Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, R.Z.; Richard, G.; Gévry, N.; Tchernof, A.; Carpentier, A.C. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships with Metabolic Dysregulations. Endocr. Rev. 2022, 43, 35–60. [Google Scholar] [CrossRef] [PubMed]
- Stenkula, K.G.; Erlanson-Albertsson, C. Adipose cell size: Importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R284–R295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laforest, S.; Labrecque, J.; Michaud, A.; Cianflone, K.; Tchernof, A. Adipocyte size as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 2015, 52, 301–313. [Google Scholar] [CrossRef]
- Laforest, S.; Michaud, A.; Paris, G.; Pelletier, M.; Vidal, H.; Géloën, A.; Tchernof, A. Comparative analysis of three human adipocyte size measurement methods and their relevance for Cardiometabolic risk. Obesity 2017, 25, 122–131. [Google Scholar] [CrossRef]
- Gutiérrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22, 11629. [Google Scholar] [CrossRef] [PubMed]
- Mundi, M.S.; Karpyak, M.V.; Koutsari, C.; Votruba, S.B.; O’Brien, P.C.; Jensen, M.D. Body fat distribution, adipocyte size, and metabolic characteristics of nondiabetic adults. J. Clin. Endocrinol. Metab. 2010, 95, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Rydén, M.; Petrus, P.; Andersson, D.P.; Medina-Gómez, G.; Escasany, E.; Corrales Cordón, P.; Dahlman, I.; Kulyté, A.; Arner, P. Insulin action is severely impaired in adipocytes of apparently healthy overweight and obese subjects. J. Intern. Med. 2019, 285, 578–588. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Sherman, A.; Tsao, P.; Gonzalez, O.; Yee, G.; Lamendola, C.; Reaven, G.M.; Cushman, S.W. Enhanced proportion of small adipose cells in insulin-resistant vs insulin-sensitive obese individuals implicates impaired adipogenesis. Diabetologia 2007, 50, 1707–1715. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, T.; Deng, A.; Yee, G.; Lamendola, C.; Reaven, G.; Tsao, P.S.; Cushman, S.W.; Sherman, A. Inflammation in subcutaneous adipose tissue: Relationship to adipose cell size. Diabetologia 2010, 53, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute: American Heart Association: World Heart Federation; International Atherosclerosis Society; and International Association for the study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tittelbach, T.J.; Berman, D.M.; Nicklas, B.J.; Ryan, A.S.; Goldberg, A.P. Racial differences in adipocyte size and relationship to the metabolic syndrome in obese women. Obes. Res. 2004, 12, 990–998. [Google Scholar] [CrossRef]
- Langkilde, A.; Tavenier, J.; Danielsen, A.V.; Eugen-Olsen, J.; Therkildsen, C.; Jensen, F.K.; Henriksen, J.H.; Langberg, H.; Steiniche, T.; Petersen, J.; et al. Histological and Molecular Adipose Tissue Changes are Related to Metabolic Syndrome rather than Lipodystrophy in Human Immunodeficiency Virus-Infected Patients: A Cross-Sectional Study. J. Infect. Dis. 2018, 218, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Devaraj, S.; Adams-Huet, B.; Chen, X.; Kaur, H. Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2012, 97, E1844–E1850. [Google Scholar] [CrossRef] [Green Version]
- Bremer, A.A.; Devaraj, S.; Afify, A.; Jialal, I. Adipose tissue dysregulation in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1782–E1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jialal, I.; Huet, B.A.; Kaur, H.; Chien, A.; Devaraj, S. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 2012, 35, 900–904. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef]
- Jialal, I.; Adams-Huet, B.; Major, A.; Devaraj, S. Increased fibrosis and angiogenesis in subcutaneous gluteal adipose tissue in nascent metabolic syndrome. Diabetes Metab. 2017, 43, 364–367. [Google Scholar] [CrossRef]
- Pahwa, R.; Singh, A.; Adams-Huet, B.; Devaraj, S.; Jialal, I. Increased inflammasome activity in subcutaneous adipose tissue of patients with metabolic syndrome. Diabetes Metab. Res. Rev. 2021, 37, e3383. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of metabolic markers to identify overweight individuals who are insulin resistant. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Villaret, A.; Galitzky, J.; Decaunes, P.; Estève, D.; Marques, M.A.; Sengenès, C.; Chiotasso, P.; Tchkonia, T.; Lafontan, M.; Kirkland, J.L.; et al. Adipose tissue endothelial cells from obese human subjects: Differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 2010, 59, 2755–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, A.Y.; Ledoux, S.; Quéguiner, I.; Caldérari, S.; Mechler, C.; Msika, S.; Corvol, P.; Larger, E. Link between adipose tissue angiogenesis and fat accumulation in severely obese subjects. J. Clin. Endocrinol. Metab. 2012, 97, E775–E780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemoine, A.Y.; Ledoux, S.; Larger, E. Adipose tissue angiogenesis in obesity. Thromb. Haemost. 2013, 110, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, J.M.; Davis, K.E.; Scherer, P.E. Mechanisms of obesity and related pathologies; the macro-and microcirculation of adipose tissue. FEBS J. 2009, 276, 5738–5746. [Google Scholar] [CrossRef] [Green Version]
- Gurung, P.; Moussa, K.; Adams-Huet, B.; Devaraj, S.; Jialal, I. Increased mast cell abundance in adipose tissue of metabolic syndrome: Relevance to the proinflammatory state and increased adipose tissue fibrosis. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E504–E509. [Google Scholar] [CrossRef]
- Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Investig. 2006, 116, 3015–3025. [Google Scholar] [CrossRef] [Green Version]
- Dasu, M.R.; Jialal, I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E145–E154. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Kaur, H.; Devaraj, S. Toll-like receptor status in obesity and metabolic syndrome: A translational perspective. J. Clin. Endocrinol. Metab. 2014, 99, 39–48. [Google Scholar] [CrossRef]
- Jialal, I.; Devaraj, S.; Bettaieb, A.; Haj, F.; Adams-Huet, B. Increased adipose tissue secretion of Fetuin-A, lipopolysaccharide-binding protein and high-mobility group box protein 1 in metabolic syndrome. Atherosclerosis 2015, 241, 130–137. [Google Scholar] [CrossRef]
Controls, n = 19 | MetS, n = 20 | p-Value a | |
---|---|---|---|
Sex, Female/Male | 17/2 | 16/4 | 0.66 |
Age, yr | 50 (40–60) | 55 (48–61) | 0.27 |
BMI, kg/m2 | 28.8 (26.4–34.5) | 35.4 (32.3–39.3) | 0.006 |
Waist circumference, cm | 87.6 (81.3–109.2) | 106.0 (97.2–122.6) | 0.0003 |
Weight, kg | 82.7 (65.0–97.5) | 98.4 (81.7–120.0) | 0.01 |
BP-systolic, mmHg | 120 (110–132) | 128 (122–135) | 0.14 |
BP-diastolic, mmHg | 75 (69–82) | 78 (75–85) | 0.35 |
Glucose, mg/dL | 88 (85–93) | 100 (93–113) | 0.0002 |
Total cholesterol, mg/dL | 193 (162–205) | 190 (167–205) | 0.76 |
HDL-cholesterol, mg/dL | 57 (47–68) | 42 (37–48) | 0.0006 |
Triglycerides, mg/dL | 75 (49–109) | 112 (94–160) | 0.001 |
HOMA-IR | 1.3 (1.1–2.9) | 4.0 (2.4–5.8) | 0.0003 |
hsCRP, mg/L | 1.7 (0.4–4.0) | 4.5 (2.2–6.0) | 0.008 |
FFA, mmol/L | 0.34 (0.18–0.44) | 0.83 (0.73–0.88) | <0.0001 |
Rho Coefficient | p-Values | |
---|---|---|
Waist Circumference, cm | 0.20 | 0.22 |
Plasma Glucose, mg/dL | 0.48 | 0.002 |
Plasma HDL-C, mg/dL | −0.48 | 0.002 |
Plasma TG, mg/dL | 0.31 | 0.06 |
Plasma hsCRP, mg/L | 0.12 | 0.47 |
HOMA-IR | 0.13 | 0.48 |
Plasma TG:HDL-C Ratio | 0.40 | 0.01 |
Plasma Leptin, ng/mL | 0.12 | 0.48 |
Plasma Adiponectin, ug/mL | 0.31 | 0.07 |
Monocyte TLR-4 (MFI/105 cells) | 0.47 | 0.01 |
PlasmaEndotoxin (EndotoxinU/mL) | 0.68 | 0.002 |
Plasma FFA, mmol/L | 0.63 | 0.006 |
SAT-CD 31 (RAU) | 0.48 | 0.01 |
SAT-VEGF (RAU) | 0.41 | 0.03 |
SAT-Collagen (RAU) | 0.41 | 0.03 |
SAT-SIRIUS RED stain (RAU) | 0.49 | 0.008 |
SAT-Caspase 1 (RAU) | 0.40 | 0.03 |
SAT-Interleukin-1 (RAU) | 0.39 | 0.03 |
SAT-CD68 (RAU) | 0.01 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jialal, I.; Adams-Huet, B.; Devaraj, S. Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome. J. Clin. Med. 2023, 12, 4247. https://doi.org/10.3390/jcm12134247
Jialal I, Adams-Huet B, Devaraj S. Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome. Journal of Clinical Medicine. 2023; 12(13):4247. https://doi.org/10.3390/jcm12134247
Chicago/Turabian StyleJialal, Ishwarlal, Beverley Adams-Huet, and Sridevi Devaraj. 2023. "Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome" Journal of Clinical Medicine 12, no. 13: 4247. https://doi.org/10.3390/jcm12134247
APA StyleJialal, I., Adams-Huet, B., & Devaraj, S. (2023). Increased Adipocyte Hypertrophy in Patients with Nascent Metabolic Syndrome. Journal of Clinical Medicine, 12(13), 4247. https://doi.org/10.3390/jcm12134247