Obesity Impairs Functional Recovery of Older Stroke Patients with Possible Sarcopenia: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Possible Sarcopenia and Obesity
2.3. Functional Outcomes
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, M.; Kanai, M.; Kubo, H.; Yamamoto, M.; Shimada, S.; Mase, K. Prestroke Sarcopenia and Functional Outcomes in Elderly Patients Who Have Had an Acute Stroke: A Prospective Cohort Study. Nutrition 2019, 66, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Im, S.; Han, Y.; Koo, H.; Sohn, D.; Park, G.Y. Can Initial Sarcopenia Affect Poststroke Rehabilitation Outcome? J. Clin. Neurosci. 2020, 71, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Von Haehling, S.; Anker, S.D.; Dirnagl, U.; Doehner, W. Stroke Induced Sarcopenia: Muscle Wasting and Disability After Stroke. Int. J. Cardiol. 2013, 170, 89–94. [Google Scholar] [CrossRef]
- Baumgartner, R.N. Body Composition in Healthy Aging. Ann. N. Y. Acad. Sci. 2000, 904, 437–448. [Google Scholar] [CrossRef]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global Prevalence of Sarcopenic Obesity in Older Adults: A Systematic Review and Meta-analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef]
- Batsis, J.A.; Villareal, D.T. Sarcopenic Obesity in Older Adults: Aetiology, Epidemiology and Treatment Strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Dalamaga, M.; Kokkinos, A. Sarcopenic Obesity: Epidemiologic Evidence, Pathophysiology, and Therapeutic Perspectives. Curr. Obes. Rep. 2019, 8, 458–471. [Google Scholar] [CrossRef]
- Hong, S.H.; Choi, K.M. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int. J. Mol. Sci. 2020, 21, 494. [Google Scholar] [CrossRef]
- Guo, A.; Li, K.; Xiao, Q. Sarcopenic Obesity: Myokines as Potential Diagnostic Biomarkers and Therapeutic Targets? Exp. Gerontol. 2020, 139, 111022. [Google Scholar] [CrossRef]
- Ji, T.; Li, Y.; Ma, L. Sarcopenic Obesity: An Emerging Public Health Problem. Aging Dis. 2022, 13, 379–388. [Google Scholar] [CrossRef]
- Riaz, H.; Shah, N.; Khan, M.S.; Goyal, A.; Siddiqi, T.J.; Ahmed, H. Is Obesity Causally Linked with Cardiovascular Outcomes? A Meta-analysis of Mendelian Randomization Studies. J. Am. Coll. Cardiol. 2018, 71, A1889. [Google Scholar] [CrossRef]
- Andersen, K.K.; Olsen, T.S. The Obesity Paradox in Stroke: Lower Mortality and Lower Risk of Readmission for Recurrent Stroke in Obese Stroke Patients. Int. J. Stroke 2015, 10, 99–104. [Google Scholar] [CrossRef]
- Wohlfahrt, P.; Lopez-Jimenez, F.; Krajcoviechova, A.; Jozifova, M.; Mayer, O.; Vanek, J.; Filipovsky, J.; Llano, E.M.; Cifkova, R. The Obesity Paradox and Survivors of Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Forlivesi, S.; Cappellari, M.; Bonetti, B. Obesity Paradox and Stroke: A Narrative Review. Eat. Weight Disord. 2021, 26, 417–423. [Google Scholar] [CrossRef]
- Sanada, K.; Chen, R.; Willcox, B.; Ohara, T.; Wen, A.; Takenaka, C.; Masaki, K. Association of Sarcopenic Obesity Predicted by Anthropometric Measurements and 24-y All-Cause Mortality in Elderly Men: The Kuakini Honolulu Heart Program. Nutrition 2018, 46, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Nagano, F.; Bise, T.; Shimazu, S.; Kudo, M.; Shiraishi, A. Sarcopenic Obesity Is Associated with Activities of Daily Living and Home Discharge in Post-acute Rehabilitation. J. Am. Med. Dir. Assoc. 2020, 21, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, E.; Bashan, I.; Bozdemir, N.; Saatci, E. Which Is the Best Anthropometric Technique to Identify Obesity: Body Mass Index, Waist Circumference or Waist-Hip Ratio? Coll. Antropol. 2007, 31, 387–393. [Google Scholar]
- Iwamura, M.; Kanauchi, M. A Cross-Sectional Study of the Association Between Dynapenia and Higher-Level Functional Capacity in Daily Living in Community-Dwelling Older Adults in Japan. BMC Geriatr. 2017, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, T.d.S.; Duarte, Y.A.; Santos, J.L.; Wong, R.; Lebrão, M.L. Sarcopenia According to the European Working Group on Sarcopenia in Older People (EWGSOP) Versus Dynapenia as a Risk Factor for Mortality in the Elderly. J. Nutr. Health Aging 2014, 18, 751–756. [Google Scholar] [CrossRef]
- Yi, Y.; Shim, J.S.; Oh, B.M.; Seo, H.G. Grip Strength on the Unaffected Side as an Independent Predictor of Functional Improvement After Stroke. Am. J. Phys. Med. Rehabil. 2017, 96, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Nishiyama, T.; Matsushima, Y. Does Grip Strength on the Unaffected Side of Patients with Hemiparetic Stroke Reflect the Strength of Other Ipsilateral Muscles? J. Phys. Ther. Sci. 2017, 29, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Nishioka, S.; Taguchi, S.; Yamanouchi, A.; Nakashima, R.; Wakabayashi, H. Sarcopenic Obesity and Activities of Daily Living in Stroke Rehabilitation Patients: A Cross-Sectional Study. Healthcare 2020, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.Y.; Park, B.K.; Shin, H.S.; Kang, Y.K.; Pyun, S.B.; Paik, N.J.; Kim, S.H.; Kim, T.H.; Han, T.R. Development of the Korean Version of Modified Barthel Index (K-MBI): Multi-center Study for Subjects with Stroke. J. Korean Acad. Rehabil. Med. 2007, 31, 283–297. [Google Scholar]
- Blum, L.; Korner-Bitensky, N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review. Phys. Ther. 2008, 88, 559–566. [Google Scholar] [CrossRef]
- Sabbouh, T.; Torbey, M.T. Malnutrition in Stroke Patients: Risk Factors, Assessment, and Management. Neurocrit. Care 2018, 29, 374–384. [Google Scholar] [CrossRef]
- Alexandre, T.D.S.; Scholes, S.; Santos, J.L.F.; De Oliveira, C. Dynapenic Abdominal Obesity as a Risk Factor for Worse Trajectories of ADL Disability Among Older Adults: The ELSA Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1112–1118. [Google Scholar] [CrossRef]
- Yang, M.; Ding, X.; Luo, L.; Hao, Q.; Dong, B. Disability Associated with Obesity, Dynapenia and Dynapenic-Obesity in Chinese Older Adults. J. Am. Med. Dir. Assoc. 2014, 15, 150.e11–150.e16. [Google Scholar] [CrossRef]
- Lv, D.; Shen, S.; Chen, X. Association Between Dynapenic Abdominal Obesity and Fall Risk in Older Adults. Clin. Interv. Aging 2022, 17, 439–445. [Google Scholar] [CrossRef]
- Rivera, J.A.; Fried, L.P.; Weiss, C.O.; Simonsick, E.M. At the Tipping Point: Predicting Severe Mobility Difficulty in Vulnerable Older Women. J. Am. Geriatr. Soc. 2008, 56, 1417–1423. [Google Scholar] [CrossRef]
- Corona, L.P.; Alexandre, T.D.; Duarte, Y.A.; Lebrão, M.L. Abdominal Obesity as a Risk Factor for Disability in Brazilian Older Adults. Public Health Nutr. 2017, 20, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.S.; Miller, L.; Colby, L.A.; Pease, W.S. Sitting Balance: Its Relation to Function in Individuals with Hemiparesis. Arch. Phys. Med. Rehabil. 1996, 77, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Niam, S.; Cheung, W.; Sullivan, P.E.; Kent, S.; Gu, X. Balance and Physical Impairments After Stroke. Arch. Phys. Med. Rehabil. 1999, 80, 1227–1233. [Google Scholar] [CrossRef]
- Alghwiri, A.A. The Correlation Between Depression, Balance, and Physical Functioning Post Stroke. J. Stroke Cerebrovasc. Dis. 2016, 25, 475–479. [Google Scholar] [CrossRef]
- Hue, O.; Simoneau, M.; Marcotte, J.; Berrigan, F.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Body Weight Is a Strong Predictor of Postural Stability. Gait Posture 2007, 26, 32–38. [Google Scholar] [CrossRef]
- Simoneau, M.; Corbeil, P. The Effect of Time to Peak Ankle Torque on Balance Stability Boundary: Experimental Validation of a Biomechanical Model. Exp. Brain Res. 2005, 165, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but Not Muscle Mass, Is Associated with Mortality in the Health, Aging and Body Composition Study Cohort. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Carin-Levy, G.; Greig, C.; Young, A.; Lewis, S.; Hannan, J.; Mead, G. Longitudinal Changes in Muscle Strength and Mass After Acute Stroke. Cerebrovasc. Dis. 2006, 21, 201–207. [Google Scholar] [CrossRef]
- Flegal, K.M.; Shepherd, J.A.; Looker, A.C.; Graubard, B.I.; Borrud, L.G.; Ogden, C.L.; Harris, T.B.; Everhart, J.E.; Schenker, N. Comparisons of Percentage Body Fat, Body Mass Index, Waist Circumference, and Waist-Stature Ratio in Adults. Am. J. Clin. Nutr. 2009, 89, 500–508. [Google Scholar] [CrossRef]
- Lee, H. The Importance of Nutrition in Neurological Disorders and Nutrition Assessment Methods. Brain Neurorehabil. 2022, 15, e1. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Visser, M.; Sepúlveda, D.; Pierson, R.N.; Harris, T.; Heymsfield, S.B. How Useful Is Body Mass Index for Comparison of Body Fatness Across Age, Sex, and Ethnic Groups? Am. J. Epidemiol. 1996, 143, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Lee, D.H.; Rezende, L.F.M.; Giovannucci, E.L. Different Correlation of Body Mass Index with Body Fatness and Obesity-Related Biomarker According to Age, Sex and Race-Ethnicity. Sci. Rep. 2023, 13, 3472. [Google Scholar] [CrossRef]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef]
- Chen, H.T.; Chung, Y.C.; Chen, Y.J.; Ho, S.Y.; Wu, H.J. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity. J. Am. Geriatr. Soc. 2017, 65, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Sions, J.M.; Tyrell, C.M.; Knarr, B.A.; Jancosko, A.; Binder-Macleod, S.A. Age- and Stroke-Related Skeletal Muscle Changes: A Review for the Geriatric Clinician. J. Geriatr. Phys. Ther. 2001, 35, 155. [Google Scholar] [CrossRef]
- Shaparin, N.; Widyn, J.; Nair, S.; Kho, I.; Geller, D.; Delphin, E. Does the Obesity Paradox Apply to Early Postoperative Complications After Hip Surgery? A Retrospective Chart Review. J. Clin. Anesth. 2016, 32, 84–91. [Google Scholar] [CrossRef]
- Kalichman, L.; Rodrigues, B.; Gurvich, D.; Israelov, Z.; Spivak, E. Impact of Patient’s Weight on Stroke Rehabilitation Results. Am. J. Phys. Med. Rehabil. 2007, 86, 650–655. [Google Scholar] [CrossRef]
Non-Obese Group (N = 75) | Obese Group (N = 36) | p-Value | |
---|---|---|---|
Age, y, mean (SD) | 76.9 ± 7.1 | 77.3 ± 6.0 | 0.773 |
Sex, n (%) | 1 | ||
Male | 28 (37.3%) | 13 (36.1%) | |
Female | 47 (62.7%) | 23 (63.9%) | |
Etiology, n (%) | 0.768 | ||
Ischemic | 57 (76.0%) | 29 (80.6%) | |
Hemorrhagic | 18 (24.0%) | 7 (19.4%) | |
Time from onset, d, median [IQR] | 14.0 [8.5–19.0] | 14.0 [12.5–16.0] | 0.952 |
NIHSS, score | 6.0 [3.0–11.0] | 7.0 [3.0–10.5] | 0.975 |
Premorbid disability, n (%) | 0.031 | ||
No (mRS score < 2) | 69 (92.0%) | 27 (75.0%) | |
Yes (mRS score ≥ 2) | 6 (8.0%) | 9 (25.0%) | |
CCI, score | 4.0 [3.0–5.0] | 4.5 [3.0–5.0] | 0.261 |
BMI, kg/m2, median [IQR] | 23.3 [20.2–25.0] | 24.7 [22.8–27.2] | 0.001 |
FAT%, mean (SD) | 20 ± 10 | 40 ± 10 | <0.001 |
SMI, kg/m2, median [IQR] | 8.8 [7.9–9.7] | 7.9 [7.2–8.8] | 0.006 |
HGS of the unaffected side, kg, median [IQR] | 8.0 [4.0–15.0] | 9.0 [4.0–14.0] | 0.371 |
FMA-UE, score, median [IQR] | 19.0 [5.0–45.0] | 30.0 [5.0–42.0] | 0.525 |
FMA-LE, score, median [IQR] | 13.0 [5.0–25.0] | 18.0 [5.0–25.0] | 0.924 |
BBS, score, median [IQR] | 5.0 [1.0–17.5] | 3.0 [1.0–5.0] | 0.302 |
MBI, score, median [IQR] | 10.0 [3.0–32.0] | 8.0 [2.0–18.0] | 0.204 |
MMSE, score, median [IQR] | 13.0 [7.5–19.5] | 12.5 [7.0–19.0] | 0.767 |
BDI, score, median [IQR] | 16.0 [7.0–27.5] | 9.0 [5.5–16.0] | 0.015 |
GNRI, score, median [IQR] | 120.5 [115.4–124.4] | 122.5 [115.4–128.7] | 0.167 |
Dysphagia, n (%) | 0.286 | ||
Oral feeding | 51 (68.0%) | 20 (55.6%) | |
Tube dependent | 24 (32.0%) | 16 (44.4%) |
Dependent Variables | Predictors | Standardized Coefficient b | t | p-Value | VIF |
---|---|---|---|---|---|
MBI at discharge | Age, y | −0.196 | −2.82 | 0.006 | 1.14 |
Female | −0.031 | −0.37 | 0.714 | 1.72 | |
NIHSS, score | −0.353 | −4.54 | <0.001 | 1.43 | |
Presence of premorbid disability | −0.184 | −2.69 | 0.008 | 1.1 | |
Presence of obesity | −0.169 | −2.34 | 0.021 | 1.24 | |
Initial MBI, score | 0.198 | 2.33 | 0.022 | 1.7 | |
MMSE, score | 0.176 | 2.23 | 0.028 | 1.47 | |
GNRI, score, median [IQR] | −0.115 | −1.35 | 0.181 | 1.73 | |
BDI, score, median [IQR] | −0.058 | −0.84 | 0.405 | 1.12 | |
(constant) | 4.65 | <0.001 |
Predictors | Standardized Coefficient b | t | p-Value | VIF | |
---|---|---|---|---|---|
BBS scores at discharge | Age, y | −0.112 | 1.73 | 0.086 | 1.14 |
Female | −0.033 | 0.42 | 0.674 | 1.71 | |
NIHSS, score | −0.231 | 3.04 | 0.003 | 1.59 | |
Presence of premorbid disability | −0.181 | 2.84 | 0.005 | 1.12 | |
Presence of obesity | −0.14 | 2.11 | 0.037 | 1.21 | |
Initial BBS, score | 0.519 | 6.89 | <0.001 | 1.21 | |
MMSE, score | −0.019 | 0.28 | 0.782 | 1.59 | |
GNRI, score, median [IQR] | −0.023 | 0.29 | 0.772 | 1.12 | |
BDI, score, median [IQR] | −0.183 | 2.84 | 0.005 | 1.14 | |
(constant) | 2.7 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.Y.; Choi, Y.-A. Obesity Impairs Functional Recovery of Older Stroke Patients with Possible Sarcopenia: A Retrospective Cohort Study. J. Clin. Med. 2023, 12, 3676. https://doi.org/10.3390/jcm12113676
Kim NY, Choi Y-A. Obesity Impairs Functional Recovery of Older Stroke Patients with Possible Sarcopenia: A Retrospective Cohort Study. Journal of Clinical Medicine. 2023; 12(11):3676. https://doi.org/10.3390/jcm12113676
Chicago/Turabian StyleKim, Na Young, and Young-Ah Choi. 2023. "Obesity Impairs Functional Recovery of Older Stroke Patients with Possible Sarcopenia: A Retrospective Cohort Study" Journal of Clinical Medicine 12, no. 11: 3676. https://doi.org/10.3390/jcm12113676
APA StyleKim, N. Y., & Choi, Y. -A. (2023). Obesity Impairs Functional Recovery of Older Stroke Patients with Possible Sarcopenia: A Retrospective Cohort Study. Journal of Clinical Medicine, 12(11), 3676. https://doi.org/10.3390/jcm12113676