Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Design and Search Strategy
2.2. Selection Criteria
2.3. Outcomes
2.4. Data Collection and Management
2.5. Risk of Bias Assessment
2.6. Data Analysis and Investigation of Heterogeneity
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Baseline Characteristics
4. Outcomes
4.1. Primary Outcomes
4.2. Secondary Outcomes
4.3. Adverse Events
5. Discussion
5.1. Outcomes
5.2. Adverse Events
5.3. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, T.C.; George, I. Beyond the hammer: The future of cardiothoracic surgery. J. Thorac. Cardiovasc. Surg. 2015, 149, 675–677. [Google Scholar] [CrossRef]
- Oh, N.A.; Kampaktsis, P.N.; Gallo, M.; Guariento, A.; Weixler, V.; Staffa, S.J.; Avgerinos, D.V.; Colli, A.; Doulamis, I.P. An updated meta-analysis of MitraClip versus surgery for mitral regurgitation. Ann. Cardiothorac. Surg. 2021, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Munt, B.; Webb, J. Percutaneous valve repair and replacement techniques. Heart 2006, 92, 1369–1372. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Manghelli, J.L.; Carter, D.I.; Khiabani, A.J.; Maniar, H.S.; Damiano, R.J., Jr.; Sintek, M.A.; Lasala, J.M.; Zajarias, A.; Melby, S.J. Outcomes After the MitraClip Procedure in Patients at Very High Risk for Conventional Mitral Valve Surgery. Innovations 2018, 13, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kansara, T.; Kumar, A.; Majmundar, M.; Basman, C. Mitral regurgitation following PASCAL mitral valve repair system: A single arm meta-analysis. Indian Heart J. 2021, 73, 129–131. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- PROSPERO. Available online: https://www.crd.york.ac.uk/prospero/#guidancenotes (accessed on 17 March 2023).
- Available online: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=405400 (accessed on 16 March 2023).
- Stone, G.W.; Adams, D.H.; Abraham, W.T.; Kappetein, A.P.; Généreux, P.; Vranckx, P.; Mehran, R.; Kuck, K.H.; Leon, M.B.; Piazza, N.; et al. Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 2: Endpoint Definitions: A Consensus Document From the Mitral Valve Academic Research Consortium. J. Am. Coll. Cardiol. 2015, 66, 308–321. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Cochrane. Available online: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials (accessed on 17 March 2023).
- NOS. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 17 March 2023).
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Smith, R.L.; Zahr, F.; Dhoble, A.; Laham, R.; Lazkani, M.; Kodali, S.; Kliger, C.; Hermiller, J.; Vora, A.; et al. Early outcomes from the CLASP IID trial roll-in cohort for prohibitive risk patients with degenerative mitral regurgitation. Catheter. Cardiovasc. Interv. 2021, 98, E637–E646. [Google Scholar] [CrossRef] [PubMed]
- Edwards PASCAL CLASP IID/IIF Pivotal Clinical Trial (CLASP IID/IIF). Available online: https://clinicaltrials.gov/ct2/show/results/NCT03706833 (accessed on 19 March 2023).
- Gerçek, M.; Roder, F.; Rudolph, T.K.; Fortmeier, V.; Zittermann, A.; Rudolph, V.; Friedrichs, K.P. PASCAL mitral valve repair system versus MitraClip: Comparison of transcatheter edge-to-edge strategies in complex primary mitral regurgitation. Clin. Res. Cardiol. 2021, 110, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Geis, N.A.; Schlegel, P.; Heckmann, M.B.; Katus, H.A.; Frey, N.; Crespo López, P.; Raake, P.W.J. One-year results following PASCAL-based or MitraClip-based mitral valve transcatheter edge-to-edge repair. ESC Heart Fail. 2022, 9, 853–865. [Google Scholar] [CrossRef]
- Haschemi, J.; Haurand, J.M.; Bönner, F.; Kelm, M.; Westenfeld, R.; Horn, P. PASCAL vs. MitraClip for Mitral Valve Transcatheter Edge-to-Edge Repair: A Single-Center Real-World Experience. JACC Cardiovasc. Interv. 2022, 15, 1002–1004. [Google Scholar] [CrossRef] [PubMed]
- Mauri, V.; Sugiura, A.; Spieker, M.; Iliadis, C.; Horn, P.; Öztürk, C.; Besler, C.; Riebisch, M.; Al-Hammadi, O.; Ruf, T.; et al. Early Outcomes of 2 Mitral Valve Transcatheter Leaflet Approximation Devices: A Propensity Score-Matched Multicenter Comparison. JACC Cardiovasc. Interv. 2022, 15, 2541–2551. [Google Scholar] [CrossRef]
- Schneider, L.; Markovic, S.; Mueller, K.; Felbel, D.; Gerçek, M.; Friedrichs, K.; Stolz, L.; Rudolph, V.; Hausleiter, J.; Rottbauer, W.; et al. Mitral Valve Transcatheter Edge-to-Edge Repair Using MitraClip or PASCAL: A Multicenter Propensity Score-Matched Comparison. JACC Cardiovasc. Interv. 2022, 15, 2554–2567. [Google Scholar] [CrossRef]
- Feldman, T.; Foster, E.; Glower, D.D.; Kar, S.; Rinaldi, M.J.; Fail, P.S.; Smalling, R.W.; Siegel, R.; Rose, G.A.; Engeron, E.; et al. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 2011, 364, 1395–1406. [Google Scholar] [CrossRef]
- Denti, P.; Sala, A.; Belluschi, I.; Alfieri, O. Over 15 years: The advancement of transcatheter mitral valve repair. Ann. Cardiothorac. Surg. 2021, 10, 15–27. [Google Scholar] [CrossRef]
- De Backer, O.; Wong, I.; Taramasso, M.; Maisano, F.; Franzen, O.; Søndergaard, L. Transcatheter mitral valve repair: An overview of current and future devices. Open Heart 2021, 8, e001564. [Google Scholar] [CrossRef] [PubMed]
- Alozie, A.; Paranskaya, L.; Westphal, B.; Kaminski, A.; Sherif, M.; Sindt, M.; Kische, S.; Schubert, J.; Diedrich, D.; Ince, H.; et al. Clinical outcomes of conventional surgery versus MitraClip® therapy for moderate to severe symptomatic mitral valve regurgitation in the elderly population: An institutional experience. BMC Cardiovasc. Disord. 2017, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Newell, P.C.; Nisivaco, S.; Yoo, S.G.K.; Hirji, S.A.; Hou, H.; Romano, M.; Lim, D.S.; Chetcuti, S.; Shah, P.; et al. Incidence, characteristics, and outcomes of reintervention after mitral transcatheter edge-to-edge repair. J. Thorac. Cardiovasc. Surg. 2022. [Google Scholar] [CrossRef] [PubMed]
First Author and Year | Study Region | Study Type | Number of Patients | Age (Mean ± SD) | Male Sex % | Outcome | |||
---|---|---|---|---|---|---|---|---|---|
PASCAL | MitraClip | PASCAL | MitraClip | PASCAL | MitraClip | ||||
Gercek 2021 [18] | Germany | Retrospective | 22 | 16 | 81.9 ± 6.2 | 81.8 ± 8.1 | 59.1% | 56.2% | Short-term follow-up period was within 30 days after implantation. Reduction of MR to grade ≤ 1+ was significantly more frequent in PASCAL group. Safety and other outcomes were similar in both TEER systems. |
Geis 2022 [19] | Germany | Retrospective | 41 | 82 | 74.4 ± 13.9 | 77.5 ± 14.2 | 58.5% | 54.9% | A short-term follow-up time frame was between 30 days and 4 months (first visit). Although aborted implantation due to elevated MPG was seen more in PASCAL group, technical success was similar in both systems. Additionally, short-term and 1-year outcomes were noninferior in PASCAL group compared to MitraClip group. |
Haschemi 2022 [20] | Germany | Prospective | 102 | 112 | NA | NA | NA | NA | Short-term follow-up was 30 days after TEER. No significant difference in technical success, mean valvular gradient, MR degree of ≤2+ at 1st month and discharge and mortality was seen between two groups. |
Lim 2022 [16] | United States, Canada and Europe | RCT (Interim Analysis) | 117 | 63 | 81.1 ± 6.9 | 81.2 ± 6.2 | 66.7% | 68.3% | Short-term follow-up period was within 30 days after implantation. PASCAL and MitraClip groups showed similar incidences of major adverse events in first month and MR reduction to ≤2+ at six months |
Mauri 2022 [21] | Germany | Retrospective | 307 | 307 | 77 ± 9.6 | 77.1 ± 8.5 | 57.7% | 58.0% | Short-term follow-up visits were scheduled for 30 days. Technical success, procedure time, major adverse events and degree of MR ≤ 2+ at discharge were comparable in both groups, but higher rate of MR reduction to grade ≤ 1+ and a transmitral pressure gradient below 5 mm Hg was achieved in PASCAL group |
Schneider 2022 [22] | Germany | Retrospective | 196 | 216 | 76 ± 12 | 77 ± 9 | 61.2% | 50.5% | Short-term follow-up period was within 30 days after implantation. Residual MR ≤ 1+, technical success rates, 30-day mortality and long-term outcomes were similar in both groups |
First Author and Year | Selection | Comparability | Exposure/Outcome | Total Score |
---|---|---|---|---|
Gercek 2021 [18] | **** | ** | *** | ********* |
Geis 2022 [19] | **** | ** | *** | ********* |
Haschemi 2022 [20] | **** | ** | *** | ********* |
Mauri 2022 [21] | **** | * | *** | ******** |
Schneider 2022 [22] | **** | * | *** | ******** |
First Author and Year | EURO Score II (Mean ± SD) | NT-Pro-BNP (Mean ± SD) | SPAP (Mean ± SD) | LVEF (Mean ± SD) | LVESD (Mean ± SD) | LVEDD (Mean ± SD) | NYHA Class ≥ 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | M | P | M | P | M | P | M | P | M | P | M | P | M | |
Gercek 2021 [18] | 4.7 ± 3.7 | 4.3 ± 3 | 2941 ± 3271 | 3032 ± 2696 | 43 ± 20.7 | 53.4 ± 21.3 | NA | NA | NA | NA | NA | NA | 100% | 100% |
Geis 2022 [19] | 5.1 ± 3.7 | 6.6 ± 7.4 | 4519 ± 7050 | 5575 ± 6993 | 53 ± 13.8 | 49 ± 13.6 | 40.1 ± 29.2 | 40 ± 21.1 | 44.3 ± 16.9 | 43.5 ± 13.6 | 55 ± 12.3 | 56 ± 10.5 | 87.8% | 87.8% |
Haschemi 2022 [20] | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 80.4% | 78.6% |
Lim 2022 [16] | 3.9 ± 2.9 | 4.1 ± 3.1 | NA | NA | 42.3 ± 11.4 | 45.6 ± 14.6 | 59.6 ± 8.7 | 58.3 ± 9 | 38.3 ± 7.7 | 39.8 ± 7.8 | 57.1 ± 6.5 | 57.4 ± 6.5 | 60.7% | 61.9% |
Mauri 2022 [21] | 5.8 ± 4.5 | 6.9 ± 4.9 | NA | NA | 45 ± 14 | 49 ± 16 | 47 ± 15 | 47 ± 15 | 44 ± 13 | 46 ± 12 | 57 ± 10 | 57 ± 10 | 86.0% | 83.1% |
Schneider 2022 [22] | 5.8 ± 4.9 | 7.2 ± 7 | 5084 ± 7197 | 5825 ± 8298 | 44 ± 16 | 52 ± 16 | 50 ± 15 | 47 ± 15 | 42 ± 13 | 45 ± 13 | 57 ± 11 | 57 ± 11 | 91.3% | 85.2% |
Total | 5.4 ± 4.4 | 6.6 ± 5.6 | 4834.5 ± 6994.9 | 5676.3 ± 7894.9 | 44.7 ± 14.5 | 49.8 ± 15.8 | 49.7 ± 15.4 | 47.2 ± 15.5 | 42.4 ± 12.5 | 44.8 ± 12.2 | 50.9 ± 11.5 | 51.9 ± 11.1 | 83.3% | 82.2% |
First Author and Year | Mortality | CVA | Bleeding | Reintervention | ||||
---|---|---|---|---|---|---|---|---|
PASCAL | MitraClip | PASCAL | MitraClip | PASCAL | MitraClip | PASCAL | MitraClip | |
Gercek 2021 [19] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Geis 2022 [18] | 0 | 5 | 0 | 2 | 0 | 2 | 0 | 3 |
Haschemi 2022 [20] | 1 | 1 | 1 | 0 | 0 | 0 | NA | NA |
Lim 2022 [16] | 0 | 1 | 0 | 0 | 3 | 2 | 1 | 0 |
Mauri 2022 [21] | 1 | 1 | 1 | 5 | 7 | 3 | 3 | 3 |
Schneider 2022 [22] | 3 | 5 | 0 | 1 | 4 | 1 | 4 | 2 |
Total (percent) | 5 (0.64%) | 13 (1.66%) | 2 (0.26%) | 8 (1.01%) | 14 (1.79%) | 8 (1.01%) | 8 (1.33%) | 8 (1.19%) |
p value | 0.094 | 0.108 | 0.205 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, K.; Soleimani, H.; Nasrollahizadeh, A.; Jenab, Y.; Karlas, A.; Avgerinos, D.V.; Briasoulis, A.; Kuno, T.; Doulamis, I.; Kampaktsis, P.N. Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 3579. https://doi.org/10.3390/jcm12103579
Hosseini K, Soleimani H, Nasrollahizadeh A, Jenab Y, Karlas A, Avgerinos DV, Briasoulis A, Kuno T, Doulamis I, Kampaktsis PN. Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(10):3579. https://doi.org/10.3390/jcm12103579
Chicago/Turabian StyleHosseini, Kaveh, Hamidreza Soleimani, Amir Nasrollahizadeh, Yaser Jenab, Angelos Karlas, Dimitrios V. Avgerinos, Alexandros Briasoulis, Toshiki Kuno, Ilias Doulamis, and Polydoros N. Kampaktsis. 2023. "Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 10: 3579. https://doi.org/10.3390/jcm12103579
APA StyleHosseini, K., Soleimani, H., Nasrollahizadeh, A., Jenab, Y., Karlas, A., Avgerinos, D. V., Briasoulis, A., Kuno, T., Doulamis, I., & Kampaktsis, P. N. (2023). Edge-to-Edge Transcatheter Mitral Valve Repair Using PASCAL vs. MitraClip: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(10), 3579. https://doi.org/10.3390/jcm12103579