrossRef]
- Rickardsson, J.; Zetterqvist, V.; Gentili, C.; Andersson, E.; Holmstrom, L.; Lekander, M.; Persson, M.; Persson, J.; Ljotsson, B.; Wicksell, R.K. Internet-delivered acceptance and commitment therapy (iACT) for chronic pain-feasibility and preliminary effects in clinical and self-referred patients. Mhealth 2020, 6, 27. [Google Scholar] [CrossRef]
- Whiting, D.L.; Deane, F.P.; Simpson, G.K.; McLeod, H.J.; Ciarrochi, J. Cognitive and psychological flexibility after a traumatic brain injury and the implications for treatment in acceptance-based therapies: A conceptual review. Neuropsychol. Rehabil. 2017, 27, 263–299. [Google Scholar] [CrossRef] [Green Version]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P. Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia 1994, 5, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Sahakian, B.J.; Owen, A.M. Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. J. R. Soc. Med. 1992, 85, 399–402. [Google Scholar] [PubMed]
- Corrigan, J.D.; Hinkeldey, N.S. Relationships between parts A and B of the Trail Making Test. J. Clin. Psychol. 1987, 43, 402–409. [Google Scholar] [CrossRef]
- Gaudino, E.A.; Geisler, M.W.; Squires, N.K. Construct validity in the Trail Making Test: What makes Part B harder? J. Clin. Exp. Neuropsychol. 1995, 17, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Lasselin, J.; Magne, E.; Beau, C.; Aubert, A.; Dexpert, S.; Carrez, J.; Laye, S.; Forestier, D.; Ledaguenel, P.; Capuron, L. Low-grade inflammation is a major contributor of impaired attentional set shifting in obese subjects. Brain Behav. Immun. 2016, 58, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Mangiafico, R.A.; Sarnataro, F.; Mangiafico, M.; Fiore, C.E. Impaired cognitive performance in asymptomatic peripheral arterial disease: Relation to C-reactive protein and D-dimer levels. Age Ageing 2006, 35, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Pranckeviciene, A.; Deltuva, V.P.; Tamasauskas, A.; Zegliene, J.; Bunevicius, A. Clinical and Biological Correlates of Preoperative Cognitive Functioning of Glioma and Meningioma Patients. BioMed Res. Int. 2020, 2020, 2054859. [Google Scholar] [CrossRef]
- Marioni, R.E.; Stewart, M.C.; Murray, G.D.; Deary, I.J.; Fowkes, F.G.; Lowe, G.D.; Rumley, A.; Price, J.F. Peripheral levels of fibrinogen, C-reactive protein, and plasma viscosity predict future cognitive decline in individuals without dementia. Psychosom. Med. 2009, 71, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Lasselin, J.; Treadway, M.T.; Lacourt, T.E.; Soop, A.; Olsson, M.J.; Karshikoff, B.; Paues-Goranson, S.; Axelsson, J.; Dantzer, R.; Lekander, M. Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: A Randomized Trial. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2017, 42, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Vichaya, E.G.; Hunt, S.C.; Dantzer, R. Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2014, 39, 2884–2890. [Google Scholar] [CrossRef] [Green Version]
- Vichaya, E.G.; Laumet, G.; Christian, D.L.; Grossberg, A.J.; Estrada, D.J.; Heijnen, C.J.; Kavelaars, A.; Robert, D. Motivational changes that develop in a mouse model of inflammation-induced depression are independent of indoleamine 2,3 dioxygenase. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2018, 44, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Vichaya, E.G.; Dantzer, R. Inflammation-induced motivational changes: Perspective gained by evaluating positive and negative valence systems. Curr. Opin. Behav. Sci. 2018, 22, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Mkrtchian, A.; Aylward, J.; Dayan, P.; Roiser, J.P.; Robinson, O.J. Modeling Avoidance in Mood and Anxiety Disorders Using Reinforcement Learning. Biol. Psychiatry 2017, 82, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, M.; Klawonn, A.M.; Jaarola, M.; Engblom, D. Interferon-ɣ mediated signaling in the brain endothelium is critical for inflammation-induced aversion. Brain Behav. Immun. 2018, 67, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Klawonn, A.M.; Nilsson, A.; Singh, A.K.; Zajdel, J.; Wilhelms, D.B.; Lazarus, M.; Lofberg, A.; Jaarola, M.; Kugelberg, U.O.; et al. Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice. J. Clin. Investig. 2016, 126, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Niraula, A.; Witcher, K.G.; Sheridan, J.F.; Godbout, J.P. Interleukin-6 Induced by Social Stress Promotes a Unique Transcriptional Signature in the Monocytes That Facilitate Anxiety. Biol. Psychiatry 2019, 85, 679–689. [Google Scholar] [CrossRef]
- Kabadi, R.; Kouya, F.; Cohen, H.W.; Banik, R.K. Spontaneous pain-like behaviors are more sensitive to morphine and buprenorphine than mechanically evoked behaviors in a rat model of acute postoperative pain. Anesth. Analg. 2015, 120, 472–478. [Google Scholar] [CrossRef]
- Paul, A.K.; Gueven, N.; Dietis, N. Profiling the Effects of Repetitive Morphine Administration on Motor Behavior in Rats. Molecules 2021, 26, 4355. [Google Scholar] [CrossRef]
Variables | Means/Frequencies | SD/Range | N |
---|---|---|---|
Age | 51.91 | 14.99 | 78 |
BMI | 25.40 | 4.55 | 78 |
Pain duration (years) | 16.08 | 13.37 | 77 |
Medicine in past two weeks | 76 (97.44%) | 78 |
Variables | Pre- Treatment | Post-Treatment | N Pre | N Post | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Pain interference (PII) | 20.21 | 8.58 | 15.27 | 8.75 | 78 | 59 |
Pain intensity (max pain) | 7.50 | 1.75 | 6.76 | 2.28 | 78 | 59 |
Psychological inflexibility (PIPS) | 51.36 | 13.27 | 42.76 | 14.48 | 78 | 59 |
Anxiety (GAD-7) | 6.10 | 4.40 | 4.88 | 3.63 | 73 | 58 |
Depression (PHQ-9) | 9.07 | 5.24 | 6.93 | 4.68 | 73 | 58 |
IL-6 | 2.57 | 0.78 | 2.62 | 0.74 | 78 | 51 |
TNF-a | 2.73 | 1.17 | 2.72 | 1.12 | 78 | 51 |
95% Confidence Interval | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Parameter | β | Std. Error | df | P | Lower Bound | Upper Bound |
PII | Intercept | 23.678 | 3.891 | 72.452 | 0.000 | 15.923 | 31.433 |
Age | −0.106 | 0.069 | 70.778 | 0.128 | −0.244 | 0.031 | |
Gender | −0.105 | 2.158 | 70.755 | 0.961 | −4.409 | 4.200 | |
BMI | 0.072 | 0.062 | 60.629 | 0.249 | −0.052 | 0.196 | |
Time | −4.729 | 1.258 | 51.268 | 0.000 | −7.253 | −2.205 | |
Pain intensity | Intercept | 6.720 | 0.829 | 73.144 | 0.000 | 5.068 | 8.373 |
Age | −0.006 | 0.015 | 72.466 | 0.674 | −0.036 | 0.023 | |
Gender | 0.912 | 0.460 | 71.332 | 0.051 | −0.005 | 1.830 | |
BMI | 0.015 | 0.013 | 64.723 | 0.274 | −0.012 | 0.042 | |
Time | −0.419 | 0.233 | 51.486 | 0.078 | −0.887 | 0.049 | |
PIPS | Intercept | 63.528 | 5.711 | 72.444 | 0.000 | 52.144 | 74.911 |
Age | −0.203 | 0.101 | 70.687 | 0.049 | −0.405 | −0.001 | |
Gender | −3.623 | 3.167 | 70.671 | 0.257 | −9.939 | 2.693 | |
BMI | 0.005 | 0.091 | 60.169 | 0.952 | −0.176 | 0.187 | |
Time | −7.166 | 1.887 | 51.975 | 0.000 | −10.953 | −3.380 | |
IL-6 | Intercept | 1.033 | 0.140 | 71.366 | 0.000 | 0.754 | 1.312 |
Age | −0.002 | 0.002 | 71.491 | 0.450 | −0.007 | 0.003 | |
Gender | −0.018 | 0.078 | 70.112 | 0.817 | −0.174 | 0.138 | |
BMI | −0.002 | 0.002 | 66.104 | 0.422 | −0.007 | 0.003 | |
Time | 0.043 | 0.030 | 45.187 | 0.160 | −0.018 | 0.104 | |
TNF-α | Intercept | 0.959 | 0.135 | 73.237 | 0.000 | 0.690 | 1.229 |
Age | −0.001 | 0.002 | 73.293 | 0.646 | −0.006 | 0.004 | |
Gender | 0.061 | 0.076 | 72.909 | 0.426 | −0.090 | 0.212 | |
BMI | 0.000 | 0.002 | 71.764 | 0.974 | −0.004 | 0.005 | |
Time | 0.003 | 0.015 | 43.533 | 0.840 | −0.028 | 0.034 |
95% Confidence Interval | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Parameter | β | Std. Error | df | p | Lower Bound | Upper Bound |
PII | Intercept | −0.379 | 4.296 | 80.712 | 0.930 | −8.927 | 8.169 |
Age | −0.029 | 0.045 | 67.271 | 0.520 | −0.118 | 0.060 | |
Gender | 1.252 | 1.405 | 71.962 | 0.376 | −1.548 | 4.052 | |
BMI | 0.012 | 0.036 | 50.057 | 0.733 | −0.060 | 0.085 | |
Depression a | 0.834 | 0.163 | 97.585 | 0.000 | 0.511 | 1.157 | |
Anxiety b | 0.281 | 0.166 | 94.363 | 0.094 | −0.048 | 0.611 | |
Pain intensity | 1.056 | 0.331 | 97.810 | 0.002 | 0.400 | 1.713 | |
Medicines | 6.996 | 2.463 | 71.524 | 0.006 | 2.087 | 11.906 | |
Inflammation c | −3.315 | 2.910 | 95.495 | 0.257 | −9.091 | 2.462 | |
Time d | −7.585 | 3.493 | 50.008 | 0.035 | −14.602 | −0.569 | |
Inflammation ∗ Time | 4.536 | 3.529 | 48.656 | 0.205 | −2.556 | 11.629 | |
Pain intensity | Intercept | 3.419 | 1.278 | 81.999 | 0.009 | 0.877 | 5.961 |
Age | −0.002 | 0.014 | 69.288 | 0.896 | −0.029 | 0.026 | |
Gender | 1.413 | 0.410 | 65.916 | 0.001 | 0.594 | 2.231 | |
BMI | 0.007 | 0.011 | 52.907 | 0.528 | −0.015 | 0.030 | |
Depression a | 0.167 | 0.047 | 96.990 | 0.001 | 0.074 | 0.259 | |
Anxiety b | −0.035 | 0.051 | 94.535 | 0.490 | −0.136 | 0.066 | |
Medicines | 1.242 | 0.751 | 73.503 | 0.102 | −0.253 | 2.738 | |
Inflammation c | 0.453 | 0.890 | 95.329 | 0.612 | −1.314 | 2.219 | |
Time d | 0.464 | 1.044 | 50.772 | 0.659 | −1.632 | 2.560 | |
Inflammation ∗ Time | −0.656 | 1.053 | 49.290 | 0.536 | −2.772 | 1.459 | |
PIPS | Intercept | 35.500 | 7.646 | 79.841 | 0.000 | 20.284 | 50.717 |
Age | −0.070 | 0.078 | 63.655 | 0.376 | −0.226 | 0.086 | |
Gender | 0.837 | 2.466 | 67.533 | 0.735 | −4.085 | 5.759 | |
BMI | −0.048 | 0.061 | 43.268 | 0.439 | −0.171 | 0.075 | |
Depression a | 1.141 | 0.301 | 97.853 | 0.000 | 0.543 | 1.738 | |
Anxiety b | 0.370 | 0.301 | 92.076 | 0.223 | −0.229 | 0.968 | |
Pain intensity | −0.545 | 0.605 | 92.909 | 0.370 | −1.746 | 0.657 | |
Medicines | 8.458 | 4.325 | 68.297 | 0.055 | −0.172 | 17.087 | |
Inflammation c | 3.728 | 5.326 | 97.158 | 0.486 | −6.843 | 14.299 | |
Time d | −19.206 | 6.990 | 52.502 | 0.008 | −33.230 | −5.183 | |
Inflammation ∗ Time | 14.624 | 7.080 | 50.630 | 0.044 | 0.409 | 28.840 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karshikoff, B.; Åström, J.; Holmström, L.; Lekander, M.; Kemani, M.K.; Wicksell, R.K. Baseline Pro-Inflammatory Cytokine Levels Moderate Psychological Inflexibility in Behavioral Treatment for Chronic Pain. J. Clin. Med. 2022, 11, 2285. https://doi.org/10.3390/jcm11092285
Karshikoff B, Åström J, Holmström L, Lekander M, Kemani MK, Wicksell RK. Baseline Pro-Inflammatory Cytokine Levels Moderate Psychological Inflexibility in Behavioral Treatment for Chronic Pain. Journal of Clinical Medicine. 2022; 11(9):2285. https://doi.org/10.3390/jcm11092285
Chicago/Turabian StyleKarshikoff, Bianka, Jenny Åström, Linda Holmström, Mats Lekander, Mike K. Kemani, and Rikard K. Wicksell. 2022. "Baseline Pro-Inflammatory Cytokine Levels Moderate Psychological Inflexibility in Behavioral Treatment for Chronic Pain" Journal of Clinical Medicine 11, no. 9: 2285. https://doi.org/10.3390/jcm11092285
APA StyleKarshikoff, B., Åström, J., Holmström, L., Lekander, M., Kemani, M. K., & Wicksell, R. K. (2022). Baseline Pro-Inflammatory Cytokine Levels Moderate Psychological Inflexibility in Behavioral Treatment for Chronic Pain. Journal of Clinical Medicine, 11(9), 2285. https://doi.org/10.3390/jcm11092285