There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Group
2.2. Anthropometric Measurements
2.3. Sample Collection
2.4. Extraction and Quantification of Fatty Acids
2.5. Statistical Analysis
3. Results
4. Discussion
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelsen, J.R.; Russo, P.; Sullivan, K.E. Early-Onset Inflammatory Bowel Disease. Immunol. Allergy Clin. N. Am. 2019, 39, 63–79. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, B.P.; Ahmed, T.; Ali, T. Inflammatory Bowel Disease: Pathophysiology and Current Therapeutic Approaches. In Gastrointestinal Pharmacology; Greenwood-Van Meerveld, B., Ed.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2017; pp. 115–146. ISBN 978-3-319-56360-2. [Google Scholar]
- Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The Epidemiology of Inflammatory Bowel Disease: East Meets West. J. Gastroenterol. Hepatol. 2020, 35, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A Review of the Diagnosis, Prevention, and Treatment Methods of Inflammatory Bowel Disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Manfredi, M.; Conte, E.; Barberis, E.; Buzzi, A.; Robotti, E.; Caneparo, V.; Cecconi, D.; Brandi, J.; Vanni, E.; Finocchiaro, M.; et al. Integrated Serum Proteins and Fatty Acids Analysis for Putative Biomarker Discovery in Inflammatory Bowel Disease. J. Proteom. 2019, 195, 138–149. [Google Scholar] [CrossRef]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health Implications of High Dietary Omega-6 Polyunsaturated Fatty Acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Shores, D.R.; Binion, D.G.; Freeman, B.A.; Baker, P.R.S. New Insights into the Role of Fatty Acids in the Pathogenesis and Resolution of Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2011, 17, 2192–2204. [Google Scholar] [CrossRef] [Green Version]
- Figler, M.; Gasztonyi, B.; Cseh, J.; Horváth, G.; Kisbenedek, A.G.; Bokor, S.; Decsi, T. Association of n-3 and n-6 long-chain polyunsaturated fatty acids in plasma lipid classes with inflammatory bowel diseases. Br. J. Nutr. 2007, 97, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Vasu, R.; Zhang, H. The Role of Long-Chain Fatty Acids in Inflammatory Bowel Disease. Mediat. Inflamm. 2019, 2019, 8495913. [Google Scholar] [CrossRef]
- Naito, Y.; Ji, X.; Tachibana, S.; Aoki, S.; Furuya, M.; Tazura, Y.; Miyazawa, D.; Harauma, A.; Moriguchi, T.; Nagata, T.; et al. Effects of Arachidonic Acid Intake on Inflammatory Reactions in Dextran Sodium Sulphate-Induced Colitis in Rats. Br. J. Nutr. 2015, 114, 734–745. [Google Scholar] [CrossRef] [Green Version]
- Kułaga, Z.; Różdżyńska-Świątkowska, A.; Grajda, A.; Gurzkowska, B.; Wojtyło, M.; Góźdź, M.; Świąder-Leśniak, A.; Litwin, M. Percentile charts for growth and nutritional status assessment in Polish children and adolescents from birth to 18 year of age. Stand. Med. Pediatr. 2015, 12, 119–135. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Szczuko, M.; Kaczkan, M.; Drozd, A.; Maciejewska, D.; Palma, J.; Owczarzak, A.; Marczuk, N.; Rutkowski, P.; Małgorzewicz, S. Comparison of Fatty Acid Profiles in a Group of Female Patients with Chronic Kidney Diseases (CKD) and Metabolic Syndrome (MetS)–Similar Trends of Changes, Different Pathophysiology. Int. J. Mol. Sci. 2019, 20, 1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczuko, M.; Kotlęga, D.; Palma, J.; Zembroń-Łacny, A.; Tylutka, A.; Gołąb-Janowska, M.; Drozd, A. Lipoxins, RevD1 and 9, 13 HODE as the Most Important Derivatives after an Early Incident of Ischemic Stroke. Sci. Rep. 2020, 10, 12849. [Google Scholar] [CrossRef] [PubMed]
- Chiofalo, B.; Laganà, A.S.; Vaiarelli, A.; La Rosa, V.L.; Rossetti, D.; Palmara, V.; Valenti, G.; Rapisarda, A.M.C.; Granese, R.; Sapia, F.; et al. Do MiRNAs Play a Role in Fetal Growth Restriction? A Fresh Look to a Busy Corner. BioMed Res. Int. 2017, 2017, e6073167. [Google Scholar] [CrossRef]
- Socha, P.; Ryzko, J.; Koletzko, B.; Celinska-Cedro, D.; Woynarowski, M.; Czubkowski, P.; Socha, J. Essential Fatty Acid Depletion in Children with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2005, 40, 573–577. [Google Scholar] [CrossRef]
- Levy, E.; Rizwan, Y.; Thibault, L.; Lepage, G.; Brunet, S.; Bouthillier, L.; Seidman, E. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am. J. Clin. Nutr. 2000, 71, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Trebble, T.M.; Wootton, S.A.; May, A.; Erlewyn-Lajeunesse, M.D.S.; Chakraborty, A.; Mullee, M.A.; Stroud, M.A.; Beattie, R.M. Essential Fatty Acid Status in Paediatric Crohn’s Disease: Relationship with Disease Activity and Nutritional Status. Aliment. Pharmacol. Ther. 2003, 18, 433–442. [Google Scholar] [CrossRef]
- Esteve-Comas, M.; Ramírez, M.; Fernández-Bañares, F.; Abad-Lacruz, A.; Gil, A.; Cabré, E.; González-Huix, F.; Moreno, J.; Humbert, P.; Guilera, M. Plasma Polyunsaturated Fatty Acid Pattern in Active Inflammatory Bowel Disease. Gut 1992, 33, 1365–1369. [Google Scholar] [CrossRef] [Green Version]
- Jacome-Sosa, M.M.; Borthwick, F.; Mangat, R.; Uwiera, R.; Reaney, M.J.; Shen, J.; Quiroga, A.D.; Jacobs, R.L.; Lehner, R.; Proctor, S.D. Diets Enriched in Trans-11 Vaccenic Acid Alleviate Ectopic Lipid Accumulation in a Rat Model of NAFLD and Metabolic Syndrome. J. Nutr. Biochem. 2014, 25, 692–701. [Google Scholar] [CrossRef]
- Maciejewska, D.; Palma, J.; Dec, K.; Skonieczna-Żydecka, K.; Gutowska, I.; Szczuko, M.; Jakubczyk, K.; Stachowska, E. Is the Fatty Acids Profile in Blood a Good Predictor of Liver Changes? Correlation of Fatty Acids Profile with Fatty Acids Content in the Liver. Diagnostics 2019, 9, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacome-Sosa, M.; Vacca, C.; Mangat, R.; Diane, A.; Nelson, R.C.; Reaney, M.J.; Shen, J.; Curtis, J.M.; Vine, D.F.; Field, C.J.; et al. Vaccenic Acid Suppresses Intestinal Inflammation by Increasing Anandamide and Related N-Acylethanolamines in the JCR:LA-Cp Rat. J. Lipid. Res. 2016, 57, 638–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengstermann, S.; Valentini, L.; Schaper, L.; Buning, C.; Koernicke, T.; Maritschnegg, M.; Buhner, S.; Tillinger, W.; Regano, N.; Guglielmi, F.; et al. Altered Status of Antioxidant Vitamins and Fatty Acids in Patients with Inactive Inflammatory Bowel Disease. Clin. Nutr. 2008, 27, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Snodgrass, R.G.; Huang, S.; Namgaladze, D.; Jandali, O.; Shao, T.; Sama, S.; Brüne, B.; Hwang, D.H. Docosahexaenoic Acid and Palmitic Acid Reciprocally Modulate Monocyte Activation in Part through Endoplasmic Reticulum Stress. J. Nutr. Biochem. 2016, 32, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, D.A.; Zhang, K.; Hung, C.; Glasgow, S.; Aruni, A.W.; Unternaehrer, J.; Payne, K.J.; Langridge, W.H.R.; De Leon, M. Palmitic Acid Is a Toll-like Receptor 4 Ligand That Induces Human Dendritic Cell Secretion of IL-1β. PLoS ONE 2017, 12, e0176793. [Google Scholar] [CrossRef]
- Gori, M.; Altomare, A.; Cocca, S.; Solida, E.; Ribolsi, M.; Carotti, S.; Rainer, A.; Francesconi, M.; Morini, S.; Cicala, M.; et al. Palmitic Acid Affects Intestinal Epithelial Barrier Integrity and Permeability In Vitro. Antioxidants 2020, 9, 417. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Postal, B.G.; Demignot, S.; Ribeiro, A.; Osinski, C.; Pais de Barros, J.-P.; Blachnio-Zabielska, A.; Leturque, A.; Rousset, M.; Ferré, P.; et al. Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production. J. Biol. Chem. 2016, 291, 16328–16338. [Google Scholar] [CrossRef] [Green Version]
- Ito, Z.; Uchiyama, K.; Odahara, S.; Takami, S.; Saito, K.; Kobayashi, H.; Koido, S.; Kubota, T.; Ohkusa, T.; Saruta, M. Fatty Acids as Useful Serological Markers for Crohn’s Disease. Dig. Dis. 2018, 36, 209–217. [Google Scholar] [CrossRef]
- Akazawa, Y.; Morisaki, T.; Fukuda, H.; Norimatsu, K.; Shiota, J.; Hashiguchi, K.; Tabuchi, M.; Kitayama, M.; Matsushima, K.; Yamaguchi, N.; et al. Significance of Serum Palmitoleic Acid Levels in Inflammatory Bowel Disease. Sci. Rep. 2021, 11, 16260. [Google Scholar] [CrossRef]
- Scoville, E.A.; Allaman, M.M.; Adams, D.W.; Motley, A.K.; Peyton, S.C.; Ferguson, S.L.; Horst, S.N.; Williams, C.S.; Beaulieu, D.B.; Schwartz, D.A.; et al. Serum Polyunsaturated Fatty Acids Correlate with Serum Cytokines and Clinical Disease Activity in Crohn’s Disease. Sci. Rep. 2019, 9, 2882. [Google Scholar] [CrossRef]
- Geerling, B.J. The Relation between Antioxidant Status and Alterations in Fatty Acid Profile in Patients with Crohn Disease and Controls. Scand. J. Gastroenterol. 1999, 34, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Basson, A.; Trotter, A.; Rodriguez-Palacios, A.; Cominelli, F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front. Immunol. 2016, 7, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Kwon, M.-J.; Huang, S.; Lee, J.Y.; Fukase, K.; Inohara, N.; Hwang, D.H. Differential Modulation of Nods Signaling Pathways by Fatty Acids in Human Colonic Epithelial HCT116 Cells. J. Biol. Chem. 2007, 282, 11618–11628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotlęga, D.; Peda, B.; Palma, J.; Zembroń-Łacny, A.; Gołąb-Janowska, M.; Masztalewicz, M.; Nowacki, P.; Szczuko, M. Free Fatty Acids Are Associated with the Cognitive Functions in Stroke Survivors. Int. J. Environ. Res. Public Health 2021, 18, 6500. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, M.J.; Ortea, I.; Guil-Guerrero, J.L. α-Linolenic and γ-Linolenic Acids Exercise Differential Antitumor Effects on HT-29 Human Colorectal Cancer Cells. Toxicol. Res. 2020, 9, 474–483. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Gong, L. Gamma Linolenic Acid Suppresses Hypoxia-Induced Proliferation and Invasion of Non-Small Cell Lung Cancer Cells by Inhibition of HIF1α. Genes Genom. 2020, 42, 927–935. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, J.; Gong, L. Gamma Linolenic Acid Suppresses Hypoxia-Induced Gastric Cancer Cell Growth and Epithelial-Mesenchymal Transition by Inhibiting the Wnt/b-Catenin Signaling Pathway. Folia Histochem. Cytobiol. 2020, 58, 117–126. [Google Scholar] [CrossRef]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-Linolenic Acid, Dihommo-Gamma Linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-S.; Sun, H.-L.; Lii, C.-K.; Chen, H.-W.; Chen, P.-Y.; Liu, K.-L. Gamma-Linolenic Acid Inhibits Inflammatory Responses by Regulating NF-KappaB and AP-1 Activation in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Inflammation 2010, 33, 46–57. [Google Scholar] [CrossRef]
- Bueno-Hernández, N.; Sixtos-Alonso, M.S.; Milke García, M.D.P.; Yamamoto-Furusho, J.K. Effect of Cis-Palmitoleic Acid Supplementation on Inflammation and Expression of HNF4γ, HNF4α and IL6 in Patients with Ulcerative Colitis. Minerva. Gastroenterol. Dietol. 2017, 63, 257–263. [Google Scholar] [CrossRef]
Parameter | CD n = 33 | UC n = 30 | p-Value | ||
---|---|---|---|---|---|
Girls n = 15 | Boys n = 18 | Girls n = 13 | Boys n = 17 | ||
Age (years) | 13.66 ± 2.67 | 14.15 ± 3.31 | 0.522 | ||
Body mass (kg) | 46.29 ± 18.1 | 53.02 ± 19.4 | 0.159 | ||
Height (m) | 1.54 ± 0.19 | 1.60 ± 0.2 | 0.218 | ||
BMI percentile | 42.16 ± 35.39 | 47.03 ± 37.74 | 0.531 | ||
Body mass percentile | 38.05 ± 34.52 | 46.40 ± 37.50 | 0.246 | ||
PCDAI | 16.04 ± 16.33 | - | - | ||
PUCAI | - | 30 ± 23.36 | - | ||
Duration of disease (months) | 27.71 ± 31.25 | 30.04 ± 23.36 | - | ||
Fecal calprotectin active disease (uq/g) | 2606.68 ± 2504.64 | 2230.07 ± 2113.7 | 0.66 | ||
Fecal calprotectin (uq/g) | 2040.45 ± 2269.53 | 2096.77 ± 2110.49 | 0.94 |
FA% | Avg ± SD CD n = 34 | Avg ± SD UC n = 30 | p-Value |
---|---|---|---|
C12:0 Lauric acid | 0.141 ± 0.101 | 0.141 ± 0.049 | 0.984 |
C13:0 Tridecanoic acid | 0.599 ± 0.179 | 0.600 ± 0.158 | 0.982 |
C14:0 Myristic acid | 1.056 ± 0.215 | 1.059 ± 0.213 | 0.951 |
C14:1 Myristolenic acid | 0.056 ± 0.050 | 0.046 ± 0.056 | 0.465 |
C15:0 Pentadecanoid acid | 0.274 ± 0.043 | 0.256 ± 0.044 | 0.115 |
C16:0 Palmitic acid | 25.932 ± 1.641 | 26.814 ± 2.402 | 0.092 |
C16:1 Palmitoleic acid | 0.790 ± 0.513 | 0.862 ± 0.565 | 0.597 |
C17:0 Heptadecanoid acid | 0.580 ± 0.116 | 0.549 ± 0.127 | 0.309 |
C17:1 cis-10- Heptadecanoid acid | 0.154 ± 0.100 | 0.165 ± 0.122 | 0.702 |
C18:0 Stearic acid | 27.810 ± 3.621 | 27.461 ± 3.176 | 0.687 |
C18:1n9 ct Oleic acid | 12.919 ± 2.298 | 12.692 ± 2.106 | 0.685 |
C18:1 vaccenic acid | 1.224 ± 0.194 | 1.349 ± 0.264 | 0.035 |
C18:2n6c Linoleic acid (cis LA) | 10.054 ± 2.167 | 9.363 ± 2.239 | 0.218 |
C18:3n6 gamma linoleic acid (GLA) | 0.706 ± 2.069 | 1.432 ± 2.768 | 0.240 |
C18:3n3 linolenic acid (ALA) | 0.230 ± 0.118 | 0.190 ± 0.120 | 0.192 |
C20:0 Arachidic acid | 0.471 ± 0.174 | 0.426 ± 0.209 | 0.362 |
C22:1/C20:1 cis11- eicosanic acid | 0.259 ± 0.119 | 0.221 ± 0.123 | 0.214 |
C20:2 cis-11-eicodienoic acid | 0.075 ± 0.092 | 0.051 ± 0.089 | 0.293 |
C20:3n6 dihomo-gamma-linolenic acid (DGLA) | 1.264 ± 0.293 | 1.243 ± 0.279 | 0.772 |
C20:4n6 Arachidonic acid (AA) | 9.340 ± 1.611 | 9.191 ± 1.749 | 0.726 |
C20:5n3 Eicosapentaenoic acid (EPA) | 0.505 ± 0.560 | 0.448 ± 0.148 | 0.587 |
C22:4n6 docosatetraenoic acid (DTA) | 1.673 ± 0.406 | 1.644 ± 0.357 | 0.770 |
C22:5w3 Docosapentaenoic acid (DPA) | 1.376 ± 0.376 | 1.447 ± 0.312 | 0.420 |
C22:6n3 Docosahexaenoic acid (DHA) | 2.512 ± 0.950 | 2.349 ± 0.857 | 0.479 |
Total SFA | 55.410 ± 14.432 | 55.901 ± 14.573 | 0.850 |
Total MUFA | 15.248 ± 5.536 | 15.170 ± 5.424 | 0.970 |
Total PUFA n6 | 23.112 ± 4.565 | 22.924 ± 4.263 | 0.977 |
Total PUFA n3 | 4.623 ± 1.028 | 4.434 ± 0.989 | 0.958 |
Fatty Acids (%) | CD Active | CD Remission | p-Value CD Active vs. CD Remission | UC Active | UC Remission | p-Value UC Active vs. UC Remission | p-Value CD vs. UC Active | p-Value CD vs. UC Remission |
---|---|---|---|---|---|---|---|---|
C12:0 Lauric acid | 0.123 ± 0.118 | 0.149 ± 0.035 | 1.00 | 0.150 ± 0.048 | 0.108 ± 0.040 | 0.041 | 0.970 | 0.357 |
C16:0 Palmitic acid | 25.383 ± 1.811 | 26.17 ± 1.038 | 0.047 | 27.17 ± 2.514 | 25.402 ± 1.177 | 0.082 | 0.128 | 0.957 |
C18:2n6c (cis LA) | 11.364 ± 1.868 | 9.485 ± 2.332 | 0.025 | 9.150 ± 2.126 | 10.213 ± 2.681 | 0.484 | 0.570 | 0.303 |
C18:3n6 (GLA) | 0.889 ± 1.824 | 0.627 ± 2.651 | 0.897 | 1.790 ± 2.999 | 0.000 ± 0.000 | 0.031 | 0.117 | 0.357 |
C13:0 Tridecanoic acid | 0.549 ± 0.177 | 0.621 ± 0.182 | 0.269 | 0.579 ± 0.152 | 0.686 ± 0.165 | 0.140 | 0.379 | 0.093 |
C14:0 Myristic acid | 0.999 ± 0.220 | 1.081 ± 0.202 | 0.185 | 1.063 ± 0.219 | 1.044 ± 0.207 | 0.897 | 0.786 | 0.786 |
C14:1 Myristolenic acid | 0.044 ± 0.051 | 0.061 ± 0.047 | 0.439 | 0.045 ± 0.056 | 0.051 ± 0.059 | 0.795 | 0.307 | 0.745 |
C15:0 Pentadecanoid acid | 0.277 ± 0.044 | 0.272 ± 0.044 | 0.713 | 0.257 ± 0.046 | 0.254 ± 0.038 | 0.856 | 0.244 | 0.416 |
C16:1 Palmitoleic acid | 0.725 ± 0.559 | 0.818 ± 0.408 | 0.768 | 0.935 ± 0.602 | 0.571 ± 0.239 | 0.288 | 0.494 | 0.871 |
C17:0 Heptadecanoid acid | 0.568 ± 0.114 | 0.585 ± 0.124 | 0.581 | 0.531 ± 0.120 | 0.617 ± 0.142 | 0.288 | 0.123 | 0.481 |
C17:1 cis-10- Heptadecanoid acid | 0.150 ± 0.100 | 0.156 ± 0.106 | 0.825 | 0.165 ± 0.128 | 0.164 ± 0.104 | 0.897 | 0.785 | 0.871 |
C18:0 Stearic acid | 26.983 ± 3.486 | 28.17 ± 3.977 | 0.686 | 27.08 ± 3.064 | 28.994 ± 3.435 | 0.223 | 0.260 | 0.175 |
C18:1n9 ct Oleic acid | 12.323 ± 2.602 | 13.18 ± 1.286 | 0.686 | 12.92 ± 2.275 | 11.787 ± 0.841 | 0.364 | 0.717 | 0.551 |
C18:1 vaccenic acid | 1.208 ± 0.192 | 1.230 ± 0.208 | 0.462 | 1.352 ± 0.267 | 1.338 ± 0.279 | 0.776 | 0.081 | 0.212 |
C18:3n3 (ALA) | 0.254 ± 0.111 | 0.219 ± 0.134 | 0.450 | 0.183 ± 0.123 | 0.218 ± 0.112 | 0.517 | 0.300 | 0.828 |
C20:0 Arachidic acid | 0.451 ± 0.176 | 0.479 ± 0.176 | 0.439 | 0.397 ± 0.220 | 0.546 ± 0.095 | 0.052 | 0.162 | 0.175 |
C22:1/C20:1 cis11- eicosanic acid | 0.235 ± 0.129 | 0.270 ± 0.091 | 0.556 | 0.208 ± 0.133 | 0.271 ± 0.057 | 0.422 | 0.117 | 0.551 |
C20:2 cis-11-eicodienoic acid | 0.113 ± 0.085 | 0.059 ± 0.101 | 0.185 | 0.049 ± 0.089 | 0.060 ± 0.093 | 0.697 | 0.695 | 0.416 |
C20:3n6 (DGLA) | 1.342 ± 0.267 | 1.230 ± 0.348 | 0.632 | 1.199 ± 0.239 | 1.417 ± 0.377 | 0.140 | 0.680 | 0.625 |
C20:4n6 (AA) | 9.777 ± 1.646 | 9.151 ± 1.516 | 0.377 | 9.009 ± 1.782 | 9.918 ± 1.532 | 0.337 | 0.779 | 0.786 |
C20:5n3 (EPA) | 0.421 ± 0.670 | 0.542 ± 0.091 | 0.508 | 0.450 ± 0.139 | 0.438 ± 0.193 | 0.517 | 0.515 | 0.481 |
C22:4n6 (DTA) | 1.744 ± 0.434 | 1.642 ± 0.342 | 0.286 | 1.585 ± 0.337 | 1.881 ± 0.366 | 0.102 | 0.619 | 0.551 |
C22:5w3 (DPA) | 1.408 ± 0.435 | 1.362 ± 0.195 | 0.198 | 1.444 ± 0.346 | 1.459 ± 0.118 | 0.736 | 0.477 | 0.481 |
C22:6n3 (DHA) | 2.669 ± 1.030 | 2.444 ± 0.760 | 0.162 | 2.295 ± 0.913 | 2.564 ± 0.600 | 0.452 | 0.603 | 0.704 |
Total SFA | 53.936 ± 14.07 | 56.05 ± 14.59 | 0.676 | 55.854 ± 14.566 | 56.09 ± 14.65 | 1.00 | 0.676 | 1.000 |
Total MUFA | 14.535 ± 5.283 | 15.56 ± 5.646 | 0.676 | 15.458 ± 5.519 | 14.02 ± 5.045 | 1.00 | 0.835 | 1.000 |
Total PUFA n-6 | 25.229 ± 4.989 | 22.19 ± 4.387 | 0.575 | 22.783 ± 4.136 | 23.49 ± 4.822 | 0.936 | 0.943 | 0.810 |
Total PUFA n-3 | 4.752 ± 1.111 | 4.567 ± 0.993 | 0.885 | 4.373 ± 0.968 | 4.679 ± 1.075 | 0.885 | 0.885 | 0.885 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikut, J.; Drozd, A.; Mokrzycka, M.; Grzybowska-Chlebowczyk, U.; Ziętek, M.; Szczuko, M. There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. J. Clin. Med. 2022, 11, 2365. https://doi.org/10.3390/jcm11092365
Kikut J, Drozd A, Mokrzycka M, Grzybowska-Chlebowczyk U, Ziętek M, Szczuko M. There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. Journal of Clinical Medicine. 2022; 11(9):2365. https://doi.org/10.3390/jcm11092365
Chicago/Turabian StyleKikut, Justyna, Arleta Drozd, Małgorzata Mokrzycka, Urszula Grzybowska-Chlebowczyk, Maciej Ziętek, and Małgorzata Szczuko. 2022. "There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC" Journal of Clinical Medicine 11, no. 9: 2365. https://doi.org/10.3390/jcm11092365
APA StyleKikut, J., Drozd, A., Mokrzycka, M., Grzybowska-Chlebowczyk, U., Ziętek, M., & Szczuko, M. (2022). There Is a Differential Pattern in the Fatty Acid Profile in Children with CD Compared to Children with UC. Journal of Clinical Medicine, 11(9), 2365. https://doi.org/10.3390/jcm11092365