Aortic Stiffness Measured from Either 2D/4D Flow and Cine MRI or Applanation Tonometry in Coronary Artery Disease: A Case–Control Study
Abstract
:1. Summary
2. Key Results
3. Introduction
4. Methods
4.1. Population
4.2. Acquisition Protocol and CMR Data Analysis
4.2.1. Cf PWV
4.2.2. Aortic Distensibility and 2D PC PWV
4.2.3. 4D Flow PWV
4.3. Statistical Analysis
5. Results
5.1. Differences in Stiffness Measures between CAD Patients and Controls
5.2. Correlations between Stiffness Indices
5.3. Relationship between 4D PWV and Clinical Parameters
6. Discussion
6.1. Methodological Reasons for 4D PWV Superiority in the Setting of CAD
6.2. Correlations between the Aortic Stiffness Measurement Methods
6.3. Which Threshold for High PWV?
6.4. Relation with the Left Ventricular Impairment
6.5. Limitations and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton-Tyrrell, K.; Najjar, S.S.; Boudreau, R.; Venkitachalam, L.; Kupelian, V.; Simonsick, E.M.; Havlik, R.; Lakatta, E.G.; Spurgeon, H.; Kritchevsky, S.; et al. Elevated Aortic Pulse Wave Velocity, a Marker of Arterial Stiffness, Predicts Cardiovascular Events in Well-Functioning Older Adults. Circulation 2005, 111, 3384–3390. [Google Scholar] [CrossRef] [PubMed]
- Mattace-Raso, F.U.S.; van der Cammen, T.J.M.; Hofman, A.; van Popele, N.M.; Bos, M.L.; Schalekamp, M.A.D.H.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.G.; Breteler, M.M.B.; et al. Arterial Stiffness and Risk of Coronary Heart Disease and Stroke: The Rotterdam Study. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.; Benjamin, E.; Boutouyrie, P.; Cameron, J.; Chen, C.-H.; Cruickshank, J.K.; et al. Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef]
- Dogui, A.; Redheuil, A.; Lefort, M.; DeCesare, A.; Kachenoura, N.; Herment, A.; Mousseaux, E. Measurement of aortic arch pulse wave velocity in cardiovascular MR: Comparison of transit time estimators and description of a new approach. J. Magn. Reson. Imaging 2011, 33, 1321–1329. [Google Scholar] [CrossRef]
- Dogui, A.; Kachenoura, N.; Frouin, F.; Lefort, M.; De Cesare, A.; Mousseaux, E.; Herment, A. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2011, 13, 1–8. [Google Scholar] [CrossRef]
- Herment, A.; Kachenoura, N.; Lefort, M.; Bensalah, M.; Dogui, A.; Frouin, F.; Mousseaux, E.; De Cesare, A. Automated segmentation of the aorta from phase contrast MR images: Validation against expert tracing in healthy volunteers and in patients with a dilated aorta. J. Magn. Reson. Imaging 2010, 31, 881–888. [Google Scholar] [CrossRef]
- Grotenhuis, H.B.; Westenberg, J.J.; Steendijk, P.; Van Der Geest, R.J.; Ottenkamp, J.; Bax, J.J.; Jukema, J.W.; de Roos, A. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J. Magn. Reson. Imaging 2009, 30, 521–526. [Google Scholar] [CrossRef]
- Ohyama, Y.; Ambale-Venkatesh, B.; Noda, C.; Kim, J.-Y.; Tanami, Y.; Teixido-Tura, G.; Chugh, A.R.; Redheuil, A.; Liu, C.-Y.; Wu, C.O.; et al. Aortic Arch Pulse Wave Velocity Assessed by Magnetic Resonance Imaging as a Predictor of Incident Cardiovascular Events. Hypertension 2017, 70, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Latham, R.D.; Westerhof, N.; Sipkema, P.; Rubal, B.J.; Reuderink, P.; Murgo, J.P. Regional wave travel and reflections along the human aorta: A study with six simultaneous micromanometric pressures. Circulation 1985, 72, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Halushka, M.K.; Angelini, A.; Bartoloni, G.; Basso, C.; Batoroeva, L.; Bruneval, P.; Buja, L.M.; Butany, J.; D'Amati, G.; Fallon, J.T.; et al. Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: II. Noninflammatory degenerative diseases—Nomenclature and diagnostic criteria. Off. J. Soc. Cardiovasc. Pathol. 2016, 25, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Redheuil, A.; Yu, W.-C.; Wu, C.O.; Mousseaux, E.; de Cesare, A.; Yan, R.; Kachenoura, N.; Bluemke, D.; Lima, J.A.C. Reduced Ascending Aortic Strain and Distensibility: Earliest Manifestations of Vascular Aging in Humans. Hypertension 2010, 55, 319–326. [Google Scholar] [CrossRef]
- Redheuil, A.; Wu, C.O.; Kachenoura, N.; Ohyama, Y.; Yan, R.T.; Bertoni, A.G.; Hundley, G.W.; Duprez, D.A.; Jacobs, D.R.; Daniels, L.B.; et al. Proximal Aortic Distensibility Is an Independent Predictor of All-Cause Mortality and Incident CV Events: The MESA study. J. Am. Coll. Cardiol. 2014, 64, 2619–2629. [Google Scholar] [CrossRef]
- Markl, M.; Wallis, W.; Brendecke, S.; Simon, J.; Frydrychowicz, A.; Harloff, A. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn. Reson. Med. 2010, 63, 1575–1582. [Google Scholar] [CrossRef]
- Markl, M.; Wallis, W.; Strecker, C.; Gladstone, B.P.; Vach, W.; Harloff, A. Analysis of pulse wave velocity in the thoracic aorta by flow-sensitive four-dimensional MRI: Reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J. Magn. Reson. Imaging 2012, 35, 1162–1168. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Ebbers, T.; Länne, T. Pulse wave velocity with 4D flow MRI: Systematic differences and age-related regional vascular stiffness. Magn. Reson. Imaging 2014, 32, 1266–1271. [Google Scholar] [CrossRef]
- Harloff, A.; Mirzaee, H.; Lodemann, T.; Hagenlocher, P.; Wehrum, T.; Stuplich, J.; Hennemuth, A.; Hennig, J.; Grundmann, S.; Vach, W. Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance—A population-based study. J. Cardiovasc. Magn. Reson. 2018, 20, 43. [Google Scholar] [CrossRef]
- Soulat, G.; Gencer, U.; Kachenoura, N.; Villemain, O.; Messas, E.; Boutouyrie, P.; Laurent, S.; Mousseaux, E. Changes in segmental pulse wave velocity of the thoracic aorta with age and left ventricular remodelling. An MRI 4D flow study. J. Hypertens. 2020, 38, 118–126. [Google Scholar] [CrossRef]
- Houriez-Gombaud-Saintonge, S.; Mousseaux, E.; Bargiotas, I.; De Cesare, A.; Dietenbeck, T.; Bouaou, K.; Redheuil, A.; Soulat, G.; Giron, A.; Gencer, U.; et al. Comparison of different methods for the estimation of aortic pulse wave velocity from 4D flow cardiovascular magnetic resonance. Off. J. Cardiovasc. Magn. Reson. 2019, 21, 75. [Google Scholar] [CrossRef]
- Soulat, G.; Jarvis, K.; Pathrose, A.; Vali, A.; Scott, M.; Syed, A.A.; Kinno, M.; Prabhakaran, S.; Collins, J.D.; Markl, M. Renin Angiotensin System Inhibitors Reduce Aortic Stiffness and Flow Reversal After a Cryptogenic Stroke. J. Magn. Reson. Imaging 2020, 53, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, K.; Soulat, G.; Scott, M.; Vali, A.; Pathrose, A.; Syed, A.A.; Kinno, M.; Prabhakaran, S.; Collins, J.D.; Markl, M. Investigation of Aortic Wall Thickness, Stiffness and Flow Reversal in Patients with Cryptogenic Stroke: A 4D Flow MRI Study. J. Magn. Reson. Imaging 2020, 53, 942–952. [Google Scholar] [CrossRef]
- Berhane, H.; Scott, M.; Elbaz, M.S.; Jarvis, K.; McCarthy, P.; Carr, J.; Malaisrie, C.; Avery, R.; Barker, A.J.; Robinson, J.D.; et al. Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn. Reson. Med. 2020, 84, 2204–2218. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Zymeski, H.; Pepe, A.; Lombardi, M.; Wood, J.C. Robust estimation of pulse wave transit time using group delay. J. Magn. Reson. Imaging 2014, 39, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Puymirat, E.; Cayla, G.; Simon, T.; Steg, P.G.; Montalescot, G.; Durand-Zaleski, I.; le Bras, A.; Gallet, R.; Khalife, K.; Morelle, J.-F.; et al. Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. N. Engl. J. Med. 2021, 385, 297–308. [Google Scholar] [CrossRef]
- Villemain, O.; Correia, M.; Mousseaux, E.; Baranger, J.; Zarka, S.; Podetti, I.; Soulat, G.; Damy, T.; Hagège, A.; Tanter, M.; et al. Myocardial Stiffness Evaluation Using Noninvasive Shear Wave Imaging in Healthy and Hypertrophic Cardiomyopathic Adults. JACC: Cardiovasc. Imaging 2018, 12, 1135–1145. [Google Scholar] [CrossRef]
- Soulat, G.; Millasseau, S.; Stroer, S.; Tavolaro, S.; Kachenoura, N.; Khettab, H.; Boutouyrie, P.; Laurent, S.; Mousseaux, E. Impact of simultaneous measurement of central blood pressure with the SphygmoCor Xcel during MRI acquisition to better estimate aortic distensibility. J. Hypertens. 2019, 37, 1448–1454. [Google Scholar] [CrossRef]
- Pauca, A.L.; O’rourke, M.F.; Kon, N.D. Prospective Evaluation of a Method for Estimating Ascending Aortic Pressure from the Radial Artery Pressure Waveform. Hypertension 2001, 38, 932–937. [Google Scholar] [CrossRef]
- Bouaou, K.; Bargiotas, I.; Dietenbeck, T.; Bollache, E.; Soulat, G.; Craiem, D.; Houriez-Gombaud-Saintonge, S.; De Cesare, A.; Gencer, U.; Giron, A.; et al. Analysis of aortic pressure fields from 4D flow MRI in healthy volunteers: Associations with age and left ventricular remodeling. J. Magn. Reson. Imaging 2019, 50, 982–993. [Google Scholar] [CrossRef]
- Dietenbeck, T.; Craiem, D.; Rosenbaum, D.; Giron, A.; De Cesare, A.; Bouaou, K.; Girerd, X.; Cluzel, P.; Redheuil, A.; Kachenoura, N. 3D aortic morphology and stiffness in MRI using semi-automated cylindrical active surface provides optimized description of the vascular effects of aging and hypertension. Comput. Biol. Med. 2018, 103, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Dietenbeck, T.; Houriez-Gombaud-Saintonge, S.; Charpentier, E.; Gencer, U.; Giron, A.; Gallo, A.; Boussouar, S.; Pasi, N.; Soulat, G.; Mousseaux, E.; et al. Quantitative magnetic resonance imaging measures of three-dimensional aortic morphology in healthy aging and hypertension. J. Magn. Reson. Imaging 2021, 53, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Park, H.W.; Kang, M.G.; Kim, K.; Koh, J.-S.; Park, J.R.; Hwang, S.-J.; Jeong, Y.-H.; Ahn, J.H.; Jang, J.Y.; Kwak, C.H.; et al. Prognostic value of brachial-ankle pulse wave velocity in patients with non-ST-elevation myocardial infarction. Coron. Artery Dis. 2017, 28, 642–648. [Google Scholar] [CrossRef]
- Siasos, G.; Oikonomou, E.; Maniatis, K.; Georgiopoulos, G.; Kokkou, E.; Tsigkou, V.; Zaromitidou, M.; Antonopoulos, A.; Vavuranakis, M.; Stefanadis, C.; et al. Prognostic significance of arterial stiffness and osteoprotegerin in patients with stable coronary artery disease. Eur. J. Clin. Investig. 2018, 48, e12890. [Google Scholar] [CrossRef] [PubMed]
MI n = 35 | Controls n = 18 | p | |
---|---|---|---|
age (y) | 64.3 ± 11.7 | 62.0 ± 10.1 | 0.473 |
Sex Male | 32 (91%) | 16 (89%) | 1.000 |
Weight (kg) | 78.0 ± 14.1 | 71.6 ± 11.4 | 0.099 |
Height (cm) | 172.2 ± 8.8 | 171.1 ± 8.46 | 0.644 |
BMI (kg·m−2) | 26.2 ± 3.83 | 24.3 ± 2.25 | 0.025 |
Myocardial Segments with MI (n) | 3 [2–4] | 0 (0%) | <0.001 |
HR (bpm) | 61.1 ± 8.8 | 67.3 ± 7.1 | 0.025 |
Central SBP (mmHg) | 118 ± 12.5 | 116 ± 9.7 | 0.615 |
Central DBP (mmHg) | 81.0 ± 10.6 | 82.9 ± 7.2 | 0.503 |
LV EDVi (ml·m−2) | 58.0 [48.0–77.0] | 64.9 ± 14.1 | 0.547 |
LV ESVi (ml·m−2) | 25.0 [19.0–42.0] | 24.7 ± 6.6 | 0.699 |
LVEF (%) | 55.4 ± 11.0 | 61.6 ± 6.1 | 0.012 |
LVMi (g·m−2) | 66.5 [58.1–78.9] | 57.8 [52.11–61.25] | 0.002 |
AA Diameter (mm) | 35.1 ± 4.2 | 34.2 ± 3.0 | 0.436 |
DA diameter (mm) | 26.7 ± 3.1 | 27.9 ± 3.2 | 0.191 |
Cf PWV (m·s−1) | 12.67 ± 2.86 | 9.58 ± 1.13 | <0.001 |
Aortic distensibility (10−3 mmHg) | 1.71 [1.19–2.17] | 1.77 [1.46–2.70] | 0.375 |
2D PWV(m·s−1) | 10.97 ± 3.43 | 8.01 ± 2.05 | <0.001 |
4D PWV(m·s−1) | 17.3 ± 4.04 | 8.69 ± 2.54 | <0.001 |
Threshold | AUC | Sensitivity | Specificity | |
---|---|---|---|---|
Cf PWV | 10.30 m.s−1 | 0.87 | 87.5% | 83.4% |
Aortic distensibility | 1.49 × 10−3 mmHg | 0.57 | 48.5% | 78.8% |
2D PWV | 10.23 m·s−1 | 0.76 | 62.1% | 88.9% |
4D PWV | 12.86 m·s−1 | 0.97 | 88.6% | 94.4% |
CAD | Control | All | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
Age | 0.13 | 0.43 | 0.52 | 0.028 | 0.22 | 0.12 |
cMBP | 0.26 | 0.12 | 0.01 | 0.97 | 0.24 | 0.077 |
ρ | p | ρ | p | ρ | p | |
Infarct size | −0.01 | 0.76 | NA | 0.57 | <0.001 | |
LVMi | −0.03 | 0.86 | −0.23 | 0.36 | 0.28 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, L.-A.; Houriez-Gombaud-Saintonge, S.; Puymirat, E.; Gencer, U.; Dietenbeck, T.; Bouaou, K.; De Cesare, A.; Bollache, E.; Mousseaux, E.; Kachenoura, N.; et al. Aortic Stiffness Measured from Either 2D/4D Flow and Cine MRI or Applanation Tonometry in Coronary Artery Disease: A Case–Control Study. J. Clin. Med. 2023, 12, 3643. https://doi.org/10.3390/jcm12113643
Nguyen L-A, Houriez-Gombaud-Saintonge S, Puymirat E, Gencer U, Dietenbeck T, Bouaou K, De Cesare A, Bollache E, Mousseaux E, Kachenoura N, et al. Aortic Stiffness Measured from Either 2D/4D Flow and Cine MRI or Applanation Tonometry in Coronary Artery Disease: A Case–Control Study. Journal of Clinical Medicine. 2023; 12(11):3643. https://doi.org/10.3390/jcm12113643
Chicago/Turabian StyleNguyen, Lan-Anh, Sophia Houriez-Gombaud-Saintonge, Etienne Puymirat, Umit Gencer, Thomas Dietenbeck, Kevin Bouaou, Alain De Cesare, Emilie Bollache, Elie Mousseaux, Nadjia Kachenoura, and et al. 2023. "Aortic Stiffness Measured from Either 2D/4D Flow and Cine MRI or Applanation Tonometry in Coronary Artery Disease: A Case–Control Study" Journal of Clinical Medicine 12, no. 11: 3643. https://doi.org/10.3390/jcm12113643
APA StyleNguyen, L. -A., Houriez-Gombaud-Saintonge, S., Puymirat, E., Gencer, U., Dietenbeck, T., Bouaou, K., De Cesare, A., Bollache, E., Mousseaux, E., Kachenoura, N., & Soulat, G. (2023). Aortic Stiffness Measured from Either 2D/4D Flow and Cine MRI or Applanation Tonometry in Coronary Artery Disease: A Case–Control Study. Journal of Clinical Medicine, 12(11), 3643. https://doi.org/10.3390/jcm12113643