Oral Anticoagulants after Heart Transplantation—Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Follow-Up
2.3. Post-Transplant Medications
2.4. Statistical Analysis
3. Results
3.1. Demographics of Heart Transplant Recipients with Oral Anticoagulants
3.2. Medications of Heart Transplant Recipients with Oral Anticoagulants
3.3. Indications and Complications of Heart Transplant Recipients with Oral Anticoagulants
3.4. Sensitivity Analysis
4. Discussion
4.1. Frequency and Indications of Oral Anticoagulants after Heart Transplantation
4.2. Efficacy of Oral Anticoagulants after Heart Transplantation
4.3. Safety of Oral Anticoagulants after Heart Transplantation
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef]
- Mehra, M.R.; Canter, C.E.; Hannan, M.M.; Semigran, M.J.; Uber, P.A.; Baran, D.A.; Danziger-Isakov, L.; Kirklin, J.K.; Kirk, R.; Kushwaha, S.S.; et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update. J. Heart Lung Transplant. 2016, 35, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kirklin, J.K.; Naftel, D.C.; Bourge, R.C.; McGiffin, D.C.; Hill, J.A.; Rodeheffer, R.J.; Jaski, B.E.; Hauptman, P.J.; Weston, M.; White-Williams, C. Evolving trends in risk profiles and causes of death after heart transplantation: A ten-year multi-institutional study. J. Thorac. Cardiovasc. Surg. 2003, 125, 881–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heil, K.M.; Helmschrott, M.; Darche, F.F.; Bruckner, T.; Ehlermann, P.; Kreusser, M.M.; Doesch, A.O.; Sommer, W.; Warnecke, G.; Frey, N.; et al. Risk Factors, Treatment and Prognosis of Patients with Lung Cancer after Heart Transplantation. Life 2021, 11, 1344. [Google Scholar] [CrossRef]
- Rivinius, R.; Helmschrott, M.; Ruhparwar, A.; Schmack, B.; Darche, F.F.; Thomas, D.; Bruckner, T.; Katus, H.A.; Ehlermann, P.; Doesch, A.O. COPD in patients after heart transplantation is associated with a prolonged hospital stay, early posttransplant atrial fibrillation, and impaired posttransplant survival. Clin. Epidemiol. 2018, 10, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Rivinius, R.; Gralla, C.; Helmschrott, M.; Darche, F.F.; Ehlermann, P.; Bruckner, T.; Sommer, W.; Warnecke, G.; Kopf, S.; Szendroedi, J.; et al. Pre-transplant Type 2 Diabetes Mellitus Is Associated with Higher Graft Failure and Increased 5-Year Mortality After Heart Transplantation. Front. Cardiovasc. Med. 2022, 9, 890359. [Google Scholar] [CrossRef]
- Rivinius, R.; Helmschrott, M.; Rahm, A.K.; Darche, F.F.; Thomas, D.; Bruckner, T.; Doesch, A.O.; Ehlermann, P.; Katus, H.A.; Zitron, E. Risk factors and survival of patients with permanent pacemaker implantation after heart transplantation. J. Thorac. Dis. 2019, 11, 5440–5452. [Google Scholar] [CrossRef]
- Darche, F.F.; Helmschrott, M.; Rahm, A.K.; Thomas, D.; Schweizer, P.A.; Bruckner, T.; Ehlermann, P.; Kreusser, M.M.; Warnecke, G.; Frey, N.; et al. Atrial fibrillation before heart transplantation is a risk factor for post-transplant atrial fibrillation and mortality. ESC Heart Fail. 2021, 8, 4265–4277. [Google Scholar] [CrossRef]
- Rahm, A.K.; Reinhardt, S.; Helmschrott, M.; Darche, F.F.; Bruckner, T.; Lugenbiel, P.; Thomas, D.; Ehlermann, P.; Sommer, W.; Warnecke, G.; et al. Frequency, Risk Factors, and Clinical Outcomes of Late-Onset Atrial Flutter in Patients after Heart Transplantation. J. Cardiovasc. Dev. Dis. 2022, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Chokesuwattanaskul, R.; Bathini, T.; Thongprayoon, C.; Preechawat, S.; O’Corragain, O.A.; Pachariyanon, P.; Ungprasert, P.; Cheungpasitporn, W. Atrial fibrillation following heart transplantation: A systematic review and meta-analysis of observational studies. J. Evid. Based Med. 2018, 11, 261–271. [Google Scholar] [CrossRef]
- Alnsasra, H.; Asleh, R.; Kumar, N.; Lopez, C.; Toya, T.; Kremers, W.K.; Edwards, B.; Daly, R.C.; Kushwaha, S.S. Incidence, Risk Factors, and Outcomes of Stroke Following Cardiac Transplantation. Stroke 2021, 52, e720–e724. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, R.J.; Barge-Caballero, E.; Chavez-Leal, S.A.; Paniagua-Martin, M.J.; Marzoa-Rivas, R.; Caamaño, C.B.; López-Sainz, Á.; Grille-Cancela, Z.; Blanco-Canosa, P.; Herrera-Noreña, J.M.; et al. Venous thromboembolism in heart transplant recipients: Incidence, recurrence and predisposing factors. J. Heart Lung Transplant. 2015, 34, 167–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boswell, R.; Pearson, G.J. A review of the use of direct oral anticoagulant use in orthotopic heart transplantation recipients. Transplant. Rev. 2018, 32, 151–156. [Google Scholar] [CrossRef]
- Rizk, J.; Mehra, M.R. Anticoagulation management strategies in heart transplantation. Prog. Cardiovasc. Dis. 2020, 63, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Bixby, A.L.; Lichvar, A.B.; Salerno, D.; Park, J.M. Use of direct-acting oral anticoagulants in solid organ transplantation: A systematic review. Pharmacotherapy 2021, 41, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Zakko, J.; Ganapathi, A.M.; Whitson, B.A.; Mokadam, N.A.; Henn, M.C.; Lampert, B.; Kahwash, R.; Franco, V.; Haas, G.; Emani, S.; et al. Safety of direct oral anticoagulants in solid organ transplant recipients: A meta-analysis. Clin. Transplant. 2022, 36, e14513. [Google Scholar] [CrossRef] [PubMed]
- Lindauer, K.E.; Ingemi, A.I.; McMahon, M.R.; Lichvar, A.; Baran, D.A.; Cameron, C.; Badiye, A.; Sawey, E.J.; Old, W.; Yao, A.; et al. The utilization and safety of apixaban for therapeutic anticoagulation in heart transplant population requiring routine endomyocardial biopsies. Clin. Transplant. 2022, 36, e14828. [Google Scholar] [CrossRef]
- McMahon, M.; Lichvar, A.; Baran, D.A.; Herre, J.M.; Yehya, A.; Sawey, E.J.; Badiye, A.; Cameron, C.; Yao, A.; Ingemi, A.I. Use of Apixaban in Heart Transplant Patients Receiving Biopsies: A Case Series. J. Heart Lung Transplant. 2021, 40, S283. [Google Scholar] [CrossRef]
- Henricksen, E.J.; Tremblay-Gravel, M.; Moayedi, Y.; Yang, W.; Lee, R.; Ross, H.J.; Hiesinger, W.; Teuteberg, J.J.; Khush, K.K. Use of direct oral anticoagulants after heart transplantation. J. Heart Lung Transplant. 2020, 39, 399–401. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Špinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef] [Green Version]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Curto, M.; Gallus, A.S.; Johnson, M.; Masiukiewicz, U.; Pak, R.; Thompson, J.; Raskob, G.E.; et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 2013, 369, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Mismetti, P.; Schellong, S.; Eriksson, H.; Baanstra, D.; Schnee, J.; Goldhaber, S.Z.; RE-COVER Study Group. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 2009, 361, 2342–2352. [Google Scholar] [CrossRef] [Green Version]
- Hokusai-VTE Investigators; Büller, H.R.; Décousus, H.; Grosso, M.A.; Mercuri, M.; Middeldorp, S.; Prins, M.H.; Raskob, G.E.; Schellong, S.M.; Schwocho, L.; et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 2013, 369, 1406–1415. [Google Scholar] [PubMed] [Green Version]
- EINSTEIN Investigators; Bauersachs, R.; Berkowitz, S.D.; Brenner, B.; Buller, H.R.; Decousus, H.; Gallus, A.S.; Lensing, A.W.; Misselwitz, F.; Prins, M.H.; et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 2010, 363, 2499–2510. [Google Scholar] [PubMed] [Green Version]
- Lichvar, A.B.; Moore, C.A.; Ensor, C.R.; McDyer, J.F.; Teuteberg, J.J.; Shullo, M.A. Evaluation of Direct Oral Anticoagulation Therapy in Heart and Lung Transplant Recipients. Prog. Transplant. 2016, 26, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Pasley, T.; Logan, A.; Brueckner, A.; Bowman-Anger, L.; Silverman, A.; Rumore, A. Direct Oral Anticoagulants: An Evaluation of the Safety and Efficacy in Cardiothoracic Transplant Recipients. J. Heart Lung Transplant. 2019, 38, S304. [Google Scholar] [CrossRef]
- Rubido, E.D.; Cooper, M.H.; Donahue, K.R.; Krisl, J. Descriptive analysis evaluating the use of direct oral anticoagulation therapy in heart and lung transplant recipients. Clin. Transplant. 2023, 37, e14897. [Google Scholar] [CrossRef]
- Ambrosi, P.; Kreitmann, B.; Cohen, W.; Habib, G.; Morange, P. Anticoagulation with a new oral anticoagulant in heart transplant recipients. Int. J. Cardiol. 2013, 168, 4452–4453. [Google Scholar] [CrossRef] [PubMed]
- Bellam, N.; Kamath, M.; DePasquale, E.C.; Smith, J.G.; Fuentes, J.; Ardehali, R.; Baas, A.S.; Cadeiras, M.; Deng, M.; Kwon, M.H.; et al. Direct Acting Oral Anticoagulant Utilization, Safety and Efficacy in Heart Transplant (HT). J. Heart Lung Transplant. 2018, 37, S112–S113. [Google Scholar] [CrossRef]
- Kim, M.; Gabardi, S.; Townsend, K.R.; Page, D.S.; Woodcome, E.L.; Givertz, M.M. Post Transplant Thrombosis and Atrial Arrhythmia May Be Safely Managed by Direct Oral Anticoagulants in Cardiac Transplant Patients. J. Heart Lung Transplant. 2016, 35, S123. [Google Scholar] [CrossRef] [Green Version]
- Shuster, J.E.; LaRue, S.J.; Vader, J.M. Dabigatran May Have More Significant Drug Interactions with Calcineurin Inhibitors Than Oral Anti-Xa Inhibitors. J. Heart Lung Transplant. 2016, 35, S417. [Google Scholar] [CrossRef] [Green Version]
- Tremblay-Gravel, M.; Alexander, K.M.; Czobor, P.; Lee, R.; Foroutan, F.; Yang, W.A.; Hayes, A.; Hiesinger, W.; Ross, H.J.; Khush, K.K.; et al. Directly to a DOAC? Safety of Alternatives to Warfarin for Anticoagulation in Heart Transplantation. J. Heart Lung Transplant. 2019, 38, S389. [Google Scholar] [CrossRef]
- Writing Committee Members; Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Salerno, D.M.; Tsapepas, D.; Papachristos, A.; Chang, J.H.; Martin, S.; Hardy, M.A.; McKeen, J. Direct oral anticoagulant considerations in solid organ transplantation: A review. Clin. Transplant. 2017, 31, e12873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef]
- Pastori, D.; Pignatelli, P.; Cribari, F.; Carnevale, R.; Saliola, M.; Violi, F.; Lip, G.Y. Time to therapeutic range (TtTR), anticoagulation control, and cardiovascular events in vitamin K antagonists-naive patients with atrial fibrillation. Am. Heart J. 2018, 200, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Scridon, A.; Balan, A.I. Challenges of Anticoagulant Therapy in Atrial Fibrillation-Focus on Gastrointestinal Bleeding. Int. J. Mol. Sci. 2023, 24, 6879. [Google Scholar] [CrossRef]
- Schein, J.R.; White, C.M.; Nelson, W.W.; Kluger, J.; Mearns, E.S.; Coleman, C.I. Vitamin K antagonist use: Evidence of the difficulty of achieving and maintaining target INR range and subsequent consequences. Thromb. J. 2016, 14, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokorney, S.D.; Simon, D.N.; Thomas, L.; Fonarow, G.C.; Kowey, P.R.; Chang, P.; Singer, D.E.; Ansell, J.; Blanco, R.G.; Gersh, B.; et al. Patients’ time in therapeutic range on warfarin among US patients with atrial fibrillation: Results from ORBIT-AF registry. Am. Heart J. 2015, 170, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, A.J.; Hylek, E.M.; Ozonoff, A.; Ash, A.S.; Reisman, J.I.; Berlowitz, D.R. Risk-adjusted percent time in therapeutic range as a quality indicator for outpatient oral anticoagulation: Results of the Veterans Affairs Study to Improve Anticoagulation (VARIA). Circ. Cardiovasc. Qual. Outcomes 2011, 4, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | All OACs after HTX (n = 115) | DOACs after HTX (n = 60) | VKAs after HTX (n = 55) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Recipient data | ||||||
Age (years), mean ± SD | 52.4 ± 10.4 | 52.0 ± 10.8 | 52.9 ± 9.9 | 0.9 | −2.9–4.7 | 0.652 |
Male sex, n (%) | 84 (73.0%) | 44 (73.3%) | 40 (72.7%) | 0.6% | −15.6–16.8% | 0.942 |
BMI (kg/m2), mean ± SD | 25.2 ± 4.1 | 25.1 ± 4.2 | 25.4 ± 4.0 | 0.3 | −1.2–1.8 | 0.678 |
Arterial hypertension, n (%) | 61 (53.0%) | 28 (46.7%) | 33 (60.0%) | 13.3% | −4.8–31.4% | 0.152 |
Dyslipidemia, n (%) | 69 (60.0%) | 32 (53.3%) | 37 (67.3%) | 14.0% | −3.7–31.7% | 0.127 |
Diabetes mellitus, n (%) | 26 (22.6%) | 11 (18.3%) | 15 (27.3%) | 9.0% | −6.3–24.3% | 0.252 |
Peripheral artery disease, n (%) | 4 (3.5%) | 2 (3.3%) | 2 (3.6%) | 0.3% | −6.4–7.0% | 0.929 |
COPD, n (%) | 14 (12.2%) | 7 (11.7%) | 7 (12.7%) | 1.0% | −11.0–13.0% | 0.862 |
History of smoking, n (%) | 56 (48.7%) | 32 (53.3%) | 24 (43.6%) | 9.7% | −8.5–27.9% | 0.299 |
Renal insufficiency ^, n (%) | 62 (53.9%) | 28 (46.7%) | 34 (61.8%) | 15.1% | −2.9–33.1% | 0.103 |
eGFR (ml/min/1.73 m2), mean ± SD | 60.7 ± 23.8 | 63.7 ± 20.7 | 57.4 ± 26.6 | 6.3 | −2.5–15.1 | 0.159 |
Previous open-heart surgery | ||||||
Overall open-heart surgery, n (%) | 41 (35.7%) | 24 (40.0%) | 17 (30.9%) | 9.1% | −8.3–26.5% | 0.309 |
CABG surgery, n (%) | 13 (11.3%) | 5 (8.3%) | 8 (14.5%) | 6.2% | −5.5–17.9% | 0.293 |
Other surgery °, n (%) | 8 (7.0%) | 6 (10.0%) | 2 (3.6%) | 6.4% | −2.7–15.5% | 0.180 |
VAD surgery, n (%) | 22 (19.1%) | 15 (25.0%) | 7 (12.7%) | 12.3% | −1.8–26.4% | 0.095 |
Principal diagnosis for HTX | ||||||
Ischemic CMP, n (%) | 32 (27.8%) | 17 (28.3%) | 15 (27.3%) | 1.0% | −15.4–17.4% | 0.899 |
Non-ischemic CMP, n (%) | 63 (54.8%) | 31 (51.7%) | 32 (58.2%) | 6.5% | −11.7–24.7% | 0.483 |
Valvular heart disease, n (%) | 3 (2.6%) | 2 (3.3%) | 1 (1.8%) | 1.5% | −4.3–7.3% | 0.611 |
Cardiac amyloidosis, n (%) | 17 (14.8%) | 10 (16.7%) | 7 (12.7%) | 4.0% | −8.9–16.9% | 0.552 |
Donor data | ||||||
Age (years), mean ± SD | 46.0 ± 11.8 | 46.4 ± 12.6 | 45.5 ± 11.0 | 0.9 | −3.4– 5.2 | 0.663 |
Male sex, n (%) | 44 (38.3%) | 24 (40.0%) | 20 (36.4%) | 3.6% | −14.2–21.4% | 0.689 |
BMI (kg/m2), mean ± SD | 25.2 ± 4.3 | 25.6 ± 5.1 | 24.7 ± 3.1 | 0.9 | −0.6–2.4 | 0.256 |
Transplant sex mismatch | ||||||
Mismatch, n (%) | 47 (40.9%) | 25 (41.7%) | 22 (40.0%) | 1.7% | −16.3–19.7% | 0.856 |
Donor (m) to recipient (f), n (%) | 3 (2.6%) | 2 (3.3%) | 1 (1.8%) | 1.5% | −4.3–7.3% | 0.611 |
Donor (f) to recipient (m), n (%) | 44 (38.3%) | 23 (38.3%) | 21 (38.2%) | 0.1% | −17.7–17.9% | 0.987 |
Perioperative data | ||||||
Ischemic time (min), mean ± SD | 253.9 ± 54.0 | 253.1 ± 57.5 | 254.9 ± 50.4 | 1.8 | −17.9–21.5 | 0.858 |
Biatrial anastomosis, n (%) | 1 (0.9%) | 1 (1.7%) | 0 (0.0%) | 1.7% | −1.6–5.0% | 0.336 |
Bicaval anastomosis, n (%) | 114 (99.1%) | 59 (98.3%) | 55 (100.0%) | 1.7% | −1.6–5.0% | 0.336 |
Parameter | Both DOACs after HTX (n = 55) | Apixaban after HTX (n = 27) | Rivaroxaban after HTX (n = 28) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Recipient data | ||||||
Age (years), mean ± SD | 51.7 ± 11.1 | 52.6 ± 8.8 | 50.8 ± 13.1 | 1.8 | −4.1–7.7 | 0.549 |
Male sex, n (%) | 41 (74.5%) | 20 (74.1%) | 21 (75.0%) | 0.9% | −22.1–23.9% | 0.937 |
BMI (kg/m2), mean ± SD | 25.2 ± 4.4 | 25.0 ± 4.3 | 25.4 ± 4.5 | 0.4 | −1.9–2.7 | 0.736 |
Arterial hypertension, n (%) | 27 (49.1%) | 13 (48.1%) | 14 (50.0%) | 1.9% | −24.5–28.3% | 0.891 |
Dyslipidemia, n (%) | 30 (54.5%) | 16 (59.3%) | 14 (50.0%) | 9.3% | −16.9–35.5% | 0.491 |
Diabetes mellitus, n (%) | 10 (18.2%) | 6 (22.2%) | 4 (14.3%) | 7.9% | −12.4–28.2% | 0.446 |
Peripheral artery disease, n (%) | 2 (3.6%) | 1 (3.7%) | 1 (3.6%) | 0.1% | −9.8–10.0% | 0.979 |
COPD, n (%) | 6 (10.9%) | 3 (11.1%) | 3 (10.7%) | 0.4% | −16.1–16.9% | 0.962 |
History of smoking, n (%) | 29 (52.7%) | 14 (51.9%) | 15 (53.6%) | 1.7% | −24.7–28.1% | 0.898 |
Renal insufficiency ^, n (%) | 26 (47.3%) | 15 (55.6%) | 11 (39.3%) | 16.3% | −9.8–42.4% | 0.227 |
eGFR (ml/min/1.73 m2), mean ± SD | 63.8 ± 20.7 | 59.0 ± 21.3 | 68.3 ± 19.4 | 9.3 | −1.5–20.1 | 0.097 |
Previous open-heart surgery | ||||||
Overall open-heart surgery, n (%) | 21 (38.2%) | 8 (29.6%) | 13 (46.4%) | 16.8% | −8.5–42.1% | 0.200 |
CABG surgery, n (%) | 5 (9.1%) | 2 (7.4%) | 3 (10.7%) | 3.3% | −11.8–18.4% | 0.670 |
Other surgery °, n (%) | 5 (9.1%) | 2 (7.4%) | 3 (10.7%) | 3.3% | −11.8–18.4% | 0.670 |
VAD surgery, n (%) | 13 (23.6%) | 5 (18.5%) | 8 (28.6%) | 10.1% | −12.1–32.3% | 0.380 |
Principal diagnosis for HTX | ||||||
Ischemic CMP, n (%) | 17 (30.9%) | 8 (29.6%) | 9 (32.1%) | 2.5% | −21.9–26.9% | 0.840 |
Non-ischemic CMP, n (%) | 28 (50.9%) | 13 (48.1%) | 15 (53.6%) | 5.5% | −20.9–31.9% | 0.688 |
Valvular heart disease, n (%) | 1 (1.8%) | 0 (0.0%) | 1 (3.6%) | 3.6% | −3.3–10.5% | 0.322 |
Cardiac amyloidosis, n (%) | 9 (16.4%) | 6 (22.2%) | 3 (10.7%) | 11.5% | −7.9–30.9% | 0.249 |
Donor data | ||||||
Age (years), mean ± SD | 46.4 ± 12.0 | 47.6 ± 11.2 | 45.3 ± 12.8 | 2.3 | −4.0–8.6 | 0.486 |
Male sex, n (%) | 21 (38.2%) | 8 (29.6%) | 13 (46.4%) | 16.8% | −8.5–42.1% | 0.200 |
BMI (kg/m2), mean ± SD | 25.7 ± 5.2 | 25.1 ± 4.6 | 26.3 ± 5.8 | 1.2 | −1.5–3.9 | 0.384 |
Transplant sex mismatch | ||||||
Mismatch, n (%) | 25 (45.5%) | 12 (44.4%) | 13 (46.4%) | 2.0% | −24.3– 28.3% | 0.883 |
Donor (m) to recipient (f), n (%) | 2 (3.6%) | 0 (0.0%) | 2 (7.1%) | 7.1% | −2.4–16.6% | 0.157 |
Donor (f) to recipient (m), n (%) | 23 (41.8%) | 12 (44.4%) | 11 (39.3%) | 5.1% | −21.0–31.2% | 0.698 |
Perioperative data | ||||||
Ischemic time (min), mean ± SD | 251.4 ± 59.4 | 249.4 ± 53.2 | 253.3 ± 65.7 | 3.9 | −27.7–35.5 | 0.812 |
Biatrial anastomosis, n (%) | 1 (1.8%) | 0 (0.0%) | 1 (3.6%) | 3.6% | −3.3–10.5% | 0.322 |
Bicaval anastomosis, n (%) | 54 (98.2%) | 27 (100.0%) | 27 (96.4%) | 3.6% | −3.3–10.5% | 0.322 |
Parameter | All OACs after HTX (n = 115) | DOACs after HTX (n = 60) | VKAs after HTX (n = 55) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Immunosuppressive drug therapy | ||||||
Cyclosporine A, n (%) | 22 (19.1%) | 11 (18.3%) | 11 (20.0%) | 1.7% | −12.7–16.1% | 0.820 |
Tacrolimus, n (%) | 73 (63.5%) | 38 (63.3%) | 35 (63.6%) | 0.3% | −17.3–17.9% | 0.973 |
Everolimus, n (%) | 54 (47.0%) | 28 (46.7%) | 26 (47.3%) | 0.6% | −17.7–18.9% | 0.948 |
Azathioprine, n (%) | 1 (0.9%) | 0 (0.0%) | 1 (1.8%) | 1.8% | −1.7–5.3% | 0.294 |
Mycophenolic acid, n (%) | 80 (69.6%) | 43 (71.7%) | 37 (67.3%) | 4.4% | −12.4–21.2% | 0.609 |
Steroids, n (%) | 55 (47.8%) | 28 (46.7%) | 27 (49.1%) | 2.4% | −15.9–20.7% | 0.795 |
Concomitant medications | ||||||
Oral antiplatelet drug, n (%) | 18 (15.7%) | 10 (16.7%) | 8 (14.5%) | 2.2% | −11.1–15.5% | 0.754 |
Beta blocker, n (%) | 76 (66.1%) | 40 (66.7%) | 36 (65.5%) | 1.2% | −16.1–18.5% | 0.891 |
Ivabradine, n (%) | 30 (26.1%) | 16 (26.7%) | 14 (25.5%) | 1.2% | −14.9–17.3% | 0.882 |
Calcium channel blocker, n (%) | 32 (27.8%) | 17 (28.3%) | 15 (27.3%) | 1.0% | −15.4–17.4% | 0.899 |
ACE inhibitor/ARB, n (%) | 81 (70.4%) | 43 (71.7%) | 38 (69.1%) | 2.6% | −14.1–19.3% | 0.762 |
Diuretic, n (%) | 82 (71.3%) | 42 (70.0%) | 40 (72.7%) | 2.7% | −13.8–19.2% | 0.747 |
Statin, n (%) | 100 (87.0%) | 53 (88.3%) | 47 (85.5%) | 2.8% | −9.6–15.2% | 0.647 |
Gastric protection †, n (%) | 86 (74.8%) | 44 (73.3%) | 42 (76.4%) | 3.1% | −12.8–19.0% | 0.709 |
Parameter | Both DOACs after HTX (n = 55) | Apixaban after HTX (n = 27) | Rivaroxaban after HTX (n = 28) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Immunosuppressive drug therapy | ||||||
Cyclosporine A, n (%) | 8 (14.5%) | 3 (11.1%) | 5 (17.9%) | 6.8% | −11.7–25.3% | 0.478 |
Tacrolimus, n (%) | 36 (65.5%) | 19 (70.4%) | 17 (60.7%) | 9.7% | −15.3–34.7% | 0.452 |
Everolimus, n (%) | 28 (50.9%) | 12 (44.4%) | 16 (57.1%) | 12.7% | −13.5–38.9% | 0.346 |
Azathioprine, n (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0.0% | n. a. | n. a. |
Mycophenolic acid, n (%) | 38 (69.1%) | 20 (74.1%) | 18 (64.3%) | 9.8% | −14.5–34.1% | 0.432 |
Steroids, n (%) | 25 (45.5%) | 11 (40.7%) | 14 (50.0%) | 9.3% | −16.9–35.5% | 0.491 |
Concomitant medications | ||||||
Oral antiplatelet drug, n (%) | 10 (18.2%) | 5 (18.5%) | 5 (17.9%) | 0.6% | −19.8–21.0% | 0.949 |
Beta blocker, n (%) | 37 (67.3%) | 16 (59.3%) | 21 (75.0%) | 15.7% | −8.8–40.2% | 0.214 |
Ivabradine, n (%) | 15 (27.3%) | 6 (22.2%) | 9 (32.1%) | 9.9% | −13.4–33.2% | 0.409 |
Calcium channel blocker, n (%) | 15 (27.3%) | 8 (29.6%) | 7 (25.0%) | 4.6% | −18.9–28.1% | 0.700 |
ACE inhibitor/ARB, n (%) | 39 (70.9%) | 18 (66.7%) | 21 (75.0%) | 8.3% | −15.6–32.2% | 0.496 |
Diuretic, n (%) | 38 (69.1%) | 17 (63.0%) | 21 (75.0%) | 12.0% | −12.3–36.3% | 0.334 |
Statin, n (%) | 49 (89.1%) | 24 (88.9%) | 25 (89.3%) | 0.4% | −16.1–16.9% | 0.962 |
Gastric protection †, n (%) | 39 (70.9%) | 18 (66.7%) | 21 (75.0%) | 8.3% | −15.6–32.2% | 0.496 |
Parameter | All OACs after HTX (n = 115) | DOACs after HTX (n = 60) | VKAs after HTX (n = 55) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Indications | ||||||
Atrial fibrillation, n (%) | 33 (28.7%) | 19 (31.7%) | 14 (25.5%) | 6.2% | −10.3–22.7% | 0.462 |
Atrial flutter, n (%) | 27 (23.5%) | 16 (26.7%) | 11 (20.0%) | 6.7% | −8.7–22.1% | 0.399 |
Pulmonary embolism, n (%) | 8 (7.0%) | 4 (6.7%) | 4 (7.3%) | 0.6% | −8.7–9.9% | 0.898 |
Upper extremity DVT, n (%) | 12 (10.4%) | 6 (10.0%) | 6 (10.9%) | 0.9% | −10.3–12.1% | 0.873 |
Lower extremity DVT, n (%) | 28 (24.3%) | 12 (20.0%) | 16 (29.1%) | 9.1% | −6.6–24.8% | 0.257 |
Intracardiac thrombus, n (%) | 7 (6.1%) | 3 (5.0%) | 4 (7.3%) | 2.3% | −6.5–11.1% | 0.611 |
OAC-related complications | ||||||
Overall bleedings, n (%) | 24 (20.9%) | 6 (10.0%) | 18 (32.7%) | 22.7% | 8.2–37.2% | 0.003 * |
Ischemic stroke, n (%) | 4 (3.5%) | 2 (3.3%) | 2 (3.6%) | 0.3% | −6.4–7.0% | 0.929 |
Thromboembolic event, n (%) | 3 (2.6%) | 2 (3.3%) | 1 (1.8%) | 1.5% | −4.2–7.2% | 0.611 |
OAC-related death, n (%) | 3 (2.6%) | 1 (1.7%) | 2 (3.6%) | 1.9% | −4.0–7.8% | 0.508 |
OAC-related bleedings | ||||||
Intracranial hemorrhage, n (%) | 2 (1.7%) | 0 (0.0%) | 2 (3.6%) | 3.6% | −1.3–8.5% | 0.136 |
Severe epistaxis, n (%) | 4 (3.5%) | 1 (1.7%) | 3 (5.5%) | 3.8% | −3.1–10.7% | 0.268 |
Gastrointestinal hemorrhage, n (%) | 16 (13.9%) | 4 (6.7%) | 12 (21.8%) | 15.1% | 2.5–27.7% | 0.019 * |
Hemorrhagic shock, n (%) | 2 (1.7%) | 1 (1.7%) | 1 (1.8%) | 0.1% | −4.7–4.9% | 0.950 |
Transfusion of FFP, n (%) | 2 (1.7%) | 1 (1.7%) | 1 (1.8%) | 0.1% | −4.7–4.9% | 0.950 |
Transfusion of PRBCs, n (%) | 22 (19.1%) | 6 (10.0%) | 16 (29.1%) | 19.1% | 4.9–33.3% | 0.009 * |
Parameter | Both DOACs after HTX (n = 55) | Apixaban after HTX (n = 27) | Rivaroxaban after HTX (n = 28) | Difference | 95% CI | p-Value |
---|---|---|---|---|---|---|
Indications | ||||||
Atrial fibrillation, n (%) | 16 (29.1%) | 10 (37.0%) | 6 (21.4%) | 15.6% | −8.1–39.3% | 0.203 |
Atrial flutter, n (%) | 16 (29.1%) | 6 (22.2%) | 10 (35.7%) | 13.5% | −10.2–37.2% | 0.271 |
Pulmonary embolism, n (%) | 4 (7.3%) | 3 (11.1%) | 1 (3.6%) | 7.5% | −6.2–21.2% | 0.282 |
Upper extremity DVT, n (%) | 5 (9.1%) | 3 (11.1%) | 2 (7.1%) | 4.0% | −11.2–19.2% | 0.609 |
Lower extremity DVT, n (%) | 11 (20.0%) | 4 (14.8%) | 7 (25.0%) | 10.2% | −10.7–31.1% | 0.345 |
Intracardiac thrombus, n (%) | 3 (5.5%) | 1 (3.7%) | 2 (7.1%) | 3.4% | −8.5–15.3% | 0.574 |
OAC-related complications | ||||||
Overall bleedings, n (%) | 5 (9.1%) | 3 (11.1%) | 2 (7.1%) | 4.0% | −11.2–19.2% | 0.609 |
Ischemic stroke, n (%) | 2 (3.6%) | 1 (3.7%) | 1 (3.6%) | 0.1% | −9.8–10.0% | 0.979 |
Thromboembolic event, n (%) | 2 (3.6%) | 1 (3.7%) | 1 (3.6%) | 0.1% | −9.8–10.0% | 0.979 |
OAC-related death, n (%) | 1 (1.8%) | 1 (3.7%) | 0 (0.0%) | 3.7% | −3.4–10.8% | 0.304 |
OAC-related bleedings | ||||||
Intracranial hemorrhage, n (%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0.0% | n.a. | n.a. |
Severe epistaxis, n (%) | 1 (1.8%) | 1 (3.7%) | 0 (0.0%) | 3.7% | −3.4–10.8% | 0.304 |
Gastrointestinal hemorrhage, n (%) | 3 (5.5%) | 1 (3.7%) | 2 (7.1%) | 3.4% | −8.5–15.3% | 0.574 |
Hemorrhagic shock, n (%) | 1 (1.8%) | 1 (3.7%) | 0 (0.0%) | 3.7% | −3.4–10.8% | 0.304 |
Transfusion of FFP, n (%) | 1 (1.8%) | 1 (3.7%) | 0 (0.0%) | 3.7% | −3.4–10.8% | 0.304 |
Transfusion of PRBCs, n (%) | 5 (9.1%) | 3 (11.1%) | 2 (7.1%) | 4.0% | −11.2–19.2% | 0.609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darche, F.F.; Fabricius, L.C.; Helmschrott, M.; Rahm, A.-K.; Ehlermann, P.; Bruckner, T.; Sommer, W.; Warnecke, G.; Frey, N.; Rivinius, R. Oral Anticoagulants after Heart Transplantation—Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants. J. Clin. Med. 2023, 12, 4334. https://doi.org/10.3390/jcm12134334
Darche FF, Fabricius LC, Helmschrott M, Rahm A-K, Ehlermann P, Bruckner T, Sommer W, Warnecke G, Frey N, Rivinius R. Oral Anticoagulants after Heart Transplantation—Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants. Journal of Clinical Medicine. 2023; 12(13):4334. https://doi.org/10.3390/jcm12134334
Chicago/Turabian StyleDarche, Fabrice F., Lisa C. Fabricius, Matthias Helmschrott, Ann-Kathrin Rahm, Philipp Ehlermann, Tom Bruckner, Wiebke Sommer, Gregor Warnecke, Norbert Frey, and Rasmus Rivinius. 2023. "Oral Anticoagulants after Heart Transplantation—Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants" Journal of Clinical Medicine 12, no. 13: 4334. https://doi.org/10.3390/jcm12134334
APA StyleDarche, F. F., Fabricius, L. C., Helmschrott, M., Rahm, A. -K., Ehlermann, P., Bruckner, T., Sommer, W., Warnecke, G., Frey, N., & Rivinius, R. (2023). Oral Anticoagulants after Heart Transplantation—Comparison between Vitamin K Antagonists and Direct Oral Anticoagulants. Journal of Clinical Medicine, 12(13), 4334. https://doi.org/10.3390/jcm12134334