Percutaneous Coronary Intervention for Chronic Total Occlusion—Contemporary Approach and Future Directions
Abstract
:1. Background
2. Indications
3. Complexity Scores and Crossing Algorithms
3.1. Complexity Scores
3.2. Crossing Algorithms
4. Intravascular Imaging
4.1. Ambiguous Proximal Cap
4.2. IVUS-Guided Re-Entry
5. Current Evidence
5.1. Randomized Clinical Trials
5.2. Observational Studies
5.3. Meta-Analyses
6. Crossing Techniques
6.1. Antegrade
6.1.1. Antegrade Wire Escalation
6.1.2. Antegrade Dissection and Re-Entry
6.1.3. Parallel Wiring
6.2. Retrograde
7. Complications Management
- Balloon occlusion proximal to the perforation side to prevent bleeding. The balloon size should be 1:1 with the target vessel and inflated at low pressure. To confirm successful execution contrast injection should be performed.
- Intravenous fluids and pressors.
- Pericardiocentesis in case of tamponade.
- Urgent cardiothoracic surgery consults when percutaneous techniques fail.
8. Future Directions
8.1. Indications
8.2. Crossing Techniques
8.3. Imaging Techniques
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Råmunddal, T.; Hoebers, L.; Henriques, J.P.S.; Dworeck, C.; Angerås, O.; Odenstedt, J.; Ioanes, D.; Olivecrona, G.; Harnek, J.; Jensen, U.; et al. Chronic Total Occlusions in Sweden—A Report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). PLoS ONE 2014, 9, e103850. [Google Scholar] [CrossRef]
- Råmunddal, T.; Hoebers, L.P.; Henriques, J.P.S.; Dworeck, C.; Angerås, O.; Odenstedt, J.; Ioanes, D.; Olivecrona, G.; Harnek, J.; Jensen, U.; et al. Prognostic Impact of Chronic Total Occlusions: A Report from SCAAR (Swedish Coronary Angiography and Angioplasty Registry). JACC Cardiovasc. Interv. 2016, 9, 1535–1544. [Google Scholar] [CrossRef]
- Brilakis, E.S.; Banerjee, S.; Karmpaliotis, D.; Lombardi, W.L.; Tsai, T.T.; Shunk, K.A.; Kennedy, K.F.; Spertus, J.A.; Holmes, D.R.; Grantham, J.A. Procedural Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: A Report from the NCDR (National Cardiovascular Data Registry). JACC Cardiovasc. Interv. 2015, 8, 245–253. [Google Scholar] [CrossRef]
- Farooq, V.; Serruys, P.W.; Garcia-Garcia, H.M.; Zhang, Y.; Bourantas, C.V.; Holmes, D.R.; MacK, M.; Feldman, T.; Morice, M.C.; Ståhle, E.; et al. The Negative Impact of Incomplete Angiographic Revascularization on Clinical Outcomes and Its Association with Total Occlusions: The SYNTAX (Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery) Trial. J. Am. Coll. Cardiol. 2013, 61, 282–294. [Google Scholar] [CrossRef]
- Neumann, F.-J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on Myocardial Revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; Di Maio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, P.H.; Ahn, J.M.; Park, D.W.; Yun, S.C.; Han, S.; Kang, H.; Kang, S.J.; Kim, Y.H.; Lee, C.W.; et al. Randomized Trial Evaluating Percutaneous Coronary Intervention for the Treatment of Chronic Total Occlusion. Circulation 2019, 139, 1674–1683. [Google Scholar] [CrossRef]
- Werner, G.S.; Martin-Yuste, V.; Hildick-Smith, D.; Boudou, N.; Sianos, G.; Gelev, V.; Rumoroso, J.R.; Erglis, A.; Christiansen, E.H.; Escaned, J.; et al. A Randomized Multicentre Trial to Compare Revascularization with Optimal Medical Therapy for the Treatment of Chronic Total Coronary Occlusions. Eur. Heart J. 2018, 39, 2484–2493. [Google Scholar] [CrossRef]
- Obedinskiy, A.A.; Kretov, E.I.; Boukhris, M.; Kurbatov, V.P.; Osiev, A.G.; Ibn Elhadj, Z.; Obedinskaya, N.R.; Kasbaoui, S.; Grazhdankin, I.O.; Prokhorikhin, A.A.; et al. The IMPACTOR-CTO Trial. JACC Cardiovasc. Interv. 2018, 11, 1309–1311. [Google Scholar] [CrossRef]
- Morino, Y.; Abe, M.; Morimoto, T.; Kimura, T.; Hayashi, Y.; Muramatsu, T.; Ochiai, M.; Noguchi, Y.; Kato, K.; Shibata, Y.; et al. Predicting Successful Guidewire Crossing Through Chronic Total Occlusion of Native Coronary Lesions within 30 Minutes: The J-CTO (Multicenter CTO Registry in Japan) Score as a Difficulty Grading and Time Assessment Tool. JACC Cardiovasc. Interv. 2011, 4, 213–221. [Google Scholar] [CrossRef]
- Christopoulos, G.; Kandzari, D.E.; Yeh, R.W.; Jaffer, F.A.; Karmpaliotis, D.; Wyman, M.R.; Alaswad, K.; Lombardi, W.; Grantham, J.A.; Moses, J.; et al. Development and Validation of a Novel Scoring System for Predicting Technical Success of Chronic Total Occlusion Percutaneous Coronary Interventions: The PROGRESS CTO (Prospective Global Registry for the Study of Chronic Total Occlusion Intervention) Score. JACC Cardiovasc. Interv. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Karacsonyi, J.; Simsek, B.; Kostantinis, S.; Alaswad, K.; Krestyaninov, O.; Khatri, J.; Poommipanit, P.; Gorgulu, S.; Jaffer, F.A.; Kutuzis, M.; et al. Abstract 12578: Development and Validation of a Scoring System for Predicting Technical Failure During Percutaneous Coronary Interventions of Chronic Total Occlusions: The Updated PROGRESS-CTO Score. Circulation 2022, 146, A12578. [Google Scholar]
- Simsek, B.; Kostantinis, S.; Karacsonyi, J.; Alaswad, K.; Krestyaninov, O.; Khelimskii, D.; Davies, R.; Rier, J.; Goktekin, O.; Gorgulu, S.; et al. Predicting Periprocedural Complications in Chronic Total Occlusion Percutaneous Coronary Intervention: The PROGRESS-CTO Complication Scores. JACC Cardiovasc. Interv. 2022, 15, 1413–1422. [Google Scholar] [CrossRef]
- Szijgyarto, Z.; Rampat, R.; Werner, G.S.; Ho, C.; Reifart, N.; Lefevre, T.; Louvard, Y.; Avran, A.; Kambis, M.; Buettner, H.J.; et al. Derivation and Validation of a Chronic Total Coronary Occlusion Intervention Procedural Success Score from the 20,000-Patient EuroCTO Registry: The EuroCTO (CASTLE) Score. JACC Cardiovasc. Interv. 2019, 12, 335–342. [Google Scholar] [CrossRef]
- Maeremans, J.; Spratt, J.C.; Knaapen, P.; Walsh, S.; Agostoni, P.; Wilson, W.; Avran, A.; Faurie, B.; Bressollette, E.; Kayaert, P.; et al. Towards a Contemporary, Comprehensive Scoring System for Determining Technical Outcomes of Hybrid Percutaneous Chronic Total Occlusion Treatment: The RECHARGE Score. Catheter. Cardiovasc. Interv. 2018, 91, 192–202. [Google Scholar] [CrossRef]
- Alessandrino, G.; Chevalier, B.; Lefèvre, T.; Sanguineti, F.; Garot, P.; Unterseeh, T.; Hovasse, T.; Morice, M.C.; Louvard, Y. A Clinical and Angiographic Scoring System to Predict the Probability of Successful First-Attempt Percutaneous Coronary Intervention in Patients with Total Chronic Coronary Occlusion. JACC Cardiovasc. Interv. 2015, 8, 1540–1548. [Google Scholar] [CrossRef]
- Ellis, S.G.; Nair, R.; Whitlow, P.L.; Burke, M.N.; Murad, M.B.; Graham, J.J.; Badawi, R.; Toma, C.; Meltser, H.; Buller, C. Predictors of Successful Hybrid-Approach Chronic Total Coronary Artery Occlusion Stenting: An Improved Model with Novel Correlates. JACC Cardiovasc. Interv. 2017, 10, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.R.; Boukhris, M.; Azzarelli, S.; Castaing, M.; Marzà, F.; Tomasello, S.D. Percutaneous Coronary Revascularization for Chronic Total Occlusions: A Novel Predictive Score of Technical Failure Using Advanced Technologies. JACC Cardiovasc. Interv. 2016, 9, 911–922. [Google Scholar] [CrossRef]
- Opolski, M.P.; Achenbach, S.; Schuhbäck, A.; Rolf, A.; Möllmann, H.; Nef, H.; Rixe, J.; Renker, M.; Witkowski, A.; Kepka, C.; et al. Coronary Computed Tomographic Prediction Rule for Time-Efficient Guidewire Crossing through Chronic Total Occlusion: Insights from the CT-RECTOR Multicenter Registry (Computed Tomography Registry of Chronic Total Occlusion Revascularization). JACC Cardiovasc. Interv. 2015, 8, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Brilakis, E.S.; Grantham, J.A.; Rinfret, S.; Wyman, R.M.; Burke, M.N.; Karmpaliotis, D.; Lembo, N.; Pershad, A.; Kandzari, D.E.; Buller, C.E.; et al. A Percutaneous Treatment Algorithm for Crossing Coronary Chronic Total Occlusions. JACC Cardiovasc. Interv. 2012, 5, 367–379. [Google Scholar] [CrossRef]
- Harding, S.A.; Wu, E.B.; Lo, S.; Lim, S.T.; Ge, L.; Chen, J.Y.; Quan, J.; Lee, S.W.; Kao, H.L.; Tsuchikane, E. A New Algorithm for Crossing Chronic Total Occlusions from the Asia Pacific Chronic Total Occlusion Club. JACC Cardiovasc. Interv. 2017, 10, 2135–2143. [Google Scholar] [CrossRef]
- Christopoulos, G.; Menon, R.V.; Karmpaliotis, D.; Alaswad, K.; Lombardi, W.; Grantham, A.; Patel, V.G.; Rangan, B.V.; Kotsia, A.P.; Lembo, N.; et al. The Efficacy and Safety of the “Hybrid” Approach to Coronary Chronic Total Occlusions: Insights from a Contemporary Multicenter US Registry and Comparison with Prior Studies. J. Invasive Cardiol. 2014, 26, 427–432. [Google Scholar]
- Galassi, A.R.; Werner, G.S.; Boukhris, M.; Azzalini, L.; Mashayekhi, K.; Carlino, M.; Avran, A.; Konstantinidis, N.V.; Grancini, L.; Bryniarski, L.; et al. Percutaneous Recanalisation of Chronic Total Occlusions: 2019 Consensus Document from the EuroCTO Club. EuroIntervention 2019, 15, 198–208. [Google Scholar] [CrossRef]
- Tanaka, H.; Tsuchikane, E.; Muramatsu, T.; Kishi, K.; Muto, M.; Oikawa, Y.; Kawasaki, T.; Hamazaki, Y.; Fujita, T.; Katoh, O. A Novel Algorithm for Treating Chronic Total Coronary Artery Occlusion. J. Am. Coll. Cardiol. 2019, 74, 2392–2404. [Google Scholar] [CrossRef]
- Brilakis, E.S.; Mashayekhi, K.; Tsuchikane, E.; Abi Rafeh, N.; Alaswad, K.; Araya, M.; Avran, A.; Azzalini, L.; Babunashvili, A.M.; Bayani, B.; et al. Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention. Circulation 2019, 140, 420–433. [Google Scholar] [CrossRef]
- Wu, E.B.; Brilakis, E.S.; Mashayekhi, K.; Tsuchikane, E.; Alaswad, K.; Araya, M.; Avran, A.; Azzalini, L.; Babunashvili, A.M.; Bayani, B.; et al. Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 840–853. [Google Scholar] [CrossRef]
- Darmoch, F.; Alraies, M.C.; Al-Khadra, Y.; Pacha, H.M.; Pinto, D.S.; Osborn, E.A. Intravascular Ultrasound Imaging–Guided versus Coronary Angiography–Guided Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e013678. [Google Scholar] [CrossRef]
- Kim, B.K.; Shin, D.H.; Hong, M.K.; Park, H.S.; Rha, S.W.; Mintz, G.S.; Kim, J.S.; Kim, J.S.; Lee, S.J.; Kim, H.Y.; et al. Clinical Impact of Intravascular Ultrasound-Guided Chronic Total Occlusion Intervention with Zotarolimus-Eluting versus Biolimus-Eluting Stent Implantation Randomized Study. Circ. Cardiovasc. Interv. 2015, 8, e002592. [Google Scholar] [CrossRef]
- Tian, N.L.; Gami, S.K.; Ye, F.; Zhang, J.J.; Liu, Z.Z.; Lin, S.; Ge, Z.; Shan, S.J.; You, W.; Chen, L.; et al. Angiographic and Clinical Comparisons of Intravascular Ultrasound-versus Angiography-Guided Drug-Eluting Stent Implantation for Patients with Chronic Total Occlusion Lesions: Two-Year Results from a Randomised AIR-CTO Study. EuroIntervention 2015, 10, 1409–1417. [Google Scholar] [CrossRef]
- Karatasakis, A.; Danek, B.A.; Karmpaliotis, D.; Alaswad, K.; Jaffer, F.A.; Yeh, R.W.; Patel, M.P.; Bahadorani, J.N.; Wyman, R.M.; Lombardi, W.L.; et al. Impact of Proximal Cap Ambiguity on Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention: Insights from a Multicenter US Registry. J. Invasive Cardiol. 2016, 28, 391–396. [Google Scholar]
- Xenogiannis, I.; Tajti, P.; Karmpaliotis, D.; Garbo, R.; Gagnor, A.; Burke, M.N.; Brilakis, E.S. Intravascular Imaging for Chronic Total Occlusion Intervention. Curr. Cardiovasc. Imaging Rep. 2018, 11, 31. [Google Scholar] [CrossRef]
- Megaly, M.; Xenogiannis, I.; Abi Rafeh, N.; Karmpaliotis, D.; Rinfret, S.; Yamane, M.; Burke, M.N.; Brilakis, E.S. Retrograde Approach to Chronic Total Occlusion Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2020, 13, e008900. [Google Scholar] [CrossRef] [PubMed]
- Galassi, A.R.; Sumitsuji, S.; Boukhris, M.; Brilakis, E.S.; Di Mario, C.; Garbo, R.; Spratt, J.C.; Christiansen, E.H.; Gagnor, A.; Avran, A.; et al. Utility of Intravascular Ultrasound in Percutaneous Revascularization of Chronic Total Occlusions: An Overview. JACC Cardiovasc. Interv. 2016, 9, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.T.; Piek, J.J.; de Winter, R.J.; Mulder, K.; Peters, R.J.G.; David, G.K. Angioplasty of Chronic Total Coronary Occlusions with the Use of Six French Guiding Catheters. Catheter. Cardiovasc. Diagn. 1997, 40, 255–260. [Google Scholar] [CrossRef]
- Mashayekhi, K.; Nührenberg, T.G.; Toma, A.; Gick, M.; Ferenc, M.; Hochholzer, W.; Comberg, T.; Rothe, J.; Valina, C.M.; Löffelhardt, N.; et al. A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion: The REVASC Trial. JACC Cardiovasc. Interv. 2018, 11, 1982–1991. [Google Scholar] [CrossRef]
- Iannaccone, M.; Nombela-Franco, L.; Gallone, G.; Annone, U.; Di Marco, A.; Giannini, F.; Ayoub, M.; Sardone, A.; Amat-Santos, I.; Fernandez-Lozano, I.; et al. Impact of Successful Chronic Coronary Total Occlusion Recanalization on Recurrence of Ventricular Arrhythmias in Implantable Cardioverter-Defibrillator Recipients for Ischemic Cardiomyopathy (VACTO PCI Study). Cardiovasc. Revascularization Med. 2022, 43, 104–111. [Google Scholar] [CrossRef]
- Elias, J.; Van Dongen, I.M.; Hoebers, L.P.; Ouweneel, D.M.; Claessen, B.E.P.M.; Råmunddal, T.; Laanmets, P.; Eriksen, E.; Van Der Schaaf, R.J.; Ioanes, D.; et al. Improved Recovery of Regional Left Ventricular Function after PCI of Chronic Total Occlusion in STEMI Patients: A Cardiovascular Magnetic Resonance Study of the Randomized Controlled EXPLORE Trial. J. Cardiovasc. Magn. Reson. 2017, 19, 53. [Google Scholar] [CrossRef]
- Henriques, J.P.S.; Hoebers, L.P.; Råmunddal, T.; Laanmets, P.; Eriksen, E.; Bax, M.; Ioanes, D.; Suttorp, M.J.; Strauss, B.H.; Barbato, E.; et al. Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients with STEMI: The EXPLORE Trial. J. Am. Coll. Cardiol. 2016, 68, 1622–1632. [Google Scholar] [CrossRef]
- Braik, N.; Guedeney, P.; Behnes, M.; Desch, S.; Barthélémy, O.; Sandri, M.; de Waha-Thiele, S.; Fuernau, G.; Rouanet, S.; Hauguel-Moreau, M.; et al. Impact of Chronic Total Occlusion and Revascularization Strategy in Patients with Infarct-Related Cardiogenic Shock: A Subanalysis of the Culprit-Shock Trial. Am. Heart J. 2021, 232, 185–193. [Google Scholar] [CrossRef]
- Elias, J.; van Dongen, I.M.; Hoebers, L.P.; Ouweneel, D.M.; Claessen, B.E.P.M.; Råmunddal, T.; Laanmets, P.; Eriksen, E.; Piek, J.J.; van der Schaaf, R.J.; et al. Recovery and Prognostic Value of Myocardial Strain in ST-Segment Elevation Myocardial Infarction Patients with a Concurrent Chronic Total Occlusion. Eur. Radiol. 2020, 30, 600–608. [Google Scholar] [CrossRef]
- Elias, J.; Van Dongen, I.M.; Råmunddal, T.; Laanmets, P.; Eriksen, E.; Meuwissen, M.; Michels, H.R.; Bax, M.; Ioanes, D.; Suttorp, M.J.; et al. Long-Term Impact of Chronic Total Occlusion Recanalisation in Patients with ST-Elevation Myocardial Infarction. Heart 2018, 104, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Van Veelen, A.; van Dongen, I.M.; Elias, J.; Henriques, J.P.S. The Impact of a Chronic Total Coronary Occlusion on Outcomes of Patients with an Implantable Cardioverter Defibrillator: Insights from the EXPLORE Trial. J. Invasive Cardiol. 2020, 32, E60–E62. [Google Scholar] [PubMed]
- Martuscelli, E.; Clementi, F.; Gallagher, M.M.; D’Eliseo, A.; Chiricolo, G.; Nigri, A.; Marino, B.; Romeo, F. Revascularization Strategy in Patients with Multivessel Disease and a Major Vessel Chronically Occluded; Data from the CABRI Trial. Eur. J. Cardiothorac. Surg. 2008, 33, 4–8. [Google Scholar] [CrossRef]
- Kawashima, H.; Takahashi, K.; Ono, M.; Hara, H.; Wang, R.; Gao, C.; Sharif, F.; Mack, M.J.; Holmes, D.R.; Morice, M.C.; et al. Mortality 10 Years After Percutaneous or Surgical Revascularization in Patients with Total Coronary Artery Occlusions. J. Am. Coll. Cardiol. 2021, 77, 529–540. [Google Scholar] [CrossRef]
- Habara, M.; Tsuchikane, E.; Muramatsu, T.; Kashima, Y.; Okamura, A.; Mutoh, M.; Yamane, M.; Oida, A.; Oikawa, Y.; Hasegawa, K. Comparison of Percutaneous Coronary Intervention for Chronic Total Occlusion Outcome According to Operator Experience from the Japanese Retrograde Summit Registry. Catheter. Cardiovasc. Interv. 2016, 87, 1027–1035. [Google Scholar] [CrossRef]
- Othman, H.; Seth, M.; Zein, R.; Rosman, H.; Lalonde, T.; Yamasaki, H.; Alaswad, K.; Menees, D.; Mehta, R.H.; Gurm, H.; et al. Percutaneous Coronary Intervention for Chronic Total Occlusion-The Michigan Experience: Insights from the BMC2 Registry. JACC Cardiovasc. Interv. 2020, 13, 1357–1368. [Google Scholar] [CrossRef]
- Konstantinidis, N.V.; Werner, G.S.; Deftereos, S.; Di Mario, C.; Galassi, A.R.; Buettner, J.H.; Avran, A.; Reifart, N.; Goktekin, O.; Garbo, R.; et al. Temporal Trends in Chronic Total Occlusion Interventions in Europe: 17626 Procedures from the European Registry of Chronic Total Occlusion. Circ. Cardiovasc. Interv. 2018, 11, e006229. [Google Scholar] [CrossRef]
- Tajti, P.; Karmpaliotis, D.; Alaswad, K.; Jaffer, F.A.; Yeh, R.W.; Patel, M.; Mahmud, E.; Choi, J.W.; Burke, M.N.; Doing, A.H.; et al. The Hybrid Approach to Chronic Total Occlusion Percutaneous Coronary Intervention: Update from the PROGRESS CTO Registry. JACC Cardiovasc. Interv. 2018, 11, 1325–1335. [Google Scholar] [CrossRef]
- Maeremans, J.; Walsh, S.; Knaapen, P.; Spratt, J.C.; Avran, A.; Hanratty, C.G.; Faurie, B.; Agostoni, P.; Bressollette, E.; Kayaert, P.; et al. The Hybrid Algorithm for Treating Chronic Total Occlusions in Europe: The RECHARGE Registry. J. Am. Coll. Cardiol. 2016, 68, 1958–1970. [Google Scholar] [CrossRef]
- Sapontis, J.; Salisbury, A.C.; Yeh, R.W.; Cohen, D.J.; Hirai, T.; Lombardi, W.; McCabe, J.M.; Karmpaliotis, D.; Moses, J.; Nicholson, W.J.; et al. Early Procedural and Health Status Outcomes After Chronic Total Occlusion Angioplasty: A Report from the OPEN-CTO Registry (Outcomes, Patient Health Status, and Efficiency in Chronic Total Occlusion Hybrid Procedures). JACC Cardiovasc. Interv. 2017, 10, 1523–1534. [Google Scholar] [CrossRef]
- Megaly, M.; Abraham, B.; Pershad, A.; Rinfret, S.; Alaswad, K.; Garcia, S.; Azzalini, L.; Gershlick, A.; Burke, M.N.; Brilakis, E.S. Outcomes of Chronic Total Occlusion Percutaneous Coronary Intervention in Patients with Prior Bypass Surgery. JACC Cardiovasc. Interv. 2020, 13, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Abo-Aly, M.; Misumida, N.; Backer, N.; ElKholey, K.; Kim, S.M.; Ogunbayo, G.O.; Abdel-Latif, A.; Ziada, K.M. Percutaneous Coronary Intervention with Drug-Eluting Stent Versus Optimal Medical Therapy for Chronic Total Occlusion: Systematic Review and Meta-Analysis. Angiology 2019, 70, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; D’ascenzo, F.; Piazza, F.; De Benedictis, M.; Doronzo, B.; Behnes, M.; Garbo, R.; Mashayekhi, K. Optimal Medical Therapy vs. Coronary Revascularization for Patients Presenting with Chronic Total Occlusion: A Meta-Analysis of Randomized Controlled Trials and Propensity Score Adjusted Studies. Catheter. Cardiovasc. Interv. 2019, 93, E320–E325. [Google Scholar] [CrossRef] [PubMed]
- Megaly, M.; Ali, A.; Saad, M.; Omer, M.; Xenogiannis, I.; Werner, G.S.; Karmpaliotis, D.; Russo, J.J.; Yamane, M.; Garbo, R.; et al. Outcomes with Retrograde versus Antegrade Chronic Total Occlusion Revascularization. Catheter. Cardiovasc. Interv. 2020, 96, 1037–1043. [Google Scholar] [CrossRef]
- Barbarawi, M.; Kheiri, B.; Zayed, Y.; Gakhal, I.; Barbarawi, O.; Rashdan, L.; Osman, M.; Bachuwa, G.; Alkotob, M.L.; Bhatt, D.L. Meta-Analysis of Percutaneous Coronary Intervention Versus Medical Therapy in the Treatment of Coronary Chronic Total Occlusion. Am. J. Cardiol. 2019, 123, 2060–2062. [Google Scholar] [CrossRef]
- Lim, M.C.L. Antegrade Techniques for Chronic Total Occlusions. Curr. Cardiol. Rev. 2015, 11, 285. [Google Scholar] [CrossRef]
- Creaney, C.; Walsh, S.J. Antegrade Chronic Total Occlusion Strategies: A Technical Focus for 2020. Interv. Cardiol. Rev. 2020, 15, e08. [Google Scholar] [CrossRef]
- Tajti, P.; Karmpaliotis, D.; Alaswad, K.; Jaffer, F.A.; Yeh, R.W.; Patel, M.; Mahmud, E.; Choi, J.W.; Burke, M.N.; Doing, A.H.; et al. Abstract 11045: Contemporary Outcomes of the Retrograde Approach to Chronic Total Occlusion Interventions: Insights from the PROGRESS CTO (PROspective Global REgiStry for the Study of Chronic Total Occlusion Intervention) International Registry. Circulation 2018, 138, A11045. [Google Scholar]
- Ioppolo, A.M.; Hovasse, T.; Benamer, H.; Champagne, S.; Chevalier, B.; Lefèvre, T.; Garot, P.; Neylon, A.; Unterseeh, T.; Louvard, Y.; et al. Angiographic Predictors of Septal Collateral Tracking During Retrograde Percutaneous Coronary Intervention for Chronic Total Occlusion: Anatomical Analysis or Rolling the Dice? J. Invasive Cardiol. 2022, 34, E286–E293. [Google Scholar]
- Huang, C.C.; Lee, C.K.; Meng, S.W.; Hung, C.S.; Chen, Y.H.; Lin, M.S.; Yeh, C.F.; Kao, H.L. Collateral Channel Size and Tortuosity Predict Retrograde Percutaneous Coronary Intervention Success for Chronic Total Occlusion. Circ. Cardiovasc. Interv. 2018, 11, e005124. [Google Scholar] [CrossRef]
- Thompson, C.A.; Jayne, J.E.; Robb, J.F.; Friedman, B.J.; Kaplan, A.V.; Hettleman, B.D.; Niles, N.W.; Lombardi, W.L. Retrograde Techniques and the Impact of Operator Volume on Percutaneous Intervention for Coronary Chronic Total Occlusions an Early U.S. Experience. JACC Cardiovasc. Interv. 2009, 2, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Simsek, B.; Kostantinis, S.; Karacsonyi, J.; Alaswad, K.; Karmpaliotis, D.; Masoumi, A.; Jaffer, F.A.; Doshi, D.; Khatri, J.; Poommipanit, P.; et al. Predictors of Success in Primary Retrograde Strategy in Chronic Total Occlusion Percutaneous Coronary Intervention: Insights from the PROGRESS-Chronic Total Occlusion Registry. Catheter. Cardiovasc. Interv. 2022, 100, 19–27. [Google Scholar] [CrossRef]
- Karmpaliotis, D.; Karatasakis, A.; Alaswad, K.; Jaffer, F.A.; Yeh, R.W.; Wyman, R.M.; Lombardi, W.L.; Grantham, J.A.; Kandzari, D.E.; Lembo, N.J.; et al. Outcomes with Use of the Retrograde Approach for Coronary Chronic Total Occlusion Interventions in a Contemporary Multicenter US Registry. Circ. Cardiovasc. Interv. 2016, 9, e003434. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.B.; Tsuchikane, E.; Ge, L.; Harding, S.A.; Lo, S.; Lim, S.T.; Chen, J.Y.; Lee, S.W.; Qian, J.; Kao, H.L.; et al. Retrograde Versus Antegrade Approach for Coronary Chronic Total Occlusion in an Algorithm-Driven Contemporary Asia-Pacific Multicenter Registry: Comparison of Outcomes. Heart Lung Circ. 2020, 29, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Azzalini, L.; Poletti, E.; Ayoub, M.; Ojeda, S.; Zivelonghi, C.; la Manna, A.; Bellini, B.; Lostalo, A.; Luque, A.; Venuti, G.; et al. Coronary Artery Perforation during Chronic Total Occlusion Percutaneous Coronary Intervention: Epidemiology, Mechanisms, Management, and Outcomes. EuroIntervention 2019, 15, E804–E811. [Google Scholar] [CrossRef]
- Kimura, M.; Katoh, O.; Tsuchikane, E.; Nasu, K.; Kinoshita, Y.; Ehara, M.; Terashima, M.; Matsuo, H.; Matsubara, T.; Asakura, K.; et al. The Efficacy of a Bilateral Approach for Treating Lesions with Chronic Total Occlusions the CART (Controlled Antegrade and Retrograde Subintimal Tracking) Registry. JACC Cardiovasc. Interv. 2009, 2, 1135–1141. [Google Scholar] [CrossRef]
- Moroni, F.; Brilakis, E.S.; Azzalini, L. Chronic Total Occlusion Percutaneous Coronary Intervention: Managing Perforation Complications. Expert Rev. Cardiovasc. Ther. 2021, 19, 71–87. [Google Scholar] [CrossRef]
- Wu, E.B.; Tsuchikane, E. The Inherent Catastrophic Traps in Retrograde CTO PCI. Catheter. Cardiovasc. Interv. 2018, 91, 1101–1109. [Google Scholar] [CrossRef]
- Doll, J.A.; Hira, R.S.; Kearney, K.E.; Kandzari, D.E.; Riley, R.F.; Marso, S.P.; Grantham, J.A.; Thompson, C.A.; McCabe, J.M.; Karmpaliotis, D.; et al. Management of Percutaneous Coronary Intervention Complications: Algorithms from the 2018 and 2019 Seattle Percutaneous Coronary Intervention Complications Conference. Circ. Cardiovasc. Interv. 2020, 13, e008962. [Google Scholar] [CrossRef]
- Danek, B.A.; Karatasakis, A.; Tajti, P.; Sandoval, Y.; Karmpaliotis, D.; Alaswad, K.; Jaffer, F.; Yeh, R.W.; Kandzari, D.E.; Lembo, N.J.; et al. Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention. Am. J. Cardiol. 2017, 120, 1285–1292. [Google Scholar] [CrossRef]
- Brilakis, E.S.; Best, P.J.M.; Elesber, A.A.; Barsness, G.W.; Lennon, R.J.; Holmes, D.R.; Rihal, C.S.; Garratt, K.N. Incidence, Retrieval Methods, and Outcomes of Stent Loss during Percutaneous Coronary Intervention: A Large Single-Center Experience. Catheter. Cardiovasc. Interv. 2005, 66, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, G.L.; Sanchez, J.S.; Regazzoli, D.; Boccuzzi, G.; Oreglia, J.A.; Gagnor, A.; Mazzarotto, P.; Belli, G.; Garbo, R. Device Entrapment during Percutaneous Coronary Intervention of Chronic Total Occlusions: Incidence and Management Strategies. EuroIntervention 2021, 17, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Almendarez, M.; Gurm, H.S.; Mariani, J.; Montorfano, M.; Brilakis, E.S.; Mehran, R.; Azzalini, L. Procedural Strategies to Reduce the Incidence of Contrast-Induced Acute Kidney Injury During Percutaneous Coronary Intervention. JACC Cardiovasc. Interv. 2019, 12, 1877–1888. [Google Scholar] [CrossRef]
- Råmunddal, T.; Holck, E.N.; Karim, S.; Eftekhari, A.; Escaned, J.; Ioanes, D.; Walsh, S.; Spratt, J.; Veien, K.; Jensen, L.O.; et al. International Randomized Trial on the Effect of Revascularization or Optimal Medical Therapy of Chronic Total Coronary Occlusions with Myocardial Ischemia—ISCHEMIA-CTO Trial—Rationale and Design. Am. Heart J. 2023, 257, 41–50. [Google Scholar] [CrossRef]
- The NOrdic-Baltic Randomized Registry Study for Evaluation of PCI in Chronic Total Coronary Occlusion. Available online: https://clinicaltrials.gov/ct2/show/NCT03392415?cond=CTO&draw=2&rank=87 (accessed on 3 April 2023).
- A Placebo-Controlled Trial of Chronic Total Occlusion Percutaneous Coronary Intervention for the Relief of Stable Angina. Available online: https://clinicaltrials.gov/ct2/show/NCT05142215?term=orbita-cto&draw=2&rank=1 (accessed on 3 April 2023).
- The Nordic Baltic Chronic Total Occlusion (CTO) Arrhythmia Study. Available online: https://clinicaltrials.gov/ct2/show/NCT04542460 (accessed on 3 April 2023).
- CTO-PCI in Heart Failure Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT05632653?cond=pci+cto&draw=3&rank=12 (accessed on 3 April 2023).
- Kostantinis, S.; Simsek, B.; Karacsonyi, J.; Davies, R.E.; Benton, S.; Nicholson, W.; Rinfret, S.; Jaber, W.A.; Raj, L.; Sandesara, P.B.; et al. Intravascular Lithotripsy in Chronic Total Occlusion Percutaneous Coronary Intervention: Insights from the PROGRESS-CTO Registry. Catheter. Cardiovasc. Interv. 2022, 100, 512–519. [Google Scholar] [CrossRef]
- Benko, A.; Bérubé, S.; Buller, C.E.; Dion, S.; Riel, L.P.; Brouillette, M.; Généreux, P. Novel Crossing System for Chronic Total Occlusion Recanalization: First-in-Man Experience with the SoundBite Crossing System. J. Invasive Cardiol. 2017, 29, E17–E20. [Google Scholar]
- Graham, J.J.; Bagai, A.; Wijeysundera, H.; Weisz, G.; Rinfret, S.; Dick, A.; Jolly, S.S.; Schaempert, E.; Mansour, S.; Dzavik, V.; et al. Collagenase to Facilitate Guidewire Crossing in Chronic Total Occlusion PCI-The Total Occlusion Study in Coronary Arteries-5 (TOSCA-5) Trial. Catheter. Cardiovasc. Interv. 2022, 99, 1065–1073. [Google Scholar] [CrossRef]
- Walsh, S.J.; Dudek, D.; Bryniarski, L.; Nicholson, W.; Karmpaliotis, D.; Uretsky, B.; McEntegart, M.; Assali, A.; Knaapen, P.; Kornowski, R.; et al. Safety and Efficacy of the NovaCross Microcatheter in Facilitating Crossing of Chronic Total Occlusion Coronary Lesions: A Multicenter, Single-Arm Clinical Trial. Coron. Artery Dis. 2020, 31, 573–577. [Google Scholar] [CrossRef]
- Kanno, D.; Tsuchikane, E.; Nasu, K.; Katoh, O.; Kashima, Y.; Kaneko, U.; Fujita, T.; Suzuki, Y.; Suzuki, T. Initial Results of a First-in-Human Study on the PlasmaWireTM System, a New Radiofrequency Wire for Recanalization of Chronic Total Occlusions. Catheter. Cardiovasc. Interv. 2018, 91, 1045–1051. [Google Scholar] [CrossRef]
- Agostoni, P.; Scott, B.; Budassi, S.; Verheye, S.; Convens, C.; Vermeersch, P.; Zivelonghi, C. A prospective evaluation of a redefined version of the “minimalistic hybrid approach” algorithm for percutaneous coronary chronic total occlusion revascularization. Catheter. Cardiovasc. Interv. 2021, 98, 617–625. [Google Scholar] [CrossRef]
- Wilgenhof, A.; Vescovo, G.M.; Bezzeccheri, A.; Scott, B.; Vermeersch, P.; Convens, C.; Verheye, S.; Zivelonghi, C.; Agostoni, P. Minimalistic Hybrid Approach for the Percutaneous Treatment of Chronic Coronary Total Occlusions: An In-Depth Analysis of the Whole Algorithm. Catheter Cardiovasc Interv 2022, 100, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Kim, B.K.; Cho, I.; Kim, H.Y.; Rha, S.W.; Lee, S.H.; Park, S.M.; Kim, Y.H.; Chang, H.J.; Ahn, C.M.; et al. Effect of Coronary CTA on Chronic Total Occlusion Percutaneous Coronary Intervention: A Randomized Trial. JACC Cardiovasc Imaging 2021, 14, 1993–2004. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, Y.; Xing, H.; Zhang, D.; Tian, J.; Le, Y.; Zhang, L.; Chen, H.; Song, X.; Wang, Z. Inclusion of Quantitative High-Density Plaque in Coronary Computed Tomographic Score System to Predict the Time of Guidewire Crossing Chronic Total Occlusion. Eur. Radiol. 2022, 32, 4565–4573. [Google Scholar] [CrossRef] [PubMed]
- Poletti, E.; Ohashi, H.; Sonck, J.; Castaldi, G.; Benedetti, A.; Collet, C.; Agostoni, P.; Zivelonghi, C. Coronary CT-Guided Minimalistic Hybrid Approach for Percutaneous Chronic Total Occlusion Recanalization. JACC Cardiovasc. Interv. 2023, 16, 1107–1108. [Google Scholar] [CrossRef]
- Abdelwahed, Y.S.; Blum, E.; Landmesser, U.; Werner, G.S.; Leistner, D.M. CT-Guided CTO-PCI Overcoming Bypass Surgery-Induced Native Coronary Artery Tenting. J. Invasive Cardiol. 2022, 34, E486–E487. [Google Scholar] [PubMed]
- Abdelwahed, Y.S.; Blum, E.; Landmesser, U.; Werner, G.S.; Leistner, D.M. “Precision-CT(O)”: CTO-Lesions Unraveled by Multimodality Cardiac Imaging. Int. J. Cardiovasc. Imaging 2022, 38, 1407–1408. [Google Scholar] [CrossRef]
- Computed Tomography Scan in Complex Chronic Total Occlusion Percutaneous Coronary Intervention. Available online: https://clinicaltrials.gov/ct2/show/NCT04549896?cond=CTO&draw=2&rank=62 (accessed on 3 April 2023).
J-CTO [10] | PROGRESS CTO [11] | Updated PROGRESS CTO [12] | CASTLE-SCORE [14] | RECHARGE SCORE [15] | CL–SCORE [16] | ORA–SCORE [18] | ELLIS–SCORE [17] | |
---|---|---|---|---|---|---|---|---|
Aim | Prediction of crossing within 30 min and technical success | Prediction of technical success | Prediction of technical success | Prediction of technical success | Prediction of technical success | Prediction of technical success | Prediction of technical success | Prediction of technical success |
Characteristics | 1. Blunt stump | 1. Ambiguous proximal cap | 1. Ambiguous proximal cap | 1. Stump blunt or unseen | 1. Blunt stump | 1. Blunt stump | 1. Ostial location of CTO | 1. Ambiguous proximal cap |
2. Calcification | 2. Moderate or severe proximal tortuosity | 2. Length ≥20 mm | 2. Calcification (severe) | 2. Calcification | 2. Severe calcification | 2. Age ≥75 years | 2. Moderate/severe calcification | |
3. >1 Bending within 45 degree | 3. Circumflex CTO | 3. Moderate/severe calcification | 3. Tortuosity degree (severe or unseen) | 3. Tortuosity ≥45° | 3. non-LAD CTO location | 3. Collateral filling Rentrop grade <2 | 3. Poor distal target | |
4. Length > 20 mm | 4. Absence of interventional collateral vessels | 4. Lack of interventional collaterals | 4. Length ≥20 mm | 4. Length ≥20 mm | 4. Length ≥20 mm | 4. Length ≥10 mm | ||
5. Prior failed PCI | 5. Age ≥65 years | 5. CABG history | 5. CABG history | 5.CABG history | 5. Collaterals straight/moderate corkscrew without kinks/tight corkscrew and/or kinked | |||
6. Poor distal landing zone | 6. Age ≥70 years | 6. Diseased landing zone | 6. Previous myocardial infarction | 6. Operator’s experience | ||||
7. Ostial CTO location | ||||||||
Derivation/validation cases | 329/165 | 521/260 | 6945 | 14,882/5745 | 880 (derivation/validation ratio 2:1) | 1143/514 | 1073 (derivation/validation ratio 2:1) | 291/145 |
Success | 88.6% guidewire crossing within 30 min | 92.9% technical success | 84.2%/87.8% (derivation/validation) technical success | 83%/85% (derivation/validation) technical success | Overall success rate 72.7% (procedural) | 91.9% (technical) | 77.9% (procedural success) | |
Period | 2006–2007 | 2012–2015 | 2016–2022 | 2008–2016 | 2014–2015 | 2004–2013 | 2005–2014 | 2014–2015 |
Centers | 12 (Japan) | 7 (USA) | 36 centers | 55 (Europe) | 17 (Europe) | 2 (France) | Single centered | 7 (USA, Canada) |
Trial | DECISION-CTO [7] | CULPRIT-SHOCK [39] | EXPLORE Trial [37,38,40,42] | The IMPACTOR-CTO Trial [9] | EUROCTO Trial [8] | REVASC Trial [35] |
---|---|---|---|---|---|---|
Subject | CTO-PCI versus optimal medical therapy | Culprit-lesion-only PCI versus multivessel PCI in cardiogenic shock (CULPRIT-SHOCK) | The effect of CTO-PCI versus optimal medical therapy in patients after STEMI | CTO-PCI versus optimal medical therapy in RCA CTO | CTO-PCI versus optimal medical therapy | CTO-PCI versus optimal medical therapy |
Number of patients | 834 (417 CTO-PCI vs. 398 no CTO-PCI) | 667 (CTO in 23.5%) | 302 | 94 with isolated RCA CTO | 396 | 205 |
Year of publication | 2019 | 2020 | 2016–2017–2020 | 2018 | 2018 | 2018 |
Design | Design as a noninferiority trial to compare the effect of CTO-PCI versus no CTO-PCI, with a background of medical therapy and PCI of obstructive non-CTO lesions in both groups. | Comparison of culprit-lesion-only PCI versus multivessel PCI strategy in cardiogenic shock. | Patients after STEMI were randomized to CTO-PCI within 7 days after primary PCI or to a conservative strategy (no-CTO PCI) for at least 4 months. | Patients with RCA CTO were randomized to receive CTO PCI or optimal medical therapy with at least 2 antianginal drugs. | Design as a prospective randomised, multicentre, open-label, and controlled clinical trial comparing CTO PCI + OMT versus OMT alone. All non-CTO lesions were treated before randomization. | Design as a prospective randomised comparing CTO PCI + OMT versus OMT alone. All non-CTO lesions were treated before randomization. |
Primary results | There was no difference in primary endpoint: death, MI, stroke, or any revascularization (93 (22.3%) vs. 89 (22.4%), p = 0.86). | Culprit-lesion-only PCI in cardiogenic shock resulted in lower rates of death or renal replacement therapy at 30 days in patients with and without CTO. | The PCI of concurrent CTO had no impact on strain recovery in patients after STEMI. CTO PCI in the LAD resulted in higher LVEF after 4 months (47.2 ± 12.3% vs. 40.4 ± 11.9%; p = 0.02). The incidence of 4-month major adverse coronary events was similar in both groups (5.4% vs. 2.6%; p = 0.25). The higher improvement in regional systolic function in the CTO territory was found in the PCI CTO arm (ΔSWT 17 ± 27% vs. 11 ± 23%, p = 0.03). | Inducible Myocardial Ischemia Burden deceased after RCA CTO PCI. | CTO PCI resulted in a decrease of physical limitation, angina frequency, CCS score and an improvement in quality of life. | There was no significant difference in segmental wall thickening in territories of chronic total occluded coronary arteries and all other parameters measured via cMRI. |
Secondary results | 3 cases of serious nonfatal complications in CTO-PCI were reported. The treatment satisfaction was measured by SAQ (1 month and 3 years after) and EQ-5D, the visual analogue scale score was higher in patients after CTO-PCI. | The presence of CTO was connected with a higher rate of death at 30 days. | There was a trend towards a higher rate of cardiac deaths in the CTO PCI group (4 (2.7%) vs. 0 (0.0%), p = 0.056). CTO PCI strategy was connected with a higher incidence of consecutive PCI in CTO and non-CTO vessel (39 (26.4%) vs. 20 (13.0%), p = 0.004). Patients with ICD had a higher risk of adverse cardiac events (32% vs. 10%, p < 0.01) and death (18% vs. 6%, p = 0.02) CTO PCI. Revascularization of a CTO after STEMI significantly shortened QT dispersion at 4 months follow-up. | Six-minute walk distance and Short Form-36 Health Survey score increased in the PCI group. There was no difference in MACE-free survival between the CTO PCI and optimal treatment groups at 12 months of follow-up (94.9% vs. 100%; p = 0.19). | Ischaemia-driven target revascularization was higher in the OMT group (9 (6.7%) vs. 5 (2.0%), p = 0.04). Major cardiovascular and cerebrovascular events, all-cause death, and cardiac death, myocardial infarction incidence did not differ between groups. | Major adverse coronary event rates at 12 months were significantly lower in the CTO PCI group (16.3% vs. 5.9%; p = 0.02). |
Additional information | Conducted in 19 centres with an annual volume of at least 500 PCIs with the presence of a CTO operator. CTO-PCI success rate was 90.6%. The trial was terminated early because of slow patient recruitment. | - | J-CTO scores 2.1–2.3. Procedural success rate was equal to 77%. | 4 (8.5%) serious nonfatal complications in CTO-PCI were reported. | J-CTO scores 1.67 - 1.82. Patients were recruited at 28 European centres with high expertise for CTO-PCI. CTO-PCI success rate at the first attempt was 83.1%. Most of the CTOs were located at RCA. Serious nonfatal complications in CTO-PCI were reported in 2.9% of subjects. | 10.9% of subjects suffered from type 4 MI. |
Author | N | Success, % | Technique Use, % | Final Succesful Strategy Technique | MACE, % | Death, % |
---|---|---|---|---|---|---|
Brilakis et al. [3] | 22,365 | 58.5% | N/D | N/D | 1.6% | 0.4% |
Habara et al. [45] | 3229 | 88.4% | Primary antegrade approach: HC: 78.4%, LC: 76.8% Primary retrograde approach: HC 21.6%, LC: 23.2% | Primary antegrade approach: HC: 64.59%, LC: 59.77% Primary retrograde approach: HC: 15.82%, LC: 16.3% | 0.53% | 0.21% |
Othman et al. [46] | 7389 | 53.4% | N/D | N/D | 3.3% | 1.4% |
Konstantinidis et al. [47] | 4314 | 89.3% | N/D | AWE 76.9% ADR 3.6% Retrograde 19.5% | 0.5% | 0.1% |
Maeremans et al. [49] | 1253 | 89% | ADR 23% Retrograde 34% | AWE 58% ADR 18% Retrograde 24% | 2.6% | 0.2% |
Sapontis et al. [50] | 1000 | 90% | N/D | AWE 40.8% ADR 24.3% RDR 24.6% RWE 10.3% | 7% | 0.9% |
Author | Megaly et al. [51] | Abo-Aly et al. [52] | Iannacone et al. [53] | Megaly et al. [54] | Barbarawi et al. [55] |
---|---|---|---|---|---|
Type of analyzed studies | 4 observational | 5 observational, 3 RCTs | 4 RCTs, 4 PSMs | 12 observational | 5 RCTs |
Year of publication | 2020 | 2019 | 2018 | 2019 | 2019 |
Number of patients | 8131 | 4579 | 3971 | 10,240, antegrade (7451) vs. retrograde (2789) | 1792 |
Number of PCIs | 2163 prior CABG | 2461 | 2050 | 10,363, antegrade (7547) vs. retrograde (2816) | N/D |
PCI success rate | N/A | N/D | N/D | Antegrade vs. retrograde 80.9% vs. 87.4%; OR for procedural failure 2.16, 95% CI 1.71–2.73, p < 0.001 | 86% |
Primary endpoint | Selected outcomes of CTO PCI between patients with and without prior CABG—in-hospital mortality (1), coronary perforation (2), MI (3), cardiac tamponade (4), acute cerebrovascular events (5), vascular complications (6), retrograde CTO crossing attempts (7), technical success (8). | Cardiac mortality (PCI vs. OMT) | MACE - CV death, MI, re-PCI (PCI vs. OMT) | MACE incidents: in-hospital mortality (1), MI (2), need for urgent pericardiocentesis (3), contrast-induced nephropathy (4), urgent revascularization (5), cerebrovascular events (6). | MACE (PCI vs. OMT) |
Results | (1) 0.8% vs. 0.3%; OR: 2.77 [95% CI: 1.43 to 5.39]; p < 0.003, (2) 7.3% vs. 4.9%; OR: 2.07 [95% CI: 1.49 to 2.86]; p < 0.001, (3) 1.4% vs. 0.5%; OR: 2.46 [95% CI: 1.46 to 4.15]; p < 0.001, (4) 0.1% vs. 0.8%; OR: 0.19 [95% CI: 0.04 to 0.87]; p < 0.03, (5) 0.3% vs. 0.3%; OR: 1.51 [95% CI: 0.49 to 4.66]; p < 0.47, (6) 1.7% vs. 1.2%; OR: 1.39 [95% CI: 0.84 to 2.31]; p < 0.2, (7) 34.7% vs. 21.9%; p < 0.001, (8) 80.7% vs. 86.5%; 1.66 [95% CI: 1.42 to 1.94]; p < 0.001, | OR = 0.62; 95% CI = 0.42–0.93; p = 0.02 | OR 0.76, 0.43–1.33, p = 0.33 | (1) 0.5% vs. 0.21%; OR 2.01, 95% CI 0.91–4.43; p = 0.08, (2) 3.07% vs. 1.27%; OR 2.37, 95% CI 1.7–3.32, p < 0.001, (3) 1.07% vs. 0.42%; OR 2.53, 95% CI 1.41–4.51, p = 0.002, (4) 3.38% vs. 1.57%; OR 2.12, 95% CI 1.47–3.08; p < 0.001, (5) 0.21% vs. 0.34%; OR 0.82, 95% CI 0.30–2.25, p = 0.70, (6) 0.44% vs. 0.19%; OR 1.95, 95% CI 0.87–4.38; p = 0.11. | RR 0.83; 95% CI 0.50 to 1.36; p = 0.45 |
Secondary endpoints | N/A | All-cause mortality (1), MI (2), stroke (3), repeat revascularization (4), MACE (5). | CTO PCI vs. OMT CV death (1), AMI (2), re-PCI (3). | Long-term outcomes: all-cause mortality (1), MI (2), target lesion revascularization (TLR) (3), and target vessel revascularization (TVR) (4). | All-cause mortality, cardiac death, spontaneous myocardial infarction (MI), repeat revascularization, target vessel revascularization (TVR), stent thrombosis, and left ventricle ejection fraction (LVEF) change. |
Secondary results | N/A | (1) OR = 0.60; 95% CI = 0.46–0.77; p = 0.001, (2) OR = 1.04; 95% CI = 0.70–1.55; p = 0.81, (3) OR = 0.62; 95% CI = 0.28–1.37; p = 0.24, (4) OR = 1.01; 95% CI = 0.58–1.76; p = 0.95, (5) OR = 0.76; 95% CI = 0.49–1.17; p = 0.21. | (1) OR 0.52, 0. 33–0.81, p < 0.01, (2) OR 0.91, 0.66–1.26, overall p = 0.61, (3) OR 1.27, 0.69–2.32, p = 0.44. | (1) 13% vs. 8.8%; OR 1.79, 95% CI 0.84–3.81, p = 0.13, (2) 5.6% vs. 2.6%; OR 2.07, 95% CI: 1.10–3.88, p = 0.02, (3) 12.9% vs. 7.2%; OR 2.08, 95% CI: 1.33–3.25, p = 0.001, (4) 32.3% vs. 17.3%; OR 1.92, 95% CI: 1.49–2.46, p < 0.001. | There were no significant differences between both groups with regard to all-cause mortality, cardiac mortality, spontaneous MI, stent thrombosis, repeat revascularization, or LVEF change. |
Conclusion | CTOs in bypassed vessels were more calcified leading to a higher risk of procedural failure. CTO crossing in prior CABG patients often required the use of the retrograde approach, which could be associated with worse outcomes. Given the higher complexity of CTO PCIs in prior CABG patients, these procedures should ideally be performed at experienced centers by seasoned CTO operators who can promptly treat complications should they arise. | PCI was associated with lower cardiac mortality compared with OMT alone. There was no difference between the 2 strategies regarding MACE, recurrent MI, repeated revascularization, or stroke. | CTO PCI seems not to have impact on MACEs, re-PCI, and ACS. A reduction in cardiovascular mortality was observed mainly driven by PSMs. | Compared with antegrade CTO PCI, the retrograde approach is attempted in more complex lesions and is associated with a higher risk for acute and long-term complications. Judicious and skillful application of the retrograde approach remains a pillar of contemporary CTO PCI. | In conclusion, in patients with CTO, PCI was not associated with significant reductions in MACE, all-cause mortality, MI, stent thrombosis, or repeat revascularization, though there was a significantly lower incidence of TVR compared with OMT. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, E.J.; Święczkowski, M.; Dudzik, J.M.; Grunwald, O.; Januszko, T.; Muszyński, P.; Pogorzelski, P.; Tokarewicz, J.; Południewski, M.; Kożuch, M.; et al. Percutaneous Coronary Intervention for Chronic Total Occlusion—Contemporary Approach and Future Directions. J. Clin. Med. 2023, 12, 3762. https://doi.org/10.3390/jcm12113762
Dąbrowski EJ, Święczkowski M, Dudzik JM, Grunwald O, Januszko T, Muszyński P, Pogorzelski P, Tokarewicz J, Południewski M, Kożuch M, et al. Percutaneous Coronary Intervention for Chronic Total Occlusion—Contemporary Approach and Future Directions. Journal of Clinical Medicine. 2023; 12(11):3762. https://doi.org/10.3390/jcm12113762
Chicago/Turabian StyleDąbrowski, Emil Julian, Michał Święczkowski, Joanna Maria Dudzik, Oliwia Grunwald, Tomasz Januszko, Paweł Muszyński, Piotr Pogorzelski, Justyna Tokarewicz, Maciej Południewski, Marcin Kożuch, and et al. 2023. "Percutaneous Coronary Intervention for Chronic Total Occlusion—Contemporary Approach and Future Directions" Journal of Clinical Medicine 12, no. 11: 3762. https://doi.org/10.3390/jcm12113762
APA StyleDąbrowski, E. J., Święczkowski, M., Dudzik, J. M., Grunwald, O., Januszko, T., Muszyński, P., Pogorzelski, P., Tokarewicz, J., Południewski, M., Kożuch, M., & Dobrzycki, S. (2023). Percutaneous Coronary Intervention for Chronic Total Occlusion—Contemporary Approach and Future Directions. Journal of Clinical Medicine, 12(11), 3762. https://doi.org/10.3390/jcm12113762