Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock
Abstract
:1. Introduction
2. Methods and Materials
2.1. Animals
2.2. Endotoxemia Model
- Treatment group: standard treatment + inhaled NO and IV hydrocortisone;
- Control group: standard treatment.
2.3. Sampling
2.4. Clinical Chemistry
2.5. Flow Cytometry
2.6. Statistical Analysis
3. Results
3.1. Induction of Shock by Prolonged Lipopolysaccharide Infusion
3.2. Endotoxemic Shock Induced Rapid Changes in the Profile of Circulating Monocytes
3.3. Activation Status of Circulating Monocytes during Endotoxemic Shock
3.4. Compartment-Specific Alterations in the Monocyte Functions in Swine Endotoxemia
4. Discussion
Clinical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A WHO Resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.M.; Singer, M.; Skirecki, T. Sepsis therapies: Learning from 30 years of failure of translational research to propose new leads. EMBO Mol. Med. 2020, 12, e10128. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Ayala, A.; Bahrami, S.; Bauer, M.; Boros, M.; Cavaillon, J.M.; Chaudry, I.H.; Coopersmith, C.M.; Deutschman, C.S.; Drechsler, S.; et al. Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): An International Expert Consensus Initiative for Improvement of Animal Modeling in Sepsis. Shock 2018, 50, 377–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Sakr, Y.; Lobo, S.M.; Moreno, R.P.; Gerlach, H.; Ranieri, V.M.; Michalopoulos, A.; Vincent, J.L.; Investigators, S. Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Crit. Care 2012, 16, R222. [Google Scholar] [CrossRef] [Green Version]
- Cavaillon, J.M.; Adib-Conquy, M. Monocytes/macrophages and sepsis. Crit. Care Med. 2005, 33 (Suppl. S12), S506–S509. [Google Scholar] [CrossRef]
- Weitzberg, E.; Hezel, M.; Lundberg, J.O. Nitrate-nitrite-nitric oxide pathway: Implications for anesthesiology and intensive care. Anesthesiology 2010, 113, 1460–1475. [Google Scholar] [CrossRef]
- Howlett, C.E.; Hutchison, J.S.; Veinot, J.P.; Chiu, A.; Merchant, P.; Fliss, H. Inhaled nitric oxide protects against hyperoxia-induced apoptosis in rat lungs. Am. J. Physiol. 1999, 277, L596–L605. [Google Scholar] [CrossRef]
- ter Horst, S.A.; Walther, F.J.; Poorthuis, B.J.; Hiemstra, P.S.; Wagenaar, G.T. Inhaled nitric oxide attenuates pulmonary inflammation and fibrin deposition and prolongs survival in neonatal hyperoxic lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L35–L44. [Google Scholar] [CrossRef] [Green Version]
- Da, J.; Chen, L.; Hedenstierna, G. Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis. Crit. Care Med. 2007, 35, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Goranson, S.P.; Gozdzik, W.; Harbut, P.; Ryniak, S.; Zielinski, S.; Haegerstrand, C.G.; Kubler, A.; Hedenstierna, G.; Frostell, C.; Albert, J. Organ dysfunction among piglets treated with inhaled nitric oxide and intravenous hydrocortisone during prolonged endotoxin infusion. PLoS ONE 2014, 9, e96594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gozdzik, W.; Zielinski, S.; Zielinska, M.; Ratajczak, K.; Skrzypczak, P.; Rodziewicz, S.; Kubler, A.; Lofstrom, K.; Dziegiel, P.; Olbromski, M.; et al. Beneficial effects of inhaled nitric oxide with intravenous steroid in an ischemia-reperfusion model involving aortic clamping. Int. J. Immunopathol. Pharmacol. 2018, 32, 394632017751486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, M.P.; Pioli, P.A.; Wardwell, K.; Beach, M.L.; Martel, P.; Lee, H.K.; Rassias, A.J.; Guyre, P.M. In vivo exposure to high or low cortisol has biphasic effects on inflammatory response pathways of human monocytes. Anesth. Analg. 2008, 107, 1726–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keh, D.; Boehnke, T.; Weber-Cartens, S.; Schulz, C.; Ahlers, O.; Bercker, S.; Volk, H.D.; Doecke, W.D.; Falke, K.J.; Gerlach, H. Immunologic and hemodynamic effects of “low-dose” hydrocortisone in septic shock: A double-blind, randomized, placebo-controlled, crossover study. Am. J. Respir. Crit. Care Med. 2003, 167, 512–520. [Google Scholar] [CrossRef]
- Kaufmann, I.; Briegel, J.; Schliephake, F.; Hoelzl, A.; Chouker, A.; Hummel, T.; Schelling, G.; Thiel, M. Stress doses of hydrocortisone in septic shock: Beneficial effects on opsonization-dependent neutrophil functions. Intensive Care Med. 2008, 34, 344–349. [Google Scholar] [CrossRef]
- Adamik, B.; Frostell, C.; Paslawska, U.; Dragan, B.; Zielinski, S.; Paslawski, R.; Janiszewski, A.; Zielinska, M.; Ryniak, S.; Ledin, G.; et al. Platelet dysfunction in a large-animal model of endotoxic shock; effects of inhaled nitric oxide and low-dose steroid. Nitric Oxide 2021, 108, 20–27. [Google Scholar] [CrossRef]
- Datzmann, T.; Wepler, M.; Wachter, U.; Vogt, J.A.; McCook, O.; Merz, T.; Calzia, E.; Groger, M.; Hartmann, C.; Asfar, P.; et al. Cardiac Effects of Hyperoxia During Resuscitation From Hemorrhagic Shock in Swine. Shock 2019, 52, e52–e59. [Google Scholar] [CrossRef]
- Fairbairn, L.; Kapetanovic, R.; Beraldi, D.; Sester, D.P.; Tuggle, C.K.; Archibald, A.L.; Hume, D.A. Comparative analysis of monocyte subsets in the pig. J. Immunol. 2013, 190, 6389–6396. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, S.; Revilla, C.; Alvarez, B.; Alonso, F.; Ezquerra, A.; Dominguez, J. Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology 2005, 114, 63–71. [Google Scholar] [CrossRef]
- Venet, F.; Lepape, A.; Monneret, G. Clinical review: Flow cytometry perspectives in the ICU—From diagnosis of infection to monitoring of injury-induced immune dysfunctions. Crit. Care 2011, 15, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvioli, S.; Ardizzoni, A.; Franceschi, C.; Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997, 411, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Cavaillon, J.M.; Annane, D. Compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res. 2006, 12, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Guillon, A.; Preau, S.; Aboab, J.; Azabou, E.; Jung, B.; Silva, S.; Textoris, J.; Uhel, F.; Vodovar, D.; Zafrani, L.; et al. Preclinical septic shock research: Why we need an animal ICU. Ann. Intensive Care 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Rochwerg, B.; Oczkowski, S.J.; Siemieniuk, R.A.C.; Agoritsas, T.; Belley-Cote, E.; D’Aragon, F.; Duan, E.; English, S.; Gossack-Keenan, K.; Alghuroba, M.; et al. Corticosteroids in Sepsis: An Updated Systematic Review and Meta-Analysis. Crit. Care Med. 2018, 46, 1411–1420. [Google Scholar] [CrossRef]
- Olnes, M.J.; Kotliarov, Y.; Biancotto, A.; Cheung, F.; Chen, J.; Shi, R.; Zhou, H.; Wang, E.; Tsang, J.S.; Nussenblatt, R.; et al. Effects of Systemically Administered Hydrocortisone on the Human Immunome. Sci. Rep. 2016, 6, 23002. [Google Scholar] [CrossRef] [Green Version]
- Soderberg, E.; Eriksson, M.; Larsson, A.; Lipcsey, M. The impact of hydrocortisone treatment on neutrophil gelatinase-associated lipocalin release in porcine endotoxemic shock. Intensive Care Med. Exp. 2017, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Blanc, F.; Prevost-Blondel, A.; Piton, G.; Bouguyon, E.; Leplat, J.J.; Andreoletti, F.; Egidy, G.; Bourneuf, E.; Bertho, N.; Vincent-Naulleau, S. The Composition of Circulating Leukocytes Varies With Age and Melanoma Onset in the MeLiM Pig Biomedical Model. Front. Immunol. 2020, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Ondrackova, P.; Leva, L.; Kucerova, Z.; Vicenova, M.; Mensikova, M.; Faldyna, M. Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental Actinobacillus pleuropneumoniae infection and the role of chemokines. Vet. Res. 2013, 44, 98. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.S.; Rissiek, A.; Priefler, M.; Schwedhelm, E.; Robbe, L.; Bauer, A.; Zahrte, C.; Zoellner, C.; Kluge, S.; Nierhaus, A. Human leucocyte antigen (HLA-DR) gene expression is reduced in sepsis and correlates with impaired TNFalpha response: A diagnostic tool for immunosuppression? PLoS ONE 2017, 12, e0182427. [Google Scholar] [CrossRef] [PubMed]
- Castegren, M.; Skorup, P.; Lipcsey, M.; Larsson, A.; Sjolin, J. Endotoxin tolerance variation over 24 h during porcine endotoxemia: Association with changes in circulation and organ dysfunction. PLoS ONE 2013, 8, e53221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagiola, M.; Giulio, S.; Miriam, M.; Katia, F.; Paola, P.; Macri, A.; Pasquali, P. In vitro down regulation of proinflammatory cytokines induced by LPS tolerance in pig CD14+ cells. Vet. Immunol. Immunopathol. 2006, 112, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Monsel, A.; Bertrand, M.; Coriat, P.; Cavaillon, J.M.; Adib-Conquy, M. Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation. Crit. Care 2010, 14, R61. [Google Scholar] [CrossRef] [Green Version]
- Handy, J.M.; Scott, A.J.; Cross, A.M.; Sinha, P.; O’Dea, K.P.; Takata, M. HLA-DR expression and differential trafficking of monocyte subsets following low to intermediate risk surgery. Anaesthesia 2010, 65, 27–35. [Google Scholar] [CrossRef]
- Le Tulzo, Y.; Pangault, C.; Amiot, L.; Guilloux, V.; Tribut, O.; Arvieux, C.; Camus, C.; Fauchet, R.; Thomas, R.; Drenou, B. Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock. Am. J. Respir. Crit. Care Med. 2004, 169, 1144–1151. [Google Scholar] [CrossRef]
- Cossarizza, A.; Salvioli, S. Flow cytometric analysis of mitochondrial membrane potential using JC-1. In Current Protocols in Cytometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; Chapter 9, Unit 9–14. [Google Scholar]
- Adrie, C.; Bachelet, M.; Vayssier-Taussat, M.; Russo-Marie, F.; Bouchaert, I.; Adib-Conquy, M.; Cavaillon, J.M.; Pinsky, M.R.; Dhainaut, J.F.; Polla, B.S. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am. J. Respir. Crit. Care Med. 2001, 164, 389–395. [Google Scholar] [CrossRef]
- Japiassu, A.M.; Santiago, A.P.; d’Avila, J.C.; Garcia-Souza, L.F.; Galina, A.; Castro Faria-Neto, H.C.; Bozza, F.A.; Oliveira, M.F. Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5’-triphosphate synthase activity. Crit. Care Med. 2011, 39, 1056–1063. [Google Scholar] [CrossRef]
- Jang, D.H.; Orloski, C.J.; Owiredu, S.; Shofer, F.S.; Greenwood, J.C.; Eckmann, D.M. Alterations in Mitochondrial Function in Blood Cells Obtained From Patients With Sepsis Presenting to an Emergency Department. Shock 2019, 51, 580–584. [Google Scholar] [CrossRef]
- Cheng, S.C.; Scicluna, B.P.; Arts, R.J.; Gresnigt, M.S.; Lachmandas, E.; Giamarellos-Bourboulis, E.J.; Kox, M.; Manjeri, G.R.; Wagenaars, J.A.; Cremer, O.L.; et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 2016, 17, 406–413. [Google Scholar] [CrossRef]
- Vollrath, J.T.; Klingebiel, F.; Blasius, F.M.; Greven, J.; Bolierakis, E.; Janicova, A.; Dunay, I.R.; Hildebrand, F.; Marzi, I.; Relja, B. Alterations of Phagocytic Activity and Capacity in Granulocytes and Monocytes Depend on the Pathogen Strain in Porcine Polytrauma. Front. Med. (Lausanne) 2021, 8, 645589. [Google Scholar] [CrossRef] [PubMed]
- Skirecki, T.; Mikaszewska-Sokolewicz, M.; Hoser, G.; Zielinska-Borkowska, U. The Early Expression of HLA-DR and CD64 Myeloid Markers Is Specifically Compartmentalized in the Blood and Lungs of Patients with Septic Shock. Mediat. Inflamm. 2016, 2016, 3074902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philippart, F.; Fitting, C.; Cavaillon, J.M. Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin. Crit. Care Med. 2012, 40, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Cavaillon, J.M.; Eisen, D.; Annane, D. Is boosting the immune system in sepsis appropriate? Crit. Care 2014, 18, 216. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skirecki, T.; Adamik, B.; Frostell, C.; Pasławska, U.; Zieliński, S.; Glatzel-Plucińska, N.; Olbromski, M.; Dzięgiel, P.; Gozdzik, W. Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock. J. Clin. Med. 2022, 11, 2641. https://doi.org/10.3390/jcm11092641
Skirecki T, Adamik B, Frostell C, Pasławska U, Zieliński S, Glatzel-Plucińska N, Olbromski M, Dzięgiel P, Gozdzik W. Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock. Journal of Clinical Medicine. 2022; 11(9):2641. https://doi.org/10.3390/jcm11092641
Chicago/Turabian StyleSkirecki, Tomasz, Barbara Adamik, Claes Frostell, Urszula Pasławska, Stanisław Zieliński, Natalia Glatzel-Plucińska, Mateusz Olbromski, Piotr Dzięgiel, and Waldemar Gozdzik. 2022. "Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock" Journal of Clinical Medicine 11, no. 9: 2641. https://doi.org/10.3390/jcm11092641
APA StyleSkirecki, T., Adamik, B., Frostell, C., Pasławska, U., Zieliński, S., Glatzel-Plucińska, N., Olbromski, M., Dzięgiel, P., & Gozdzik, W. (2022). Compartment-Specific Differences in the Activation of Monocyte Subpopulations Are Not Affected by Nitric Oxide and Glucocorticoid Treatment in a Model of Resuscitated Porcine Endotoxemic Shock. Journal of Clinical Medicine, 11(9), 2641. https://doi.org/10.3390/jcm11092641