The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- Women with PCOS are characterized by lower activity of SOD1 and decreased concentrations of Zn and Cu.
- Higher values of HOMA-IR in the women with PCOS is associated with further drop in SOD1 activity.
- Possibly, the genotype of AA of the SOD1 rs2070424 polymorphism could be related to lower activity of SOD1, but this part of the study should be continued.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med. 2019, 10, 86. [Google Scholar] [CrossRef]
- Brieger, K.; Schiavone, S.; Miller, F.J.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. Superoxide Dismutase in Redox Biology: The Roles of Superoxide and Hydrogen Peroxide. Anti-Cancer Agents Med. Chem. 2011, 11, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, L.; Wilson, C.; Lower, A.; Al-Shawaf, T.; Grudzinskas, J. Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil. Steril. 1999, 72, 1027–1034. [Google Scholar] [CrossRef]
- Mondola, P.; Damiano, S.; Sasso, A.; Santillo, M. The Cu, Zn Superoxide Dismutase: Not Only a Dismutase Enzyme. Front. Physiol. 2016, 7, 594. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Investig. 2019, 49, e13036. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; He, G.; Chen, M.; Zuo, T.; Xu, W.; Liu, X. The Role of Antioxidant Enzymes in the Ovaries. Oxid. Med. Cell. Longev. 2017, 2017, 4371714. [Google Scholar] [CrossRef] [Green Version]
- Unfer, T.C.; Figueiredo, C.G.; Zanchi, M.M.; Maurer, L.H.; Kemerich, D.M.; Duarte, M.M.F.; Konopka, C.K.; Emanuelli, T. Estrogen plus progestin increase superoxide dismutase and total antioxidant capacity in postmenopausal women. Climacteric 2014, 18, 379–388. [Google Scholar] [CrossRef]
- Bellanti, F.; Matteo, M.; Rollo, T.; De Rosario, F.; Greco, P.; Vendemiale, G.; Serviddio, G. Sex hormones modulate circulating antioxidant enzymes: Impact of estrogen therapy. Redox Biol. 2013, 1, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Zuo, T.; Zhu, M.; Xu, W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxid. Med. Cell. Longev. 2016, 2016, 8589318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tostes, R.C.; Carneiro, F.S.; Carvalho, M.H.C.; Reckelhoff, J.F. Reactive oxygen species: Players in the cardiovascular effects of testosterone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1–R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Sharifi, N. SOD Mimetics: A Novel Class of Androgen Receptor Inhibitors That Suppresses Castration-Resistant Growth of Prostate Cancer. Mol. Cancer Ther. 2012, 11, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silig, Y.; Tas, A.; Sahin-Bolukbasi, S.; Caglayan, G.; Sari, I. Superoxide Dismutase 1 (SOD 1) A251G Polymorphism. Turk. J. Biochem. 2017, 42, 181–185. Available online: http://www.degruyter.com/view/j/tjb.2017.42.issue-2/tjb-2016-0261/tjb-2016-0261.xml (accessed on 22 March 2022). [CrossRef]
- Hernández-Guerrero, C.; Hernández-Chávez, P.; Romo-Palafox, I.; Blanco-Melo, G.; Parra-Carriedo, A.; Pérez-Lizaur, A. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico. Arch. Med. Res. 2016, 47, 331–339. [Google Scholar] [CrossRef]
- Yin, J.; Wang, X.; Li, S.; Zhu, Y.; Chen, S.; Li, P.; Luo, C.; Huang, Y.; Li, X.; Hu, X.; et al. Interactions between plasma copper concentrations and SOD1 gene polymorphism for impaired glucose regulation and type 2 diabetes. Redox Biol. 2019, 24, 101172. [Google Scholar] [CrossRef]
- Ściskalska, M.; Ołdakowska, M.; Marek, G.; Milnerowicz, H. Changes in the Activity and Concentration of Superoxide Dismutase Isoenzymes (Cu/Zn SOD, MnSOD) in the Blood of Healthy Subjects and Patients with Acute Pancreatitis. Antioxidants 2020, 9, 948. [Google Scholar] [CrossRef]
- Haldar, S.R.; Chakrabarty, A.; Chowdhury, S.; Haldar, A.; Sengupta, S.; Bhattacharyya, M. Oxidative stress-related genes in type 2 diabetes: Association analysis and their clinical impact. Biochem. Genet. 2015, 53, 93–119. [Google Scholar] [CrossRef]
- Kerns, K.; Zigo, M.; Sutovsky, P. Zinc: A Necessary Ion for Mammalian Sperm Fertilization Competency. Int. J. Mol. Sci. 2018, 19, 4097. [Google Scholar] [CrossRef] [Green Version]
- Grieger, J.A.; Grzeskowiak, L.E.; Wilson, R.L.; Bianco-Miotto, T.; Leemaqz, S.Y.; Jankovic-Karasoulos, T.; Perkins, A.V.; Norman, R.J.; Dekker, G.A.; Roberts, C.T. Maternal Selenium, Copper and Zinc Concentrations in Early Pregnancy, and the Association with Fertility. Nutrients 2019, 11, 1609. [Google Scholar] [CrossRef] [Green Version]
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod. 2004, 19, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizoń, A.; Franik, G.; Niepsuj, J.; Czwojdzińska, M.; Leśniewski, M.; Nowak, A.; Szynkaruk-Matusiak, M.; Madej, P.; Piwowar, A. The Associations between Sex Hormones and Lipid Profiles in Serum of Women with Different Phenotypes of Polycystic Ovary Syndrome. J. Clin. Med. 2021, 10, 3941. [Google Scholar] [CrossRef] [PubMed]
- Papalou, O.; Victor, V.M.; Diamanti-Kandarakis, E. Oxidative Stress in Polycystic Ovary Syndrome. Curr. Pharm. Des. 2016, 22, 2709–2722. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bao, Y.; Zhou, X.; Zheng, L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019, 17, 67. [Google Scholar] [CrossRef]
- Moti, M.; Amini, L.; Ardakani, S.S.M.; Kamalzadeh, S.; Masoomikarimi, M.; Jafarisani, M. Oxidative stress and anti-oxidant defense system in Iranian women with polycystic ovary syndrome. Iran. J. Reprod. Med. 2015, 13, 373–378. [Google Scholar]
- Kuşçu, N.K.; Var, A. Oxidative stress but not endothelial dysfunction exists in non-obese, young group of patients with polycystic ovary syndrome. Acta Obstet. Gynecol. Scand. 2009, 88, 612–617. [Google Scholar] [CrossRef]
- Sabuncu, T.; Vural, H.; Harma, M.; Harma, M. Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clin. Biochem. 2001, 34, 407–413. [Google Scholar] [CrossRef]
- Seleem, A.K.; El Refaeey, A.A.; Shaalan, D.; Sherbiny, Y.; Badawy, A. Superoxide dismutase in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2014, 31, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Enechukwu, C.I.; Onuegbu, A.J.; Olisekodiaka, M.J.; Eleje, G.U.; Ikechebelu, J.I.; Ugboaja, J.O.; Amah, U.K.; Okwara, J.E.; Igwegbe, A.O. Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstet. Gynecol. Sci. 2019, 62, 335–343. [Google Scholar] [CrossRef]
- Özer, A.; Bakacak, M.; Kıran, H.; Ercan, Ö.; Köstü, B.; Kanat-Pektaş, M.; Kılınç, M.; Aslan, F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. Ginekol. Pol. 2016, 87, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Abedini, M.; Ghaedi, E.; Hadi, A.; Mohammadi, H.; Amani, R. Zinc status and polycystic ovarian syndrome: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2019, 52, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Spritzer, P.M.; Lecke, S.B.; Fabris, V.C.; Ziegelmann, P.K.; Amaral, L. Blood Trace Element Concentrations in Polycystic Ovary Syndrome: Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2016, 175, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.E.; Adam, I.; Ahmed, M.A.; Rayis, D.A.; Hamdan, H.Z. Serum Level of Zinc and Copper in Sudanese Women with Polycystic Ovarian Syndrome. Biol. Trace Elem. Res. 2017, 180, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; et al. Low-grade inflammation, diet composition and health: Current research evidence and its translation. Br. J. Nutr. 2015, 114, 999–1012. [Google Scholar] [CrossRef] [Green Version]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, F.; Han, L.; Zhu, B.; Liu, X. Serum Copper Level and Polycystic Ovarian Syndrome: A Meta-Analysis. Gynecol. Obstet. Investig. 2021, 86, 239–246. [Google Scholar] [CrossRef]
- Rajni; Nanda, S.; Rani, V.; Kharb, S. Serum levels of zinc, copper and magnesium in polycystic ovarian syndrome: A cross Sectional study. Int. J. Clin. Obstet. Gynaecol. 2020, 4, 88–91. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, W.; Guo, Y.; Zheng, B.; Li, H.; Chen, J.; Zhang, W. High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: Population-based and in vitro studies. Toxicol. Appl. Pharmacol. 2019, 365, 101–111. [Google Scholar] [CrossRef]
- Spisak, K.; Klimkowicz-Mrowiec, A.; Pera, J.; Dziedzic, T.; Aleksandra, G.; Slowik, A. rs2070424 of the SOD1 gene is associated with risk of Alzheimer’s disease. Neurol. Neurochir. Pol. 2014, 48, 342–345. [Google Scholar] [CrossRef]
- El-Kheshen, G.; Moeini, M.; Saadat, M. Susceptibility to Ulcerative Colitis and Genetic Polymorphisms of A251G SOD1 and C-262T CAT. J. Med. Biochem. 2016, 35, 333–336. [Google Scholar] [CrossRef] [Green Version]
Parameters | PCOS; n = 60 | Control Group; n = 15 | p Value |
---|---|---|---|
Age [years] | 24.0 (21.0; 29.0) | 26.0 (22.0; 39.0) | NS |
BMI [kg/m2] | 22.7 (19.7; 25.1) | 23.7 (21.1; 25.4) | NS |
WHR | 0.8 (0.76; 0.85) | 0.8 (0.76; 0.82) | NS |
Fasting glucose [mg/dL] | 88.0 (84.0; 90.0) | 84.1 (81.0; 88.9) | NS |
Glucose after OGTT [mg/dL] | 98.5 (86.0; 115.0) | not assayed | N/A |
Fasting insulin [mU/mL] | 6.0 (3.6; 8.9) | 6.4 (5.2; 9.0) | NS |
Insulin after OGTT [mU/mL] | 27.4 (17.8; 47.7) | not assayed | N/A |
HOMA-IR | 1.3 (0.8; 1.9) | 1.3 (1.1; 2.0) | NS |
Total cholesterol (mg/dL) | 167.5 (148.0; 190.0) | 179.0 (167.0; 207.0) | NS |
LDL-C (mg/dL) | 92.0 (78.0; 113.0) | 107.0 (84.0; 127.0) | NS |
HDL-C (mg/dL) | 55.0 (46.0; 65.0) | 58.0 (54.0; 74.0) | NS |
Triglycerides (mg/dL) | 73.5 (59.5; 118.0) | 84.0 (62.0; 122.0) | NS |
SOD1 activity [U/L] | 5.1 (4.5; 6.0) | 9.1 (5.5; 9.9) | <0.001 |
Zn [µg/L] | 857.0 (755.6; 931.5) | 946.3 (877.7; 1066.3) | <0.001 |
Cu [µg/L] | 848.6 (746.9; 1009.8) | 1195.2 (1164.1; 1336.4) | <0.001 |
Cu/Zn ratio | 1.0 (0.9; 1.1) | 1.3 (1.1; 1.4) | <0.001 |
Parameters | PCOS | p Value | |
---|---|---|---|
HOMA-IR < 2.0; n = 43 | HOMA-IR ≥ 2.0; n = 17 | ||
SOD activity [U/L] | 5.2 (4.7; 6.3) | 4.7 (4.3; 5.5) | 0.046 |
Zn [µg/L] | 858.7 (769.7; 942.8) | 818.3 (752.7; 920.7) | NS |
Cu [µg/L] | 813.8 (724.1; 989.0) | 958.1 (832.1; 1077.2) | 0.012 |
Cu/Zn ratio | 1.0 (0.9; 1.1) | 1.1 (1.0; 1.2) | 0.015 |
LH [lU/L] | 5.8 (3.4; 9.1) | 8.6 (5.6; 12.5) | NS |
FSH [lU/L] | 5.8 (5.0; 7.0) | 5.9 (5.2; 6.5) | NS |
FT4 [ng/dL] | 1.2 (1.0; 1.3) | 1.2 (1.0; 1.3) | NS |
TSH [mU/L] | 1.9 (1.4; 2.9) | 1.9 (1.3; 2.5) | NS |
SHBG [nmol/L] | 70.0 (46.7; 86.6) | 43.1 (22.8; 59.0) | 0.004 |
Total testosterone [ng/mL] | 0.4 (0.2; 0.4) | 0.5 (0.4; 0.6) | 0.016 |
Free testosterone [pg/mL] | 1.6 (1.1; 2.4) | 2.3 (1.2; 3.3) | NS |
Androstenedione [ng/mL] | 2.5 (1.7; 3.5) | 4.0 (2.6; 4.8) | 0.024 |
17-β-E2 [pg/mL] | 30.5 (21.5; 48.6) | 37.8 (30.2; 50.5) | NS |
17-OHP [nmol/L] | 1.7 (1.1; 1.9) | 2.1 (1.6; 2.4) | 0.037 |
BMI < 25.0; n = 40 | BMI ≥ 25.0; n = 20 | ||
SOD activity [U/L] | 5.6 (4.3; 6.5) | 5.1 (4.5; 5.3) | NS |
Zn [µg/L] | 867.6 (802.9; 942.8) | 834.2 (733.1; 959.1) | NS |
Cu [µg/L] | 859.2 (742.6; 1003.9) | 852.3 (772.2; 1042.1) | NS |
Cu/Zn ratio | 1.0 (0.9; 1.1) | 1.0 (0.9; 1.3) | NS |
LH [lU/L] | 5.9 (22.2; 50.4) | 7.8 (3.4; 13.0) | NS |
FSH [lU/L] | 6.4 (5.0; 7.1) | 6.1 (5.1; 6.6) | NS |
FT4 [ng/dL] | 1.2 (1.1; 1.4) | 1.1 (1.0; 1.2) | NS |
TSH [mU/L] | 1.8 (1.5; 2.5) | 1.7 (1.2; 2.5) | NS |
SHBG [nmol/L] | 76.3 (52.7; 93.4) | 26.7 (17.1; 44.5) | 0.001 |
Total testosterone [ng/mL] | 0.3 (0.2; 0.4) | 0.5 (0.4; 0.7) | 0.001 |
Free testosterone [pg/mL] | 1.6 (1.0; 2.2) | 2.5 (1.3; 3.7) | 0.005 |
Androstenedione [ng/mL] | 2.6 (1.7; 3.5) | 4.0 (1.8; 4.9) | 0.038 |
17-β-E2 [pg/mL] | 34.4 (22.2; 50.4) | 36.6 (28.6; 51.8) | NS |
17-OHP [nmol/L] | 1.6 (1.0; 2.0) | 2.3 (1.6; 2.5) | 0.030 |
Parameters | AA n = 56 | AG n = 4 |
---|---|---|
SOD activity [U/L] | 5.1 (4.5; 6.3) | 5.4 (4.9; 5.9) |
Zn [µg/L] | 860.6 (770.9; 931.5) | 848.5 (666.3; 1022.0) |
Cu [µg/L] | 856.5 (738.3; 1012.3) | 846.4 (824.2; 915.2) |
Cu/Zn ratio | 1.0 (0.9; 1.1) | 1.1 (0.8; 1.4) |
Correlation | SOD1 Activity [U/L] | Cu [µg/L] | Zn [µg/L] |
---|---|---|---|
BMI [kg/m2] | −0.27; 0.041 | 0.42; <0.001 | NS |
WHR | −0.33; 0.020 | 0.36; 0.005 | NS |
Fasting glucose [mg/dL] | NS | NS | 0.30; 0.010 |
Fasting insulin [uIU/mL] | NS | 0.26; 0.024 | NS |
Glucose after OGTT [mg/dL] | −0.27; 0.043; | NS | NS |
Insulin after OGTT [uIU/mL] | −0.34; 0.011 | 0.23; 0.049 | NS |
HOMA-IR | NS | 0.28; 0.016 | NS |
Triglycerides [mg/dL] | −0.36; 0.007 | 0.36; 0.002 | NS |
LH [lU/L] | −0.28; 0.041 | NS | NS |
FSH [lU/L] | NS | NS | NS |
FT4 [ng/dL] | −0.30; 0.026 | NS | NS |
TSH [mU/L] | −0.33; 0.010 | NS | NS |
SHBG [nmol/L] | NS | −0.30; 0.011 | NS |
Total testosterone [ng/mL] | NS | NS | NS |
Free testosterone [pg/mL] | NS | NS | NS |
Androstenedione [ng/mL] | NS | NS | NS |
17-β-E2 [pg/mL] | NS | NS | NS |
17-OHP [nmol/L] | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bizoń, A.; Tchórz, A.; Madej, P.; Leśniewski, M.; Wójtowicz, M.; Piwowar, A.; Franik, G. The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study. J. Clin. Med. 2022, 11, 2548. https://doi.org/10.3390/jcm11092548
Bizoń A, Tchórz A, Madej P, Leśniewski M, Wójtowicz M, Piwowar A, Franik G. The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study. Journal of Clinical Medicine. 2022; 11(9):2548. https://doi.org/10.3390/jcm11092548
Chicago/Turabian StyleBizoń, Anna, Agata Tchórz, Paweł Madej, Marcin Leśniewski, Mariusz Wójtowicz, Agnieszka Piwowar, and Grzegorz Franik. 2022. "The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study" Journal of Clinical Medicine 11, no. 9: 2548. https://doi.org/10.3390/jcm11092548
APA StyleBizoń, A., Tchórz, A., Madej, P., Leśniewski, M., Wójtowicz, M., Piwowar, A., & Franik, G. (2022). The Activity of Superoxide Dismutase, Its Relationship with the Concentration of Zinc and Copper and the Prevalence of rs2070424 Superoxide Dismutase Gene in Women with Polycystic Ovary Syndrome—Preliminary Study. Journal of Clinical Medicine, 11(9), 2548. https://doi.org/10.3390/jcm11092548