Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report
Abstract
:1. Introduction
2. Case Description
2.1. Subject
2.2. Therapy Protocol
2.2.1. VR Task Development
2.2.2. Healthy Subjects
2.2.3. Therapy Sessions
2.3. Patient Data Acquisition
2.3.1. Subjective and Objective Scales
2.3.2. Cortical Excitability Measures
2.3.3. Magnetic Resonance Imaging (MRI)
3. Clinical Rehabilitation Impact
3.1. Clinical Scores
3.2. Cortical Excitability Measures
3.3. fMRI measures
3.4. DTI Measures
3.5. Task-Specific Performance Measures
3.6. Subjective Questionnaire Feedback (SQF)
4. Discussion
4.1. Changes in Clinical Scores and Cortical-Excitability Measures
4.2. Changes in fMRI Activations and DTI-derived Measures
4.3. Changes in Task-Specific Performance Measures
4.4. Limitations and Future Scope and Future Scopes
4.5. Implications of Using VR in Clinical Practice
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwakkel, G.; Kollen, B.J.; Krebs, H.I. Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabil. Neural Repair 2008, 22, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donoso Brown, E.V.; McCoy, S.W.; Fechko, A.S.; Price, R.; Gilbertson, T.; Moritz, C.T. Preliminary investigation of an electromyography-controlled video game as a home program for persons in the chronic phase of stroke recovery. Arch. Phys. Med. Rehabil. 2014, 95, 1461–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhorne, P.; Bernhardt, J.; Kwakkel, G. Stroke rehabilitation. Lancet 2011, 377, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Jack, D.; Boian, R.; Member, S.; Merians, A.S.; Tremaine, M.; Burdea, G.C.; Member, S.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual Reality-Enhanced Stroke Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Alamri, A.; Eid, M.; Iglesias, R.; Shirmohammadi, S.; El Saddik, A. Haptic virtual rehabilitation exercises for poststroke diagnosis. IEEE Trans. Instrum. Meas. 2008, 57, 1876–1884. [Google Scholar] [CrossRef]
- Cauraugh, J.; Light, K.; Kim, S.; Thigpen, M.; Behrman, A. Chronic motor dysfunction after stroke: Recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 2000, 31, 1360–1364. [Google Scholar] [CrossRef]
- Shin, J.-H.; Kim, M.-Y.; Lee, J.-Y.; Jeon, Y.-J.; Kim, S.; Lee, S.; Seo, B.; Choi, Y. Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: A single-blinded, randomized controlled trial. J. Neuroeng. Rehabil. 2016, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Mekbib, D.B.; Zhao, Z.; Wang, J.; Xu, B.; Zhang, L.; Cheng, R.; Fang, S.; Shao, Y.; Yang, W.; Han, J.; et al. Proactive Motor Functional Recovery Following Immersive Virtual Reality–Based Limb Mirroring Therapy in Patients with Subacute Stroke. Neurotherapeutics 2020, 17, 1919–1930. [Google Scholar] [CrossRef]
- Nath, D.; Singh, N.; Saini, M.; Srivastava, M.V.P.; Mehndiratta, A. Design and Validation of Virtual Reality Task for Neuro-Rehabilitation of Distal Upper Extremities. Int. J. Environ. Res. Public Health 2022, 19, 1442. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Hu, X.L.; Tong, R.K.Y.; Ho, N.S.K.; Xue, J.J.; Rong, W.; Li, L.S.W. Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot after Stroke. Neurorehabil. Neural Repair 2015, 29, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Vourvopoulos, A.; Pardo, O.M.; Lefebvre, S.; Neureither, M.; Saldana, D.; Jahng, E.; Liew, S.L. Effects of a brain-computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients. Front. Hum. Neurosci. 2019, 13, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Im, H.; Ku, J.; Kim, H.J.; Kang, Y.J. Virtual Reality-Guided Motor Imagery Increases Corticomotor Excitability in Healthy Volunteers and Stroke Patients. Ann. Rehabil. Med. 2016, 40, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groppa, S.; Oliviero, A.; Eisen, A.; Quartarone, A.; Cohen, L.G.; Mall, V.; Kaelin-Lang, A.; Mima, T.; Rossi, S.; Thickbroom, G.W. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin. Neurophysiol. 2012, 123, 858–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prashantha, D.K.; Sriranjini, S.J.; Sathyaprabha, T.N.; Nagaraja, D.; Pal, P.K. Evaluation of the motor cortical excitability changes after ischemic stroke. Ann. Indian Acad. Neurol. 2013, 16, 394. [Google Scholar]
- Dodd, K.C.; Nair, V.A.; Prabhakaran, V. Role of the contralesional vs. Ipsilesional hemisphere in stroke recovery. Front. Hum. Neurosci. 2017, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Yang, F.; Hu, J.; Hu, J.; Xu, Q.; Cong, N.; Zhang, Q.; Liu, L.; Mantini, D.; Zhang, Z.; et al. Effects of high- and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NeuroImage Clin. 2019, 21, 101620. [Google Scholar] [CrossRef]
- Sung, W.H.; Wang, C.P.; Chou, C.L.; Chen, Y.C.; Chang, Y.C.; Tsai, P.Y. Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke 2013, 44, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Veldema, J.; Nowak, D.A.; Gharabaghi, A. Resting motor threshold in the course of hand motor recovery after stroke: A systematic review. J. NeuroEng. Rehabil. 2021, 18, 158. [Google Scholar] [CrossRef]
- Volz, L.J.; Sarfeld, A.S.; Diekhoff, S.; Rehme, A.K.; Pool, E.M.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Motor cortex excitability and connectivity in chronic stroke: A multimodal model of functional reorganization. Brain Struct. Funct. 2015, 220, 1093–1107. [Google Scholar] [CrossRef]
- Stinear, C.M.; Barber, P.A.; Smale, P.R.; Coxon, J.P.; Fleming, M.K.; Byblow, W.D. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007, 130, 170–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Li, G.; Liu, T.; Wang, A.; Feng, S.; Liao, X.; Jin, Y.; Guo, Z.; He, B.; McClure, M.A.; et al. Modulation of interhemispheric activation balance in motor-related areas of stroke patients with motor recovery: Systematic review and meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2015, 57, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Calautti, C.; Naccarato, M.; Jones, P.S.; Sharma, N.; Day, D.D.; Carpenter, A.T.; Bullmore, E.T.; Warburton, E.A.; Baron, J.-C. The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI study. Neuroimage 2007, 34, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.A.; Machado, A.; Janini, D.; Varnerin, N.; Bonnett, C.; Yue, G.; Jones, S.; Lowe, M.; Beall, E.; Sakaie, K. Assessment of inter-hemispheric imbalance using imaging and noninvasive brain stimulation in patients with chronic stroke. Arch. Phys. Med. Rehabil. 2015, 96, S94–S103. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.H.; You, S.H.; Hallett, M.; Cho, Y.W.; Park, C.; Sh, A.J.; Sh, Y.; Hallett, M.; Yw, C. Cortical Reorganization and Associated Functional Motor Recovery After Virtual Reality in Patients with Chronic Stroke: An Experimenter-Blind Preliminary Study. Arch. Phys. Med. Rehabil. 2005, 86, 2218–2223. [Google Scholar] [CrossRef]
- Dong, Y.; Winstein, C.J.; Albistegui-DuBois, R.; Dobkin, B.H. Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: A pilot study. Neurorehabil. Neural Repair 2007, 21, 412–428. [Google Scholar] [CrossRef]
- Wang, Z.R.; Wang, P.; Xing, L.; Mei, L.P.; Zhao, J.; Zhang, T. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients. Neural Regen. Res. 2017, 12, 1823. [Google Scholar] [CrossRef]
- Mintzopoulos, D.; Astrakas, L.G.; Khanicheh, A.; Konstas, A.A.; Singhal, A.; Moskowitz, M.A.; Rosen, B.R.; Tzika, A.A. Connectivity alterations assessed by combining fMRI and MR-compatible hand robots in chronic stroke. Neuroimage 2009, 47, T90–T97. [Google Scholar] [CrossRef] [Green Version]
- Crofts, A.; Kelly, M.E.; Gibson, C.L. Imaging functional recovery following ischemic stroke: Clinical and preclinical fMRI studies. J. Neuroimaging 2020, 30, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Feydy, A.; Carlier, R.; Roby-Brami, A.; Bussel, B.; Cazalis, F.; Pierot, L.; Burnod, Y.; Maier, M.A. Longitudinal study of motor recovery after stroke: Recruitment and focusing of brain activation. Stroke 2002, 33, 1610–1617. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.S.; Brown, M.M.; Thompson, A.J.; Frackowiak, R.S.J. Neural correlates of outcome after stroke: A cross-sectional fMRI study. Brain 2003, 126, 1430–1448. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Sadato, N.; Lyshkow, H.; Yonekura, Y.; Honda, M.; Nagamine, T.; Suwazono, S.; Magata, Y.; Ikeda, A.; Miyazaki, M. Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 1993, 116, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.A.; Vidoni, E.D.; Wessel, B.D. Motor learning after stroke: Is skill acquisition a prerequisite for contralesional neuroplastic change? Neurosci. Lett. 2010, 482, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Small, S.L.; Hlustik, P.; Noll, D.C.; Genovese, C.; Solodkin, A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 2002, 125, 1544–1557. [Google Scholar] [CrossRef]
- Bao, X.; Mao, Y.R.; Lin, Q.; Qiu, Y.H.; Chen, S.Z.; Li, L.; Cates, R.S.; Zhou, S.F.; Huang, D.F. Mechanism of Kinect-based virtual reality training for motor functional recovery of upper limbs after subacute stroke. Neural Regen. Res. 2013, 8, 2904–2913. [Google Scholar] [CrossRef]
- Chollet, F.; DiPiero, V.; Wise, R.J.; Brooks, D.J.; Dolan, R.J.; Frackowiak, R.S. The functional anatomy of motor recovery after stroke in humans: A study with positron emission tomography. Ann. Neurol. 1991, 29, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Luft, A.R.; McCombe-Waller, S.; Whitall, J.; Forrester, L.W.; Macko, R.; Sorkin, J.D.; Schulz, J.B.; Goldberg, A.P.; Hanley, D.F. Repetitive bilateral arm training and motor cortex activation in chronic stroke: A randomized controlled trial. JAMA 2004, 292, 1853–1861. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Honda, Y.; Fujii, Y.; Koyama, M.; Matsuzawa, H.; Tanaka, R. Three-dimensional anisotropy contrast magnetic resonance axonography to predict the prognosis for motor function in patients suffering from stroke. J. Neurosurg. 2001, 94, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Møller, M.; Frandsen, J.; Andersen, G.; Gjedde, A.; Vestergaard-Poulsen, P.; Østergaard, L. Dynamic changes in corticospinal tracts after stroke detected by fibretracking. J. Neurol. Neurosurg. Psychiatry 2007, 78, 587–592. [Google Scholar] [CrossRef]
- Werring, D.J.; Toosy, A.T.; Clark, C.A.; Parker, G.J.M.; Barker, G.J.; Miller, D.H.; Thompson, A.J. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry 2000, 69, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Darling, W.G.; Morecraft, R.J.; Ni, C.C.; Rajendra, J.; Butler, A.J. White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke. Neurorehabil. Neural Repair 2011, 25, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Young, B.M.; Nigogosyan, Z.; Walton, L.M.; Nair, V.A.; Grogan, S.W.; Tyler, M.E.; Farrar-Edwards, D.; Caldera, K.E.; Sattin, J.A. Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology. Front. Neuroeng. 2014, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, S.H.; Cho, S.-H.; Kim, Y.-H.; Han, B.S.; Byun, W.M.; Son, S.-M.; Kim, S.H.; Lee, S.J. Diffusion anisotrophy in the early stages of stroke can predict motor outcome. Restor. Neurol. Neurosci. 2005, 23, 11–17. [Google Scholar] [PubMed]
- Thomalla, G.; Glauche, V.; Koch, M.A.; Beaulieu, C.; Weiller, C.; Röther, J. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage 2004, 22, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Jin, Y.; Peng, H.; Xing, G.; Liao, X.; Wang, Y.; Chen, H.; He, B.; McClure, M.A.; Mu, Q. Ipsilesional High Frequency Repetitive Transcranial Magnetic Stimulation Add-On Therapy Improved Diffusion Parameters of Stroke Patients with Motor Dysfunction: A Preliminary DTI Study. Neural Plast. 2016, 2016, 6238575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, A.L.; Andrade, A.; Soares, L.; Bermúdez, S. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients. J. Neuroeng. Rehabil. 2016, 13, 96. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Zhang, H.; Liang, H.; Fan, H.; Zhou, J.; Ambrose Lo, W.L.; Li, L. A novel glasses-free virtual reality rehabilitation system on improving upper limb motor function among patients with stroke: A feasibility pilot study. Med. Nov. Technol. Devices 2021, 11, 100069. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Lan, J. Feature Evaluation of Upper Limb Exercise Rehabilitation Interactive System Based on Kinect. IEEE Access 2019, 7, 165985–165996. [Google Scholar] [CrossRef]
- Kreisel, S.H.; Hennerici, M.G.; Bäzner, H. Pathophysiology of stroke rehabilitation: The natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc. Dis. 2007, 23, 243–255. [Google Scholar] [CrossRef]
Clinical Scales | Patient (P) | |
---|---|---|
Pre-Therapy | Post-Therapy | |
FMA-UE | 57 | 61 |
FMA-UE(W/H) | 22 | 24 |
FMA-UE(S/E) | 35 | 37 |
MAS (both wrist and fingers) | 1 | 0 |
BS | 5 | 6 |
MRS | 2 | 2 |
BI | 95 | 100 |
Motor Assessment Scale | 50 | 53 |
AROM | 0°–55° | 0°–60° |
PROM | 0°–70° | 0°–70° |
MMSE | 30 | - |
VAS-F | - | 46 |
SUS | - | 80 |
MAL | 4.77 | 4.77 |
SS-QoL | 225 | 230 |
Ipsilateral MEP (µV) | 89.06 | 149.99 |
Ipsilateral RMT (%) | 65 | 58 |
Contralateral MEP (µV) | 89.06 | 145.31 |
Contralateral RMT (%) | 60 | 53 |
P: Task by Affected Hand | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Region | PRE | POST | ||||||||
No. of Voxels | Threshold | No. of Voxels | Threshold | LI/IpsCB Ratio | No. of Voxels | Threshold | No. of Voxels | Threshold | LI/IpsCB Ratio | |
Hemisphere | Right | Left | Right | Left | ||||||
PrG | 1695 | 21.66 | 946 | 17.43 | 0.28 | 1248 | 22.01 | 619 | 13.75 | 0.33 |
PoG | 1549 | 19.68 | 1349 | 19.07 | 0.07 | 1159 | 21.23 | 619 | 13.75 | 0.303 |
CBM Exterior | 980 | 9.66 | 1296 | 12.73 | 0.56 | 203 | 9.84 | 2094 | 16.17 | 0.911 |
SMA | 703 | 14.48 | 619 | 15.2 | 0.06 | 301 | 14.79 | 245 | 12.36 | 0.102 |
P: Task by Unaffected Hand | ||||||||||
PrG | 18 | 5.59 | 1362 | 18.35 | 0.97 | 77 | 7.7 | 1428 | 18.56 | 0.89 |
PoG | 73 | 8.02 | 808 | 15.21 | 0.834 | 208 | 8.12 | 1106 | 14.22 | 0.68 |
CBM Exterior | 271 | 8.24 | 72 | 9.11 | 0.79 | 443 | 9.16 | 180. | 8.32 | 0.71 |
SMA | 61 | 7.16 | 71 | 9.28 | −0.075 | 260 | 8.32 | 375 | 11.52 | −0.181 |
Region | Right (Ipsilesional Hemisphere) | aFA | Left (Contralesional Hemisphere) | aFA | ||
---|---|---|---|---|---|---|
Mean FA Values | Mean FA Values | |||||
PRE | POST | PRE | POST | |||
PrG | 0.346 | 0.368 | 0.029 | 0.367 | 0.386 | 0.024 |
PoG | 0.342 | 0.367 | 0.027 | 0.361 | 0.380 | 0.017 |
Thalamus | 0.425 | 0.454 | −0.037 | 0.395 | 0.393 | −0.072 |
CST | 0.608 | 0.615 | 0.005 | 0.614 | 0.600 | −0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nath, D.; Singh, N.; Saini, M.; Banduni, O.; Kumar, N.; Srivastava, M.V.P.; Kumaran, S.S.; Mehndiratta, A. Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report. J. Clin. Med. 2023, 12, 92. https://doi.org/10.3390/jcm12010092
Nath D, Singh N, Saini M, Banduni O, Kumar N, Srivastava MVP, Kumaran SS, Mehndiratta A. Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report. Journal of Clinical Medicine. 2023; 12(1):92. https://doi.org/10.3390/jcm12010092
Chicago/Turabian StyleNath, Debasish, Neha Singh, Megha Saini, Onika Banduni, Nand Kumar, Madakasira Vasantha Padma Srivastava, Shanmugam Senthil Kumaran, and Amit Mehndiratta. 2023. "Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report" Journal of Clinical Medicine 12, no. 1: 92. https://doi.org/10.3390/jcm12010092
APA StyleNath, D., Singh, N., Saini, M., Banduni, O., Kumar, N., Srivastava, M. V. P., Kumaran, S. S., & Mehndiratta, A. (2023). Clinical Effectiveness of Non-Immersive Virtual Reality Tasks for Post-Stroke Neuro-Rehabilitation of Distal Upper-Extremities: A Case Report. Journal of Clinical Medicine, 12(1), 92. https://doi.org/10.3390/jcm12010092