Increased Risk of Refractive Errors and Amblyopia among Children with Ptosis: A Nationwide Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Resource
2.2. Sampled Subjects
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sakol, P.J.; Mannor, G.; Massaro, B.M. Congenital and acquired blepharoptosis. Curr. Opin. Ophthalmol. 1999, 10, 335–339. [Google Scholar] [CrossRef]
- Pavone, P.; Cho, S.Y.; Praticò, A.; Falsaperla, R.; Ruggieri, M.; Jin, D.K. Ptosis in childhood: A clinical sign of several disorders: Case series reports and literature review. Medicine 2018, 97, e12124. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Ptosis: Causes, presentation, and management. Aesthetic Plast. Surg. 2003, 27, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Manera, J.; Luna, S.; Roig, C. Ocular ptosis: Differential diagnosis and treatment. Curr. Opin. Neurol. 2018, 31, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Carballo, S.; Thompson, L. Ptosis. Dis. Mon. DM 2016, 63, 74–79. [Google Scholar] [CrossRef]
- Griepentrog, G.J.; Diehl, N.N.; Mohney, B.G. Incidence and demographics of childhood ptosis. Ophthalmology 2011, 118, 1180–1183. [Google Scholar] [CrossRef] [Green Version]
- Gusek-Schneider, G.-C.; Martus, P. Stimulus deprivation amblyopia in human congenital ptosis: A study of 100 patients. Strabismus 2000, 8, 261–270. [Google Scholar] [CrossRef]
- Srinagesh, V.; Simon, J.W.; Meyer, D.R.; Zobal-Ratner, J. The association of refractive error, strabismus, and amblyopia with congenital ptosis. J. Am. Assoc. Pediatric Ophthalmol. Strabismus 2011, 15, 541–544. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Liu, X.; Lou, L.; Ye, J. Amblyopia, strabismus and refractive errors in congenital ptosis: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 8320. [Google Scholar] [CrossRef]
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Smith, E., III. Spectacle lenses and emmetropization: The role of optical defocus in regulating ocular development. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1998, 75, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Wallman, J.; Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 2004, 43, 447–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, M.; Wong, T.Y. Updates on Myopia: A Clinical Perspective; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kee, C.-S. Astigmatism and its role in emmetropization. Exp. Eye Res. 2013, 114, 89–95. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, D. Amblyopia. Pediatric Clin. 2014, 61, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.M.; Clarke, M.P. Amblyopia. Lancet 2006, 367, 1343–1351. [Google Scholar] [CrossRef]
- Oral, Y.; Ozgur, O.R.; Akcay, L.; Ozbas, M.; Dogan, O.K. Congenital ptosis and amblyopia. J. Pediatric Ophthalmol. Strabismus 2010, 47, 101–104. [Google Scholar] [CrossRef]
- Griepentrog, G.J.; Diehl, N.; Mohney, B.G. Amblyopia in childhood eyelid ptosis. Am. J. Ophthalmol. 2013, 155, 1125–1128.e1. [Google Scholar] [CrossRef] [Green Version]
- Ashby, R.; Ohlendorf, A.; Schaeffel, F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5348–5354. [Google Scholar] [CrossRef] [Green Version]
- Schaeffel, F.; Howland, H.C. Properties of the feedback loops controlling eye growth and refractive state in the chicken. Vis. Res. 1991, 31, 717–734. [Google Scholar] [CrossRef]
- Sivak, J.G. The role of the lens in refractive development of the eye: Animal models of ametropia. Exp. Eye Res. 2008, 87, 3–8. [Google Scholar] [CrossRef]
- Huang, J.; Hung, L.-F.; Ramamirtham, R.; Blasdel, T.L.; Humbird, T.L.; Bockhorst, K.H.; Smith, E.L. Effects of form deprivation on peripheral refractions and ocular shape in infant rhesus monkeys (Macaca mulatta). Investig. Ophthalmol. Vis. Sci. 2009, 50, 4033–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Cui, D.; Yang, X.; Wan, W.; Liao, R.; Trier, K.; Zeng, J. A retrospective study: Form-deprivation myopia in unilateral congenital ptosis. Clin. Exp. Optom. 2012, 95, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Winawer, J.; Wallman, J. Temporal constraints on lens compensation in chicks. Vis. Res. 2002, 42, 2651–2668. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X. Temporal integration of visual signals in lens compensation (a review). Exp. Eye Res. 2013, 114, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-Y.; Wang, J.-X.; Qi, X.-L.; Li, X.; Zhao, S.-Z.; Li, X.-L.; Qian, X.-H.; Wei, N. Effects of congenital ptosis on the refractive development of eye and vision in children. Int. J. Ophthalmol. 2020, 13, 1788. [Google Scholar] [CrossRef]
- Read, S.A.; Collins, M.J.; Carney, L.G. The influence of eyelid morphology on normal corneal shape. Investig. Ophthalmol. Vis. Sci. 2007, 48, 112–119. [Google Scholar] [CrossRef]
- Assadi, F.A.; Narayana, S.; Yadalla, D.; Rajagopalan, J.; Joy, A. Effect of congenital ptosis correction on corneal topography-A prospective study. Indian J. Ophthalmol. 2021, 69, 1527. [Google Scholar]
- McKanna, J.A.; Casagrande, V.A. Reduced lens development in lid-suture myopia. Exp. Eye Res. 1978, 26, 715–723. [Google Scholar] [CrossRef]
- Napper, G.A.; Brennan, N.A.; Barrington, M.; Squires, M.A.; Vessey, G.A.; Vingrys, A.J. The duration of normal visual exposure necessary to prevent form deprivation myopia in chicks. Vis. Res. 1995, 35, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Troilo, D.; Li, T.; Glasser, A.; Howland, H.C. Differences in eye growth and the response to visual deprivation in different strains of chicken. Vis. Res. 1995, 35, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Paik, J.-S.; Kim, S.-A.; Park, S.H.; Yang, S.-W. Refractive error characteristics in patients with congenital blepharoptosis before and after ptosis repair surgery. BMC Ophthalmol. 2016, 16, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savino, G.; Battendieri, R.; Riso, M.; Traina, S.; Poscia, A.; D’Amico, G.; Caporossi, A. Corneal topographic changes after eyelid ptosis surgery. Cornea 2016, 35, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D. Critical period for deprivation amblyopia in children. Trans. Ophthalmol. Soc. United Kingd. 1979, 99, 432–439. [Google Scholar]
- Atkinson, J.; Braddick, O.; French, J. Infant astigmatism: Its disappearance with age. Vis. Res. 1980, 20, 891–893. [Google Scholar] [CrossRef]
- Anderson, R.L.; Baumgartner, S.A. Amblyopia in ptosis. Arch. Ophthalmol. 1980, 98, 1068–1069. [Google Scholar] [CrossRef]
- Merriam, W.W.; Ellis, F.D.; Helveston, E.M. Congenital blepharoptosis, anisometropia, and amblyopia. Am. J. Ophthalmol. 1980, 89, 401–407. [Google Scholar] [CrossRef]
- Hornblass, A.; Kass, L.G.; Ziffer, A.J. Amblyopia in congenital ptosis. Ophthalmic Surg. Lasers Imaging Retin. 1995, 26, 334–337. [Google Scholar] [CrossRef]
- Barrett, B.T.; Bradley, A.; McGraw, P.V. Understanding the neural basis of amblyopia. Neuroscientist 2004, 10, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Boothe, R.G.; Dobson, V.; Teller, D.Y. Postnatal development of vision in human and nonhuman primates. Annu. Rev. Neurosci. 1985, 8, 495–545. [Google Scholar] [CrossRef]
- Wiesel, T.N. Postnatal development of the visual cortex and the influence of environment. Nature 1982, 299, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Dray, J.-P.; Leibovitch, I. Congenital ptosis and amblyopia: A retrospective study of 130 cases. J. Pediatric Ophthalmol. Strabismus 2002, 39, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Hong, H.; Su, Z.; Lou, B.; Pan, C.-W.; Liu, H. Global prevalence of amblyopia and disease burden projections through 2040, a systematic review and meta-analysis. Br. J. Ophthalmol. 2020, 104, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Mazarei, M.; Fard, M.A.; Merat, H.; Roohipoor, R. Associations of refractive amblyopia in a population of Iranian children. J. Optom. 2013, 6, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.-H.; Chen, I.-C.; Yang, Y.-C.; Chen, K.-T. The trends and associated factors of preterm deliveries from 2001 to 2011 in Taiwan. Medicine 2019, 98, e15060. [Google Scholar] [CrossRef]
- Ashrafi, E.; Jamali, S.; Mohammadi, S.F.; Mehdipoor, P. National and sub national prevalence of Amblyopia and its trends from 1990 to 2018 in Iran. J. Optom. 2020, 13, 113–119. [Google Scholar] [CrossRef]
- Garey, L. Structural development of the visual system of man. Hum. Neurobiol. 1984, 3, 75–80. [Google Scholar]
Ptosis | p-Value * | ||
---|---|---|---|
No (N = 7187) | Yes (N = 1799) | ||
n (%) | n (%) | ||
Age, years | 0.95 | ||
≤3 | 4369 (60.79) | 1094 (60.81) | |
3–8 | 1821 (25.34) | 451 (25.07) | |
≥8 | 997 (13.87) | 254 (14.12) | |
Mean (SD) | 3.77 (4.17) | 3.72 (4.20) | 0.6533 |
Sex | 0.95 | ||
Girl | 2863 (39.84) | 718 (39.91) | |
Boy | 4324 (60.16) | 1081 (60.09) | |
Urbanization level † | 0.99 | ||
1 (highest) | 2200 (30.66) | 550 (30.62) | |
2 | 2136 (29.77) | 534 (29.73) | |
3 | 1383 (19.28) | 348 (19.38) | |
4 (lowest) | 1456 (20.29) | 364 (20.27) | |
Parental occupation | 0.99 | ||
White collar | 3560 (61.72) | 890 (61.72) | |
Blue collar | 1196 (20.74) | 299 (20.74) | |
Others ‡ | 1012 (17.55) | 253 (17.55) |
Ptosis | Non-Ptosis | Compared to Control | ||||||
---|---|---|---|---|---|---|---|---|
Outcomes | Events | PY | Rate # | Events | PY | Rate # | Crude HR * (95% CI) | Adjusted HR † (95% CI) |
Astigmatism | 501 | 9362 | 53.51 | 389 | 45,985 | 8.46 | 6.22 (5.45, 7.10) *** | 5.93 (5.16, 6.82) *** |
Myopia | 655 | 9115 | 71.86 | 953 | 43,970 | 21.67 | 3.48 (3.15, 3.85) *** | 3.46 (3.13, 3.83) *** |
Hyperopia | 216 | 10,874 | 19.86 | 119 | 47,107 | 2.53 | 7.77 (6.21, 9.72) *** | 7.60 (5.99, 9.63) *** |
Amblyopia | 309 | 10,339 | 29.89 | 97 | 47,256 | 2.05 | 14.24 (11.33, 17.88) *** | 13.45 (10.60, 17.05) *** |
Variables | Boy | Adjusted HR † (95% CI) | Girl | Adjusted HR † (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ptosis | Ptosis | |||||||||
No | Yes | No | Yes | |||||||
Event | Rate # | Event | Rate # | Event | Rate # | Event | Rate # | |||
Astigmatism | 161 | 8.85 | 215 | 58.84 | 6.36 (5.12, 7.89) *** | 228 | 8.21 | 286 | 50.1 | 5.67 (4.72, 6.81) *** |
Myopia | 384 | 22.05 | 258 | 69.97 | 3.22 (2.74, 3.78) *** | 569 | 21.43 | 397 | 73.14 | 3.63 (3.19, 4.14) *** |
Hyperopia | 49 | 2.62 | 84 | 19.49 | 7.69 (5.29, 11.16) *** | 70 | 2.46 | 132 | 20.11 | 7.53 (5.54, 10.24) *** |
Amblyopia | 44 | 2.35 | 123 | 29.88 | 11.11 (7.79, 15.84) *** | 53 | 1.86 | 186 | 29.89 | 15.59 (11.31, 21.51) *** |
Variables | Age ≤ 3 | Adjusted HR † (95% CI) | Age > 3 | Adjusted HR † (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ptosis | Ptosis | |||||||||
No | Yes | No | Yes | |||||||
Event | Rate # | Event | Rate # | Event | Rate # | Event | Rate # | |||
Astigmatism | 161 | 8.85 | 215 | 58.84 | 6.08 (5.15, 7.17) *** | 228 | 8.21 | 286 | 50.1 | 5.76 (4.46, 7.45) *** |
Myopia | 384 | 22.05 | 258 | 69.97 | 3.14 (2.75, 3.59) *** | 569 | 21.43 | 397 | 73.14 | 3.90 (3.34, 4.56) *** |
Hyperopia | 49 | 2.62 | 84 | 19.49 | 7.03 (5.37, 9.22) *** | 70 | 2.46 | 132 | 20.11 | 10.11 (6.15, 16.62) *** |
Amblyopia | 75 | 2.51 | 240 | 37.42 | 13.75 (10.46, 18.07) *** | 22 | 1.27 | 69 | 17.58 | 13.21 (8.17, 21.37) *** |
Non-Ptosis Children | Ptosis Children | |
---|---|---|
2000 | 0.09 | 5.52 |
2001 | 0.15 | 6.17 |
2002 | 0.23 | 6.52 |
2003 | 0.31 | 7.45 |
2004 | 0.42 | 8.41 |
2005 | 0.53 | 9.08 |
2006 | 0.65 | 9.73 |
2007 | 0.79 | 10.63 |
2008 | 0.92 | 11.34 |
2009 | 1.07 | 11.92 |
2010 | 1.22 | 12.52 |
2011 | 1.38 | 12.93 |
2012 | 1.53 | 13.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsia, N.-Y.; Wen, L.-Y.; Chou, C.-Y.; Lin, C.-L.; Wan, L.; Lin, H.-J. Increased Risk of Refractive Errors and Amblyopia among Children with Ptosis: A Nationwide Population-Based Study. J. Clin. Med. 2022, 11, 2334. https://doi.org/10.3390/jcm11092334
Hsia N-Y, Wen L-Y, Chou C-Y, Lin C-L, Wan L, Lin H-J. Increased Risk of Refractive Errors and Amblyopia among Children with Ptosis: A Nationwide Population-Based Study. Journal of Clinical Medicine. 2022; 11(9):2334. https://doi.org/10.3390/jcm11092334
Chicago/Turabian StyleHsia, Ning-Yi, Li-Yen Wen, Ching-Ying Chou, Cheng-Li Lin, Lei Wan, and Hui-Ju Lin. 2022. "Increased Risk of Refractive Errors and Amblyopia among Children with Ptosis: A Nationwide Population-Based Study" Journal of Clinical Medicine 11, no. 9: 2334. https://doi.org/10.3390/jcm11092334
APA StyleHsia, N. -Y., Wen, L. -Y., Chou, C. -Y., Lin, C. -L., Wan, L., & Lin, H. -J. (2022). Increased Risk of Refractive Errors and Amblyopia among Children with Ptosis: A Nationwide Population-Based Study. Journal of Clinical Medicine, 11(9), 2334. https://doi.org/10.3390/jcm11092334