Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Training and Validation Imaging Sets
2.2. Convolutional Neural Network Algorithm
2.3. Outcome Measures and Statistics
3. Results
3.1. Clinical Characteristics of Patients in Training and Validation Image Dataset
3.2. AI-Based Diagnosis of Each Image
3.3. AI-Based Diagnosis of Each Case
3.4. Causes for False Positives and False Negatives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro, P.; Arias, A.; Arias-Gonzalez, L.; Laserna-Mendieta, E.J.; Ruiz-Ponce, M.; Lucendo, A.J. Systematic review with meta-analysis: The growing incidence and prevalence of eosinophilic oesophagitis in children and adults in population-based studies. Aliment. Pharm. 2019, 49, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Hirano, I. Epidemiology and Natural History of Eosinophilic Esophagitis. Gastroenterology 2018, 154, 319–332 e313. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nagashima, S.; Yamada, Y.; Murakoshi, T.; Shimoyama, Y.; Takahashi, S.; Seki, H.; Kobayashi, T.; Hara, Y.; Tadaki, H.; et al. Comparison of Nonesophageal Eosinophilic Gastrointestinal Disorders with Eosinophilic Esophagitis: A Nationwide Survey. J. Allergy Clin. Immunol. Pract. 2021, 9, 3339–3349.e3338. [Google Scholar] [CrossRef]
- Ishimura, N.; Kinoshita, Y. Eosinophilic esophagitis in Japan: Focus on response to acid suppressive therapy. J. Gastroenterol. Hepatol. 2018, 33, 1016–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, Y.; Ishimura, N.; Mishiro, T.; Ishihara, S.; Adachi, K. Diagnosis and treatment of eosinophilic esophagitis in Japan. Esophagus 2016, 14, 66–75. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Ishimura, N.; Oshima, N.; Ishihara, S. Systematic review: Eosinophilic esophagitis in Asian countries. World J. Gastroenterol. 2015, 21, 8433–8440. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Liacouras, C.A.; Molina-Infante, J.; Furuta, G.T.; Spergel, J.M.; Zevit, N.; Spechler, S.J.; Attwood, S.E.; Straumann, A.; Aceves, S.S.; et al. Updated International Consensus Diagnostic Criteria for Eosinophilic Esophagitis: Proceedings of the AGREE Conference. Gastroenterology 2018, 155, 1022–1033 e1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucendo, A.J.; Molina-Infante, J.; Arias, A.; von Arnim, U.; Bredenoord, A.J.; Bussmann, C.; Amil Dias, J.; Bove, M.; Gonzalez-Cervera, J.; Larsson, H.; et al. Guidelines on eosinophilic esophagitis: Evidence-based statements and recommendations for diagnosis and management in children and adults. United Eur. Gastroenterol. J. 2017, 5, 335–358. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.; Ishimura, N.; Maruyama, R.; Ishikawa, N.; Nagase, M.; Oshima, N.; Aimi, M.; Okimoto, E.; Mikami, H.; Izumi, D.; et al. Similarities and differences among eosinophilic esophagitis, proton-pump inhibitor-responsive esophageal eosinophilia, and reflux esophagitis: Comparisons of clinical, endoscopic, and histopathological findings in Japanese patients. J. Gastroenterol. 2017, 52, 203–210. [Google Scholar] [CrossRef]
- Okimoto, E.; Ishimura, N.; Okada, M.; Izumi, D.; Mikami, H.; Aimi, M.; Tanimura, T.; Mishiro, T.; Oshima, N.; Ishikawa, N.; et al. Specific locations of linear furrows in patients with esophageal eosinophilia. Dig. Endosc. 2017, 29, 49–56. [Google Scholar] [CrossRef]
- Izumi, D.; Ishimura, N.; Okada, M.; Mikami, H.; Okimoto, E.; Aimi, M.; Mishiro, T.; Oshima, N.; Sato, S.; Ishihara, S.; et al. Poor inter-observer agreement on the endoscopic diagnosis of eosinophilic esophagitis among Japanese endoscopists. Esophagus 2017, 14, 309–316. [Google Scholar] [CrossRef]
- Oka, A.; Ishimura, N.; Ishihara, S. A New Dawn for the Use of Artificial Intelligence in Gastroenterology, Hepatology and Pancreatology. Diagnostics 2021, 11, 1719. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, M.; Ishihara, R.; Aoyama, K.; Nakagawa, K.; Iwagami, H.; Matsuura, N.; Shichijo, S.; Yamamoto, K.; Nagaike, K.; Nakahara, M.; et al. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest. Endosc. 2020, 91, 301–309.e301. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Ishihara, R.; Aoyama, K.; Ohmori, M.; Nakahira, H.; Matsuura, N.; Shichijo, S.; Nishida, T.; Yamada, T.; Yamaguchi, S.; et al. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest. Endosc. 2019, 90, 407–414. [Google Scholar] [CrossRef]
- Horie, Y.; Yoshio, T.; Aoyama, K.; Yoshimizu, S.; Horiuchi, Y.; Ishiyama, A.; Hirasawa, T.; Tsuchida, T.; Ozawa, T.; Ishihara, S.; et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest. Endosc. 2019, 89, 25–32. [Google Scholar] [CrossRef]
- Iwagami, H.; Ishihara, R.; Aoyama, K.; Fukuda, H.; Shimamoto, Y.; Kono, M.; Nakahira, H.; Matsuura, N.; Shichijo, S.; Kanesaka, T.; et al. Artificial intelligence for the detection of esophageal and esophagogastric junctional adenocarcinoma. J. Gastroenterol. Hepatol. 2020. [Google Scholar] [CrossRef]
- Hirano, I.; Moy, N.; Heckman, M.G.; Thomas, C.S.; Gonsalves, N.; Achem, S.R. Endoscopic assessment of the oesophageal features of eosinophilic oesophagitis: Validation of a novel classification and grading system. Gut 2013, 62, 489–495. [Google Scholar] [CrossRef]
- Ishimura, N.; Okimoto, E.; Shibagaki, K.; Nagano, N.; Ishihara, S. Similarity and difference in the characteristics of eosinophilic esophagitis between Western countries and Japan. Dig. Endosc. 2021, 33, 708–719. [Google Scholar] [CrossRef]
- Ishimura, N.; Sumi, S.; Okada, M.; Izumi, D.; Mikami, H.; Okimoto, E.; Ishikawa, N.; Tamagawa, Y.; Mishiro, T.; Oshima, N.; et al. Ankylosaurus back sign: Novel endoscopic finding in esophageal eosinophilia patients indicating proton pump inhibitor response. Endosc. Int. Open 2018, 6, E165–E172. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, S.; Shoda, T.; Ishimura, N.; Ohta, S.; Ono, J.; Azuma, Y.; Okimoto, E.; Izuhara, K.; Nomura, I.; Matsumoto, K.; et al. Serum Biomarkers for the Diagnosis of Eosinophilic Esophagitis and Eosinophilic Gastroenteritis. Intern. Med. 2017, 56, 2819–2825. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, Y.; Furuta, K.; Ishimura, N.; Ishihara, S. Elevated plasma cytokines in Japanese patients with eosinophilic esophagitis and gastroenteritis. Digestion 2012, 86, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Dellon, E.S.; Speck, O.; Woodward, K.; Covey, S.; Rusin, S.; Shaheen, N.J.; Woosley, J.T. Distribution and variability of esophageal eosinophilia in patients undergoing upper endoscopy. Mod. Pathol. 2015, 28, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, J.A.; Lager, D.J.; Lewin, M.; Rendon, G.; Roberts, C.A. The optimal number of biopsy fragments to establish a morphologic diagnosis of eosinophilic esophagitis. Am. J. Gastroenterol. 2014, 109, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Vance, R.B.; Shaheen, N.J.; Dellon, E.S. The prevalence and diagnostic utility of endoscopic features of eosinophilic esophagitis: A meta-analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 988–996 e985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, K.; Mishiro, T.; Tanaka, S.; Kinoshita, Y. Suitable biopsy site for detection of esophageal eosinophilia in eosinophilic esophagitis suspected cases. Dig. Endosc. 2016, 28, 139–144. [Google Scholar] [CrossRef]
- Schoepfer, A.M.; Safroneeva, E.; Bussmann, C.; Kuchen, T.; Portmann, S.; Simon, H.U.; Straumann, A. Delay in diagnosis of eosinophilic esophagitis increases risk for stricture formation in a time-dependent manner. Gastroenterology 2013, 145, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- Shichijo, S.; Endo, Y.; Aoyama, K.; Takeuchi, Y.; Ozawa, T.; Takiyama, H.; Matsuo, K.; Fujishiro, M.; Ishihara, S.; Ishihara, R.; et al. Application of convolutional neural networks for evaluating Helicobacter pylori infection status on the basis of endoscopic images. Scand. J. Gastroenterol. 2019, 54, 158–163. [Google Scholar] [CrossRef]
- Guimarães, P.; Keller, A.; Fehlmann, T.; Lammert, F.; Casper, M. Deep learning-based detection of eosinophilic esophagitis. Endoscopy 2021, 54, 299–304. [Google Scholar] [CrossRef]
- Ichiya, T.; Tanaka, K.; Rubio, C.A.; Hammar, U.; Schmidt, P.T. Evaluation of narrow-band imaging signs in eosinophilic and lymphocytic esophagitis. Endoscopy 2017, 49, 429–437. [Google Scholar] [CrossRef]
- Tanaka, K.; Rubio, C.A.; Dlugosz, A.; Truskaite, K.; Befrits, R.; Lindberg, G.; Schmidt, P.T. Narrow-band imaging magnifying endoscopy in adult patients with eosinophilic esophagitis/esophageal eosinophilia and lymphocytic esophagitis. Gastrointest. Endosc. 2013, 78, 659–664. [Google Scholar] [CrossRef]
- Atar, M.; Kadayifci, A. Transnasal endoscopy: Technical considerations, advantages and limitations. World J. Gastrointest. Endosc. 2014, 6, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ishimura, N.; Sumi, S.; Okada, M.; Mikami, H.; Okimoto, E.; Nagano, N.; Araki, A.; Tamagawa, Y.; Mishiro, T.; Oshima, N.; et al. Is Asymptomatic Esophageal Eosinophilia the Same Disease Entity as Eosinophilic Esophagitis? Clin. Gastroenterol. Hepatol. 2019, 17, 1405–1407. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Iizuka, T.; Hosoi, A.; Kikuchi, D.; Okamura, T.; Ochiai, Y.; Hayasaka, J.; Dan, N.; Mitsunaga, Y.; Tanaka, M.; et al. Clinicopathological Differences between Eosinophilic Esophagitis and Asymptomatic Esophageal Eosinophilia. Intern. Med. 2021, 8241-21. [Google Scholar] [CrossRef]
- Kitamura, H.; Tanaka, F.; Nadatani, Y.; Otani, K.; Hosomi, S.; Kamata, N.; Taira, K.; Nagami, Y.; Tanigawa, T.; Fukumoto, S.; et al. Eosinophilic esophagitis and asymptomatic esophageal eosinophilia display similar immunohistological profiles. J. Clin. Biochem. Nutr. 2021, 68, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Honma, T.; Nozawa, Y.; Owaki, T.; Imai, M.; Sano, T.; Iwanaga, A.; Seki, K.; Ishikawa, T.; Yoshida, T.; et al. Eosinophilic esophagitis in Japanese patients: A mild and slow-progressing disorder. PLoS ONE 2018, 13, e0206621. [Google Scholar] [CrossRef]
- Eluri, S.; Corder, S.R.; Kim, E.; Tappata, M.; Reed, C.C.; Shaheen, N.J.; Dellon, E.S. Clinical features and time trends associated with an endoscopically normal esophagus in active eosinophilic esophagitis. Endoscopy 2021, 53, 886–892. [Google Scholar] [CrossRef]
Training Dataset | Validation Dataset | |
---|---|---|
Patient characteristics | n =108 | n = 35 |
Male, no. (%) | 89 (82.4) | 30 (85.7) |
Age, years, mean (SD) | 48.4 (11.6) | 46.9 (10.0) |
Concurrent allergic disease, no. (%) | 80 (74.1) | 25 (71.4) |
Allergic rhinitis | 52 (48.1) | 14 (40.0) |
Bronchial asthma | 22 (20.4) | 9 (25.7) |
Atopic dermatitis | 20 (18.5) | 6 (17.1) |
Symptom, no. (%) | ||
Dysphagia | 62 (57.4) | 20 (57.1) |
Heartburn/regurgitation | 42 (38.9) | 16 (45.7) |
Endoscopic characteristic | n = 165 | n = 39 |
Edema, no. (%) | 162 (98.2) | 39 (100) |
Linear furrows, no. (%) | 131 (79.4) | 28 (71.8) |
Rings, no. (%) | 96 (58.2) | 27 (69.2) |
Whitish exudates, no. (%) | 106 (64.2) | 23 (59.0) |
Stricture, no. (%) | 0 (0) | 0 (0) |
Ankylosaurus back sign, no. (%) | 28 (17.0) | 6 (15.4) |
EREFS (total score), median (range) | 3 (1–6) | 3 (1–6) |
Accuracy | 94.7 (92.9–96.2) |
Sensitivity | 90.8 (86.5–94.1) |
Specificity | 96.6 (94.7–98.1) |
PPV | 93.0 (89.0–95.9) |
NPV | 95.5 (93.3–97.1) |
Criterion A | Criterion B | |
---|---|---|
Accuracy | 88.1 (81.4–93.1) | 97.8 (93.6–99.5) |
Sensitivity | 97.4 86.5–99.9) | 94.9 (82.7–99.4) |
Specificity | 84.4 (75.5–91.0) | 99.0 (93.7–100.0) |
PPV | 71.7 (57.7–83.2) | 97.4 (84.9–100.0) |
NPV | 98.8 (93.4–100.0) | 97.9 (92.7–99.7) |
False-Positive (n = 17) | No. of Images (%) |
---|---|
Normal structure (vertical fold/transient concentric rings/glycogenic acanthosis/EGJ) | 6/3/2/1 (58.8) |
Influence of light (shadow) | 4 (23.5) |
Whitish deposit | 1 (5.9) |
False-negative (n = 23) | No. of images (%) |
Minor endoscopic finding (Ankylosaurus back sign) | 13 (56.5) |
Obscure lesion (linear furrows/rings/whitish exudates) | 5/2/2 (39.1) |
Unknown | 1 (4.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okimoto, E.; Ishimura, N.; Adachi, K.; Kinoshita, Y.; Ishihara, S.; Tada, T. Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. J. Clin. Med. 2022, 11, 2529. https://doi.org/10.3390/jcm11092529
Okimoto E, Ishimura N, Adachi K, Kinoshita Y, Ishihara S, Tada T. Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. Journal of Clinical Medicine. 2022; 11(9):2529. https://doi.org/10.3390/jcm11092529
Chicago/Turabian StyleOkimoto, Eiko, Norihisa Ishimura, Kyoichi Adachi, Yoshikazu Kinoshita, Shunji Ishihara, and Tomohiro Tada. 2022. "Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging" Journal of Clinical Medicine 11, no. 9: 2529. https://doi.org/10.3390/jcm11092529
APA StyleOkimoto, E., Ishimura, N., Adachi, K., Kinoshita, Y., Ishihara, S., & Tada, T. (2022). Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. Journal of Clinical Medicine, 11(9), 2529. https://doi.org/10.3390/jcm11092529