Osteoporosis Assessment among Adults with Liver Cirrhosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Imaging
2.3. Biological Analyses
2.4. Intra-Rater and Inter-Rater Reliability
2.5. Statistical Analysis
3. Results
3.1. Intra-Rater and Inter-Rater Reliability
3.2. Patient Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawaguchi, T.; Izumi, N.; Charlton, M.R.; Sata, M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 2011, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Bio. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Kinoshita, Y.; Watanabe, M.; Sugano, K. JSGE Clinical Practice Guidelines 2014: Standards, methods, and process of developing the guidelines. J. Gastroenterol. 2015, 50, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinzani, M.; Rosselli, M.; Zuckermann, M. Liver cirrhosis. Best Pr. Res. Clin. Gastroenterol. 2011, 25, 281–290. [Google Scholar] [CrossRef]
- Merli, M. Nutrition in cirrhosis: Dos and Don’ts. J. Hepatol. 2020, 73, 1563–1565. [Google Scholar] [CrossRef]
- Nishikawa, H.; Yoh, K.; Enomoto, H.; Ishii, N.; Iwata, Y.; Takata, R.; Nishimura, T.; Aizawa, N.; Sakai, Y.; Ikeda, N.; et al. The relationship between controlling nutritional (CONUT) score and clinical markers among adults with hepatitis C virus related liver cirrhosis. Nutrients 2018, 10, 1185. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, H.; Enomoto, H.; Ishii, A.; Iwata, Y.; Miyamoto, Y.; Ishii, N.; Yuri, Y.; Hasegawa, K.; Nakano, C.; Nishimura, T.; et al. Comparison of prognostic impact between the Child-Pugh score and skeletal muscle mass for patients with liver cirrhosis. Nutrients 2017, 9, 595. [Google Scholar] [CrossRef] [Green Version]
- Alberts, C.J.; Clifford, G.M.; Georges, D.; Negro, F.; Lesi, O.A.; Hutin, Y.J.-F.; de Martel, C. Worldwide prevalence of hepatitis B virus and hepatitis C virus among patients with cirrhosis at country, region, and global levels: A systematic review. Lancet Gastroenterol. Hepatol. 2022, 7, 724–735. [Google Scholar] [CrossRef]
- Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.-S.; Muljono, D.H.; Waked, I.; Alavian, S.M.; Lee, M.-H.; Negro, F.; et al. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Crabb, D.W.; Im, G.Y.; Szabo, G.; Mellinger, J.L.; Lucey, M.R. Diagnosis and Treatment of Alcohol-Associated Liver Diseases: 2019 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2020, 71, 306–333. [Google Scholar] [CrossRef]
- Report of WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ. Tech. Rep. Ser. 1994, 843, 1–129. [Google Scholar]
- Buenger, F.; Sakr, Y.; Eckardt, N.; Senft, C.; Schwarz, F. Correlation of quantitative computed tomography derived bone density values with Hounsfield units of a contrast medium computed tomography in 98 thoraco-lumbar vertebral bodies. Arch. Orthop. Trauma. Surg. 2021, 142, 3335–3340. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, N.R.; Pickhardt, P.J.; Del Rio, A.M.; Rosas, H.G.; Anderson, P.A. Bone Mineral Density T-Scores Derived from CT Attenuation Numbers (Hounsfield Units): Clinical Utility and Correlation with Dual-energy X-ray Absorptiometry. Iowa Orthop. J. 2018, 38, 25–31. [Google Scholar] [PubMed]
- Pickhardt, P.J.; Lee, L.J.; Del Rio, A.M.; Lauder, T.; Bruce, R.J.; Summers, R.M.; Pooler, B.D.; Binkley, N. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011, 26, 2194–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenchik, L.; Boutin, R.D.; Hoover, K.B.; Kaste, S.C.; Imran, M.O.; Rosas, H.; Rutigliano, S.; Ward, R.J.; Wessell, D.E. ACR–SPR–SSR practice parameter for the performance of musculoskeletal Quantitative Computed Tomography (QCT). 2018. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/qct.pdf (accessed on 15 September 2022).
- Fukushima, K.; Ueno, Y.; Kawagishi, N.; Kondo, Y.; Inoue, J.; Kakazu, E.; Ninomiya, M.; Wakui, Y.; Saito, N.; Satomi, S.; et al. The nutritional index “CONUT” is useful for predicting long-term prognosis of patients with end-stage liver diseases. Tohoku J. Exp. Med. 2011, 224, 215–219. [Google Scholar] [CrossRef] [Green Version]
- López-Larramona, G.; Lucendo, A.J.; Tenías, J.M. Association between nutritional screening via the Controlling Nutritional Status index and bone mineral density in chronic liver disease of various etiologies. Hepatol. Res. 2015, 45, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Ignacio De Ulibarri, J.; Gonzalez-Madroño, A.; Nutrición, A.M.; Mancha, A.; Rodriguez-Salvanés, P. CONUT: A tool for Controlling Nutritional Status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- González-Madroño, A.; Mancha, A.; Rodríguez, F.J.; Culebras, J.; de Ulibarri, J.I. Confirming the validity of the CONUT system for early detection and monitoring of clinical undernutrition: Comparison with two logistic regression models developed using SGA as the gold standard. Nutr. Hosp. 2012, 27, 564–571. [Google Scholar] [PubMed]
- Wang, A.; He, Z.; Cong, P.; Qu, Y.; Hu, T.; Cai, Y.; Sun, B.; Chen, H.; Fu, W.; Peng, Y. Controlling Nutritional Status (CONUT) Score as a New Indicator of Prognosis in Patients with Hilar Cholangiocarcinoma Is Superior to NLR and PNI: A Single-Center Retrospective Study. Front. Oncol. 2021, 10, 593452. [Google Scholar] [CrossRef]
- Takagi, K.; Yagi, T.; Umeda, Y.; Shinoura, S.; Yoshida, R.; Nobuoka, D.; Kuise, T.; Araki, H.; Fujiwara, T. Preoperative Controlling Nutritional Status (CONUT) Score for Assessment of Prognosis Following Hepatectomy for Hepatocellular Carcinoma. World J. Surg. 2017, 41, 2353–2560. [Google Scholar] [CrossRef]
- The Protocol for Viral B, C, D Hepatitis. 2022. Available online: https://www.cdc.gov/std/treatment-guidelines/hcv.htm (accessed on 2 September 2022).
- Kim, H.W.; Kim, Y.-H.; Han, K.; Nam, G.E.; Kim, G.E.; Han, B.-D.; Lee, A.; Ahn, J.Y.; Ko, B.J. Atrophic Gastritis: A Related Factor for Osteoporosis in Elderly Women. PLoS ONE 2014, 9, e101852. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Yun, B.C.; Seo, K.I.; Han, B.H.; Lee, S.U.; Park, E.T.; Lee, J.W.; Jeong, J. Risk factors associated with hypophosphatemia in chronic Hepatitis B patients treated with tenofovir disoproxil fumarate. Medicine 2019, 98, e18351. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, Y.; May, P.; Gordijenko, O.; Koeppen-Ursic, V.A.; Brandhorst, H.; Zimmer, C.; Makowski, M.R.; Baum, T.; Kirschke, J.S.; Gersing, A.S.; et al. Opportunistic QCT Bone Mineral Density Measurements Predicting Osteoporotic Fractures: A Use Case in a Prospective Clinical Cohort. Front. Endocrinol. 2020, 11, 586352. [Google Scholar] [CrossRef] [PubMed]
- Akarapatima, K.; Chang, A.; Prateepchaiboon, T.; Pungpipattrakul, N.; Songjamrat, A.; Pakdeejit, S.; Rattanasupar, A.; Piratvisuth, T. Predictive Outcomes Using Child-Turcotte-Pugh and Albumin-Bilirubin Scores in Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. J. Gastrointest. Cancer 2021, 53, 1006–1013. [Google Scholar] [CrossRef]
- Lee, D.H.; Son, J.H.; Kim, T.W. New scoring systems for severity outcome of liver cirrhosis and hepatocellular carcinoma: Current issues concerning the Child-Turcotte-Pugh score and the Model of End-Stage Liver Disease (MELD) score. Korean J. Hepatol. 2003, 9, 167–179. [Google Scholar]
- Andrea, T.; Marlar, C.A. Use of the Child Pugh Score in Liver Disease-PubMed. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/31194448/ (accessed on 15 September 2022).
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistics notes Cronbach’s alpha. BMJ 1997, 314, 572. [Google Scholar] [CrossRef] [Green Version]
- Kang, H. The prevention and handling of the missing data. Korean J. Anesth. 2013, 5, 402–406. Available online: www.ekja.orghttp://dx (accessed on 15 September 2022). [CrossRef] [Green Version]
- Menon, K.; Angulo, P.; Weston, S.; Dickson, E.; Lindor, K.D. Bone disease in primary biliary cirrhosis: Independent indicators and rate of progression. J. Hepatol. 2001, 35, 316–323. [Google Scholar] [CrossRef]
- Yadav, A.; Carey, E.J. Osteoporosis in chronic liver disease. Nutr. Clin. Pr. 2013, 28, 52–64. [Google Scholar] [CrossRef]
- Guañabens, N.; Parés, A. Osteoporosis en la cirrosis hepática. Gastroenterol. Hepatol. 2012, 35, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Wariaghli, G.; Mounach, A.; Achemlal, L.; Benbaghdadi, I.; Aouragh, A.; Bezza, A.; El Maghraoui, A. Osteoporosis in chronic liver disease: A case-control study. Rheumatol. Int. 2010, 30, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Gasser, R.W. Cholestasis and metabolic bone disease—A clinical review. In Wiener Medizinische Wochenschrift; Springer: Berlin/Heidelberg, Germany, 2008; pp. 553–557. [Google Scholar]
- Guañabens, N.; Cerdá, D.; Monegal, A.; Pons, F.; Caballeria, L.; Peris, P.; Pares, A. Low Bone Mass and Severity of Cholestasis Affect Fracture Risk in Patients with Primary Biliary Cirrhosis. Gastroenterology 2010, 138, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gaspà, S.; Martinez-Ferrer, A.; Guañabens, N.; Dubreuil, M.; Peris, P.; Enjuanes, A.; de Osaba, M.J.M.; Alvarez, L.; Monegal, A.; Combalia, A.; et al. Effects of bilirubin and sera from jaundiced patients on osteoblasts: Contribution to the development of osteoporosis in liver diseases. Hepatology 2011, 54, 2104–2113. [Google Scholar] [CrossRef]
- Guichelaar, M.M.J.; Kendall, R.; Malinchoc, M.; Hay, J.E. Bone mineral density before and after OLT: Long-term follow-up and predictive factors. Liver Transplant. 2006, 12, 1390–1402. [Google Scholar] [CrossRef]
- Carey, E.J.; Balan, V.; Kremers, W.K.; Hay, J.E. Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: Not just a cholestatic problem. Liver Transplant. 2003, 9, 1166–1173. [Google Scholar] [CrossRef]
- Monegal, A.; Navasa, M.; Guanabens, N.; Peris, P.; Pons, F.; Martinez de Osaba, M.J.; Rimola, A.; Rodes, J.; Munoz-Gómez, J. Osteoporosis and Bone Mineral Metabolism Disorders in Cirrhotic Patients Referred for Orthotopic Liver Transplantation. Calcif. Tissue Int. 1997, 60, 148–154. [Google Scholar] [CrossRef]
- Ionele, C.M.; Turcu-Stiolica, A.; Subtirelu, M.S.; Ungureanu, B.S.; Cioroianu, G.O.; Rogoveanu, I. A Systematic Review and Meta-Analysis on Metabolic Bone Disease in Patients with Primary Sclerosing Cholangitis. J Clin Med. 2022, 11, 3807. [Google Scholar] [CrossRef]
- Solaymani-Dodaran, M.; Card, T.R.; Aithal, G.P.; West, J. Fracture Risk in People with Primary Biliary Cirrhosis: A Population-Based Cohort Study. Gastroenterology 2006, 131, 1752–1757. [Google Scholar] [CrossRef]
- Zysset, P.; Qin, L.; Lang, T.; Khosla, S.; Leslie, W.D.; Shepherd, J.A.; Schousboe, J.T.; Engelke, K. Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: The 2015 ISCD Official Positions-Part II. J. Clin. Densitom. 2015, 18, 359–392. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, X.; Gong, Y.; Lu, Y.; Liu, M.; Cheng, X.; Li, N.; Li, C. The study of bone mineral density measured by quantitative computed tomography in middle-aged and elderly men with abnormal glucose metabolism. BMC Endocr. Disord. 2022, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, A.; Pennisi, P.; Muratore, F.; Bertino, G.; Ardiri, A.; Pulvirenti, I.; Tringali, G.; Fiore, C.E. Reduction of volumetric bone mineral density in postmenopausal women with hepatitis C virus-correlated chronic liver disease: A peripheral quantitative computed tomography (pQCT) study. Eur. J. Int. Med. 2012, 23, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Domagala, P.; Polak, W.G.; Buettner, S.; Ijzermans, J.N.M. Prognostic significance of the controlling nutritional status (CONUT) score in patients undergoing hepatectomy for hepatocellular carcinoma: A systematic review and meta-analysis. BMC Gastroenterol. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, J.; Wang, P. The prognostic value of prognostic nutritional index in hepatocellular carcinoma patients: A meta-analysis of observational studies. PLoS One 2018, 13, e0202987. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The prognostic significance of the prognostic nutritional index in cancer: A systematic review and meta-analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef]
- Teiusanu, A.; Andrei, M.; Arbanas, T.; Nicolaie, T.; Diculescu, M. Nutritional status in cirrhotic patients. Maedica 2012, 7, 284–289. [Google Scholar]
- Álvares-Da-Silva, M.R.; Reverbel Da Silveira, T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition 2005, 21, 113–117. [Google Scholar] [CrossRef]
- Campillo, B.; Richardet, J.P.; Scherman, E.; Bories, P.N. Evaluation of Nutritional Practice in Hospitalized Cirrhotic Patients: Results of a Prospective Study. Nutrition 2003, 19, 515–521. [Google Scholar] [CrossRef]
- Shrestha, D.; Rajbhandari, P. Prevalence and associated risk factors of tooth wear. J. Nepal Med. Assoc. 2018, 56, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Ciocîrlan, M.; Cazan, A.R.; Barbu, M.; Mǎnuc, M.; Diculescu, M.; Ciocîrlan, M. Subjective Global Assessment and Handgrip Strength as Predictive Factors in Patients with Liver Cirrhosis. Gastroenterol. Res. Pract. 2017, 2017, 8348390. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, Y.H.; Venners, S.A.; Terwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women 1-3. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Bristow, S.M. Calcium and Bone. In Handbook of Experimental Pharmacology; Springer Science and Business Media: Berlin, Germany, 2020; pp. 259–280. [Google Scholar]
- Kuchay, M.S.; Kumar, S.; Khalid, M.; Farooqui, J.; Bansal, B.; Singh, J.; Mithal, A. Hypercalcemia of advanced chronic liver disease: A forgotten clinical entity! Clin. Cases Min. Bone Metab. 2016, 13, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, X.M.; Xu, L.; Sun, W.J.; Cheng, X.G.; Tian, W. Clinical Study Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. Int. J. Endocrinol. 2013, 2013, 895474. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.C.; Khandelwal, N.; Rai, D.V.; Sen, R.; Bhadada, S.K.; Sharma, K.A.; Goswami, N. Comparison between the QCT and the DEXA Scanners in the Evaluation of BMD in the Lumbar Spine. J. Clin. Diagn. Res. 2011, 5, 694–699. [Google Scholar]
- Nakchbandi, I.A.; van der Merwe, S.W. Current understanding of osteoporosis associated with liver disease. Nat. Rev. Gastroenterol. Hepatol. 2009, 6, 660–670. [Google Scholar] [CrossRef]
- Oliva-Vilarnau, N.; Hankeova, S.; Vorrink, S.U.; Mkrtchian, S.; Andersson, E.R.; Lauschke, V.M. Calcium Signaling in Liver Injury and Regeneration. Front. Med. 2018, 5, 192. Available online: www.frontiersin.org (accessed on 15 September 2022). [CrossRef]
Parameters | Total Patients n = 70 | Virally Induced LC (n = 23) | Alcohol-Induced LC (n = 47) | p-Value |
---|---|---|---|---|
Age, years | 59.8 (±10.8) 62 (53–66.5) | 64.57 (±10.25) 64 (57–72) | 57.47 (±10.38) 61 (51–65) | 0.020 |
Gender, male | 65 (92.9%) | 19 (82.61%) | 46 (97.87%) | 0.037 |
History of hepatic decompensation, yes | 55 (78.6%) | 14 (60.87%) | 41 (87.23%) | 0.015 |
Encephalopathy, yes | 14 (20%) | 2 (8.7%) | 12 (25.53%) | 0.087 |
Ascites, yes | 33 (47.1%) | 9 (39.13%) | 24 (51.06%) | 0.247 |
CONUT score | 4.86 (±3.28) 5 (2–8) | 3.96 (±3.17) 3 (1–6) | 5.3 (±3.27) 5 (2–8) | 0.101 |
Severity | 0.158 | |||
Normal | 14 (20%) | 8 (34.78%) | 6 (12.77%) | |
Mild | 18 (25.7%) | 6 (26.09%) | 12 (25.53%) | |
Moderate | 25 (35.7%) | 6 (26.09%) | 19 (40.43%) | |
Severe | 13 (18.6%) | 3 (13.04%) | 10 (21.28%) | |
Obesity | 0.519 | |||
Underweight | 5 (7.1%) | 3 (13.04%) | 2 (4.26%) | |
Normal | 35 (50%) | 10 (43.48%) | 25 (53.19%) | |
Overweight | 20 (28.6%) | 6 (26.09%) | 14 (29.79%) | |
Obese | 10 (14.3%) | 4 (17.39%) | 6 (12.77%) | |
Jaundice, yes | 24 (34.3%) | 3 (13.04%) | 21 (44.68%) | 0.008 |
Cirrhosis, yes | 70 (100%) | 23 (100%) | 47 (100%) | - |
Varices, yes | 59 (84.3%) | 17 (73.91%) | 42 (89.36%) | 0.096 |
Varices grade | 0.142 | |||
0 | 13 (18.6%) | 6 (26.09%) | 7 (14.89%) | |
1 | 19 (27.1%) | 9 (39.13%) | 10 (21.28%) | |
2 | 25 (35.7%) | 7 (30.43%) | 18 (38.30%) | |
3 | 12 (17.1%) | 1 (4.35%) | 11 (23.40% | |
4 | 1 (1.4%) | 0 | 1 (2.13%) | |
Child–Pugh | 0.029 | |||
A | 25 (35.7%) | 13 (56.52%) | 12 (25.53%) | |
B | 26 (37.1%) | 7 (30.43%) | 19 (40.43%) | |
C | 19 (27.1%) | 3 (13.04%) | 16 (34.04%) | |
MELD | 15.59 (±6.45) 15 (10–19.25) | 12.96 (±5.66) 10 (8–18) | 16.87 (±6.48) 16 (11–21) | 0.011 |
INR | 1.43 (±0.38) 1.32 (1.12–1.66) | 1.3 (±0.4) 1.13 (1.11–1.35) | 1.49 (±0.36) 1.42 (1.18–1.7) | 0.008 |
TQ | 28.45 (±10.35) 30.8 (18–36) | 29.41 (±9.98) 32.8 (18–36) | 27.98 (±10.6) 30.6 (18–35.8) | 0.608 |
TP | 62.57 (±22.3) 59.5 (46.7–78.22) | 62.87 (±25.37) 61 (45.8–83) | 62.43 (±20.93) 57 (47–70) | 0.657 |
AST (U/L) | 61.89 (±39.06) 51 (36.75–74.75) | 58.96 (±30.88) 49 (40–74) | 63.33 (±42.74) 52 (36–82) | 0.995 |
ALT (U/L) | 35.84 (±23.49) 29.5 (19–47) | 42.61 (±28.27) 34 (19–57) | 32.53 (±20.27) 27 (19–44) | 0.163 |
yGT | 215.64 (±341.19) 93 (41–213) | 88.59 (±62.05) 83.5 (37–124.75) | 275.11 (±398.74) 102 (47–323) | 0.094 |
Phosphatase | 116.66 (±53.87) 107.5 (72.75–136.5) | 110 (±39.96) 110 (73–128) | 119.91 (±59.63) 103 (71–158) | 0.851 |
Calcium (mmol/L) | 7.93 (±0.29) 7.93 | 7.95 (±0.2) 7.93 | 7.92 (±0.33) 7.93 | 0.690 |
Platelet count (109/L) | 138.5 (±83.92) 123.6 (84.58–179.95) | 138.44 (±93.74) 123 (85.44–166) | 138.53 (±79.76) 124.2 (81.99–188.2) | 0.812 |
Hemoglobin (g/dL) | 11.22 (±2.92) 11.76 (8.75–13.65) | 12.47 (±2.85) 12.88 (10.04–15.39) | 10.6 (±2.78) 10.48 (8.41–12.96) | 0.012 |
Creatinine (mg/dL) | 0.93 (±0.51) 0.8 (0.69–0.99) | 1.05 (±0.76) 0.86 (0.7–1.07) | 0.88 (±0.33) 0.79 (0.69–0.92) | 0.445 |
Bilirubin (mg/dL) | 3.07 (±3.89) 1.72 (1.28–2.68) | 1.6 (±1.17) 1.33 (0.86–1.69) | 3.79 (±4.52) 2.1 (1.53–3.12) | 0.001 |
Total Patients n = 70 | Virally Induced LC (n = 23) | Alcohol-Induced LC (n = 47) | p-Value | |
---|---|---|---|---|
QCT score | 92.18 (±17.86) 88.41 (81.68–104.57) | 89.93 (±17.68) 87.53 (82.74–102.15) | 93.28 (±18.03) 88.66 (79.65–108.07) | 0.684 |
T-score | −1.68 (±0.62) −1.68 | −1.7 (±0.73) −1.68 | −1.67 (±0.56) −1.68 | 0.493 |
Osteoporosis | 0.870 | |||
Normal | 6 (5.7%) | 2 (8.7%) | 4 (8.5%) | |
Osteopenia | 49 (70%) | 17 (73.91%) | 32 (68.1%) | |
Osteoporosis | 15 (24.3%) | 4 (17.4%) | 11 (23.4%) |
Variables | Multivariate Analysis | ||
---|---|---|---|
Odds Ratio | 95% Confidence Interval | p-Value | |
Age | −0.45 | −0.74 to −0.06 | 0.025 |
Obesity | −6.67 | −11.73 to −1.6 | 0.011 |
Varices | −6.53 | −21.63 to 8.6 | 0.391 |
Grade of varices | 7.69 | 1.89 to 13.49 | 0.010 |
Child–Pugh | −4.33 | −7.16 to −1.51 | 0.003 |
MELD | 1.2 | 0.23 to 2.17 | 0.016 |
ALT | 0.14 | −0.03 to 0.32 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionele, C.M.; Turcu-Stiolica, A.; Subtirelu, M.S.; Ungureanu, B.S.; Sas, T.N.; Rogoveanu, I. Osteoporosis Assessment among Adults with Liver Cirrhosis. J. Clin. Med. 2023, 12, 153. https://doi.org/10.3390/jcm12010153
Ionele CM, Turcu-Stiolica A, Subtirelu MS, Ungureanu BS, Sas TN, Rogoveanu I. Osteoporosis Assessment among Adults with Liver Cirrhosis. Journal of Clinical Medicine. 2023; 12(1):153. https://doi.org/10.3390/jcm12010153
Chicago/Turabian StyleIonele, Claudiu Marinel, Adina Turcu-Stiolica, Mihaela Simona Subtirelu, Bogdan Silviu Ungureanu, Teodor Nicusor Sas, and Ion Rogoveanu. 2023. "Osteoporosis Assessment among Adults with Liver Cirrhosis" Journal of Clinical Medicine 12, no. 1: 153. https://doi.org/10.3390/jcm12010153
APA StyleIonele, C. M., Turcu-Stiolica, A., Subtirelu, M. S., Ungureanu, B. S., Sas, T. N., & Rogoveanu, I. (2023). Osteoporosis Assessment among Adults with Liver Cirrhosis. Journal of Clinical Medicine, 12(1), 153. https://doi.org/10.3390/jcm12010153