Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos?
Abstract
:1. Introduction
2. Increased Use of Oocyte and Embryo Vitrification in ART Practice
3. Cryopreservation and Cryoprotectants
4. Potential Damaging Effects of Cryopreservation
5. Epigenetic Changes Occurring during Preimplantation Embryo Development
6. Potential Impact of Vitrification on the Epigenome of Oocytes and Embryos
7. Potential Impact of Vitrification on the Epigenome Spermatozoa
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V. ART in Europe, 2015: Results generated from European registries by ESHRE. Hum. Reprod. Open 2020, 2020, hoz038. [Google Scholar] [CrossRef] [Green Version]
- Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; Goossens, V.; et al. ART in Europe, 2018: Results generated from European registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac 022. [Google Scholar] [CrossRef]
- Chen, C. Pregnancy after human oocyte cryopreservation. Lancet 1986, 1, 884–886. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Rienzi, L.; Gracia, C.; Maggiulli, R.; LaBarbera, A.R.; Kaser, D.J.; Ubaldi, F.M.; Vanderpoel, S.; Racowsky, C. Oocyte, embryo and blastocyst cryopreservation in art: Systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update 2017, 23, 139–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potdar, N.; Gelbaya, T.A.; Nardo, L.G. Oocyte vitrification in the 21st century and post-warming fertility outcomes: A systematic review and meta-analysis. Reprod. Biomed. Online 2014, 29, 159–176. [Google Scholar] [CrossRef] [Green Version]
- Hubel, A.; Spindler, R.; Skubitz, A. Storage of Human Biospecimens: Selection of the Optimal Storage Temperature. Biopreserv. Biobank. 2014, 12, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.; Norman, R.J. The longer-term health outcomes for children born as a result of IVF treatment: Part I–General health outcomes. Hum. Reprod. Update 2013, 19, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Ventura-Juncá, P.; Irarrázaval, I.; Rolle, A.J.; Gutiérrez, J.I.; Moreno, R.D.; Santos, M.J. In vitro fertilization (IVF) in mammals: Epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol. Res. 2015, 18, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Vrooman, L.A.; Bartolomei, M.S. Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reprod. Toxicol. 2017, 68, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, R.; Feil, R. Genomic imprinting and human disease. Essays Biochem. 2010, 48, 187–200. [Google Scholar] [PubMed]
- Smith, Z.D.; Chan, M.M.; Humm, K.C.; Karnik, R.; Mekhoubad, S.; Regev, A.; Eggan, K.; Meissner, A. DNA methylation dynamics of the human preimplantation embryo. Nature 2014, 511, 611–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chronopoulou, E.; Raperport, C.; Sfakianakis, A.; Srivastava, G.; Homburg, R. Elective oocyte cryopreservation for age-related fertility decline. J. Assist. Reprod. Genet. 2021, 38, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Cobo, A.; Garcia-Velasco, J.; Domingo, J.; Pellicer, A.; Remohí, J. Elective and Onco-fertility preservation: Factors related to IVF outcomes. Hum. Reprod. 2018, 33, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Nasab, S.; Ulin, L.; Nkele, C.; Shah, J.; Abdallah, M.E.; Sibai, B.M. Elective egg freezing: What is the vision of women around the globe? Future Sci. OA 2020, 6, FSO468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyhan, A.; Akin, O.D.; Ertaş, S.; Ata, B.; Yakin, K.; Urman, B. A Survey of Women Who Cryopreserved Oocytes for Non-medical Indications (Social Fertility Preservation). Reprod. Sci. 2021, 28, 2216–2222. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Stearns, V.; Schneider, B.; Henry, N.L.; Hayes, D.F.; Flockhart, D.A. Breast cancer treatment and ovarian failure: Risk factors and emerging genetic determinants. Nat. Rev. Cancer 2006, 6, 886–893. [Google Scholar] [CrossRef]
- Adams, D.; A Clark, R.; Davies, M.; de Lacey, S. A meta-analysis of neonatal health outcomes from oocyte donation. J. Dev. Orig. Health Dis. 2015, 7, 257–272. [Google Scholar] [CrossRef]
- Trounson, A.; Leeton, J.; Besanko, M.; Wood, C.; Conti, A. Pregnancy established in an infertile patient after transfer of a donated embryo fertilised in vitro. BMJ 1983, 286, 835–838. [Google Scholar] [CrossRef] [Green Version]
- Sauer, M.V.; Kavic, S.M. Oocyte and embryo donation 2006: Reviewing two decades of innovation and controversy. Reprod. Biomed. Online 2006, 12, 153–162. [Google Scholar] [CrossRef]
- Kawwass, J.F.; Eyck, P.T.; Sieber, P.; Hipp, H.S.; Van Voorhis, B. More than the oocyte source, egg donors as patients: A national picture of United States egg donors. J. Assist. Reprod. Genet. 2021, 38, 1171–1175. [Google Scholar] [CrossRef]
- Cobo, A.; Garrido, N.; Pellicer, A.; Remohí., J. Six years’ experience in ovum donation using vitrified oocytes: Report of cumulative outcomes, impact of storage time, and development of a predictive model for oocyte survival rate. Fertil. Steril. 2015, 104, 1426–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobo, A.; Meseguer, M.; Remoh, J.; Pellicer, A. Use of cryo-banked oocytes in an ovum donation programme: A prospective, randomized, controlled, clinical trial. Hum. Reprod. 2010, 25, 2239–2246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debrock, S.; Peeraer, K.; Gallardo, E.F.; De Neubourg, D.; Spiessens, C.; D’Hooghe, T. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: A RCT. Hum. Reprod. 2015, 30, 1820–1830. [Google Scholar] [CrossRef] [PubMed]
- Rienzi, L.; Cimadomo, D.; Maggiulli, R.; Vaiarelli, A.; Dusi, L.; Buffo, L.; Amendola, M.G.; Colamaria, S.; Giuliani, M.; Bruno, G.; et al. Definition of a clinical strategy to enhance the efficacy, efficiency and safety of egg donation cycles with imported vitrified oocytes. Hum. Reprod. 2020, 35, 785–795. [Google Scholar] [CrossRef]
- Sciorio, R.; Antonini, E.; Engl, B. Live birth and clinical outcome of vitrification-warming donor oocyte programme: An experience of a single IVF unit. Zygote 2021, 29, 410–416. [Google Scholar] [CrossRef]
- Rienzi, L.; Romano, S.; Albricci, L.; Maggiulli, R.; Capalbo, A.; Baroni, E.; Colamaria, S.; Sapienza, F.; Ubaldi, F. Embryo development of fresh ‘versus’ vitrified metaphase II oocytes after ICSI: A prospective randomized sibling-oocyte study. Hum. Reprod. 2009, 25, 66–73. [Google Scholar] [CrossRef]
- Sciorio, R.; Thong, K.; Pickering, S.J. Single blastocyst transfer (SET) and pregnancy outcome of day 5 and day 6 human blastocysts vitrified using a closed device. Cryobiology 2018, 84, 40–45. [Google Scholar] [CrossRef]
- Sciorio, R.; Thong, K.J.; Pickering, S.J. Increased pregnancy outcome after day 5 versus day 6 transfers of human vitrified-warmed blastocysts. Zygote 2019, 27, 279–284. [Google Scholar] [CrossRef]
- Sciorio, R.; Anderson, R.A. Fertility preservation and preimplantation genetic assessment for women with breast cancer. Cryobiology 2019, 92, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Somigliana, E.; Viganò, P.; Filippi, F.; Papaleo, E.; Benaglia, L.; Candiani, M.; Vercellini, P. Fertility preservation in women with endometriosis: For all, for some, for none? Hum. Reprod. 2015, 30, 1280–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Ribeiro, S.; Polyzos, N.; Haentjens, P.; Smitz, J.; Camus, M.; Tournaye, H.; Blockeel, C. Live birth rates after IVF are reduced by both low and high progesterone levels on the day of human chorionic gonadotrophin administration. Hum. Reprod. 2014, 29, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groenewoud, E.R.; Cohlen, B.J.; Macklon, N.S. Programming the endometrium for deferred transfer of cryopreserved embryos: Hormone replacement versus modified natural cycles. Fertil. Steril. 2018, 109, 768–774. [Google Scholar] [CrossRef]
- Sullivan, E.A.; Wang, Y.A.; Hayward, I.; Chambers, G.M.; Illingworth, P.; McBain, J.; Norman, R.J. Single embryo transfer reduces the risk of perinatal mortality, a population study. Hum. Reprod. 2012, 27, 3609–3615. [Google Scholar] [CrossRef] [Green Version]
- Sciorio, R.; Esteves, S.C. Clinical utility of freeze-all approach in ART treatment: A mini-review. Cryobiology 2019, 92, 9–14. [Google Scholar] [CrossRef]
- Belva, F.; Bonduelle, M.; Roelants, M.; Verheyen, G.; Van Landuyt, L. Neonatal health including congenital malformation risk of 1072 children born after vitrified embryo transfer. Hum. Reprod. 2016, 31, 1610–1620. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.S.; Dukhovny, D.; Gopal, D.; Cabral, H.; Diop, H.; Coddington, C.C.; Stern, J.E. Health outcomes for Massachusetts infants after fresh versus frozen embryo transferr. Fertil. Steril. 2019, 112, 900–907. [Google Scholar] [CrossRef]
- Ainsworth, A.J.; Wyatt, M.A.; Shenoy, C.C.; Hathcock, M.; Coddington, C.C. Fresh versus frozen embryo transfer has no effect on childhood weight. Fertil. Steril. 2019, 112, 684–690. [Google Scholar] [CrossRef]
- Maheshwari, A.; Pandey, S.; Raja, E.A.; Shetty, A.; Hamilton, M.; Bhattacharya, S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum. Reprod. Update 2017, 24, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Maheshwari, A.; Raja, E.A.; Bhattacharya, S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: An analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil. Steril. 2016, 106, 1703–1708. [Google Scholar] [CrossRef] [Green Version]
- Sazonova, A.; Källen, K.; Thurin-Kjellberg, A.; Wennerholm, U.-B.; Bergh, C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum. Reprod. 2012, 27, 1343–1350. [Google Scholar] [CrossRef]
- Pelkonen, S.; Koivunen, R.; Gissler, M.; Nuojua-Huttunen, S.; Suikkari, A.-M.; Hydén-Granskog, C.; Martikainen, H.; Tiitinen, A.; Hartikainen, A.-L. Perinatal outcome of children born after frozen and fresh embryo transfer: The Finnish cohort study 1995–2006. Hum. Reprod. 2010, 25, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Pinborg, A.; Henningsen, A.A.; Loft, A.; Malchau, S.S.; Forman, J.; Andersen, A.N. Large baby syndrome in singletons born after frozen embryo transfer (FET): Is it due to maternal factors or the cryotechnique? Hum. Reprod. 2014, 29, 618–627. [Google Scholar] [CrossRef]
- von Versen-Höynck, F.; Narasimhan, P.; Tierney, E.S.S.; Martinez, N.; Conrad, K.P.; Baker, V.L.; Winn, V.D. Absent or Excessive Corpus Luteum Number Is Associated with Altered Maternal Vascular Health in Early Pregnancy. Hypertension 2019, 73, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Trounson, A.; Mohr, L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 1983, 305, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Mukaida, T.; Wada, S.; Takahashi, K.; Pedro, P.; An, T.; Kasai, M. Vitrification of human embryos based on the assessment of suitable conditions for 8-cell mouse embryos. Hum. Reprod. 1998, 13, 2874–2879. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, A.Y.; Ledger, W.; Edgar, D.H.; Sullivan, E.A. Clinical outcomes following cryopreservation of blastocysts by vitrification or slow freezing: A population-based cohort study. Hum. Reprod. 2014, 29, 2794–2801. [Google Scholar] [CrossRef] [Green Version]
- Seki, S.; Mazur, P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 2009, 59, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.O.; Toner, M. Long-term storage of tissues by cryopreservation: Critical issues. Biomaterials 1996, 17, 243–256. [Google Scholar] [CrossRef]
- Fuller, B.J. Cryoprotectants: The essential antifreezes to protect life in the frozen state. CryoLetters 2004, 25, 375–388. [Google Scholar]
- Naccache, P.; Sha’Afi, R.I. Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane. J. Gen. Physiol. 1973, 62, 714–736. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, J.A.; Liu, J.; Gao, D.Y.; Critser, J.K. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum. Reprod. 1997, 12, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Van den Abbeel, E.; Schneider, U.; Liu, J.; Agca, Y.; Critser, J.K.; Van Steirteghem, A. Osmotic responses and tolerance limits to changes in external osmolalities, and oolemma permeability characteristics, of human in vitro matured MII oocytes. Hum. Reprod. 2007, 22, 1959–1972. [Google Scholar] [CrossRef] [Green Version]
- Fahy, G.M.; Macfarlane, D.R.; Angell, C.A.; Meryman, H.T. Vitrification as an approach to cryopreservation. Cryobiology 1984, 21, 407–426. [Google Scholar] [CrossRef] [PubMed]
- Mazur, P. Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing. J. Gen. Physiol. 1963, 47, 347–369. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Silva, E.S.C.A. Developmental consequences of cryopreservation of mammalian oocytes and embryos. Reprod. Biomed. Online 2004, 9, 171–178. [Google Scholar] [CrossRef]
- Best, B.P. Cryoprotectant toxicity: Facts, issues, and questions. Rejuvenation Res. 2015, 18, 422–436. [Google Scholar] [CrossRef] [Green Version]
- Dal Canto, M.; Guglielmo, M.C.; Mignini Renzini, M.; Fadini, R.; Moutier, C.; Merola, M.; De Ponti, E.; Coticchio, G. Dysmorphic patterns are associated with cytoskeletal alterations in human oocytes. Hum. Reprod. 2017, 32, 750–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feuer, S.; Rinaudo, P. Preimplantation stress and development. Birth Defects Res. C Embryo Today 2012, 96, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.-H.; Meng, L.; Hackett, R.J.; Oldenbourg, R.; Keefe, D.L. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil. Steril. 2002, 77, 1274–1277. [Google Scholar] [CrossRef] [PubMed]
- Montag, M.; van der Ven, H. Symposium: Innovative techniques in human embryo viability assessment. Oocyte assessment and embryo viability prediction: Birefringence imaging. Reprod. Biomed. Online 2008, 17, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.J.; Braude, P.R.; Johnson, M.H.; Cant, A.; Currie, J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil. Steril. 1990, 54, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Larman, M.G.; Sheehan, C.B.; Gardner, D.K. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 2006, 131, 53–61. [Google Scholar] [CrossRef]
- Gook, D.A.; Osborn, S.M.; Johnston, W.I. Parthenogenetic activation of human oocytes following cryopreservation using 1,2-propanediol. Hum. Reprod. 1995, 10, 654–658. [Google Scholar] [CrossRef]
- Gualtieri, R.; Iaccarino, M.; Mollo, V.; Prisco, M.; Iaccarino, S.; Talevi, R. Slow cooling of human oocytes: Ultrastructural injuries and apoptotic status. Fertil. Steril. 2009, 91, 1023–1034. [Google Scholar] [CrossRef]
- Jones, A.; VAN Blerkom, J.; Davis, P.; Toledo, A.A. Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: Implications for developmental competence. Hum. Reprod. 2004, 19, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Kohaya, N.; Fujiwara, K.; Ito, J.; Kashiwazaki, N. Generation of Live Offspring from Vitrified Mouse Oocytes of C57BL/6J Strain. PLoS ONE 2013, 8, e58063. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-M.; Hao, H.-S.; Du, W.-H.; Zhao, S.-J.; Wang, H.-Y.; Wang, N.; Wang, D.; Liu, Y.; Qin, T.; Zhu, H.-B. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res. 2015, 60, 132–141. [Google Scholar] [CrossRef]
- Christou-Kent, M.; Dhellemmes, M.; Lambert, E.; Ray, P.F.; Arnoult, C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells 2020, 9, 662. [Google Scholar] [CrossRef] [Green Version]
- Sendzikaite, G.; Kelsey, G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 2019, 63, 691–705. [Google Scholar] [PubMed]
- Yu, Z.W.; Quinn, P.J. Dimethyl sulphoxide: A review of its applications in cell biology. Biosci. Rep. 1994, 14, 259–281. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.J. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfus. Med. Hemother. 2011, 38, 107–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007, 25, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.R.; Fu, X.W.; Zhang, R.N.; Jia, G.X.; Hou, Y.P.; Zhu, S.E. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil. Steril. 2014, 102, 1183–1190. [Google Scholar] [CrossRef]
- Kader, A.; Agarwal, A.; Abdelrazik, H.; Sharma, R.K.; Ahmady, A.; Falcone, T. Evaluation of post-thaw DNA integrity of mouse blastocysts after ultrarapid and slow freezing. Fertil. Steril. 2009, 91, 2087–2094. [Google Scholar] [CrossRef]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaferia, G.R.; Dessì, S.S.; DeBlasio, P.; Biunno, I. Is stem cell chromosomes stability affected by cryopreservation conditions? Cytotechnology 2008, 58, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Katkov, I.I.; Kim, M.S.; Bajpai, R.; Altman, Y.S.; Mercola, M.; Loring, J.F.; Terskikh, A.V.; Snyder, E.Y.; Levine, F. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells. Cryobiology 2006, 53, 194–205. [Google Scholar] [CrossRef]
- Wagh, V.; Meganathan, K.; Jagtap, S.; Gaspar, J.A.; Winkler, J.; Spitkovsky, D.; Hescheler, J.; Sachinidis, A. Effects of cryopreservation on the transcriptome of human embryonic stem cells after thawing and culturing. Stem Cell Rev. Rep. 2011, 7, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cowley, S.; Flaim, C.J.; James, W.; Seymour, L.; Cui, Z. The roles of apoptotic pathways in the low recovery rate after cryopreservation of dissociated human embryonic stem cells. Biotechnol. Prog. 2010, 26, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Feng, C.; Gu, X.; He, Q.; Wei, F. Effect of cryopreservation on proliferation and differentiation of periodontal ligament stem cell sheets. Stem Cell Res. Ther. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estill, M.S.; Bolnick, J.M.; Waterland, R.A.; Bolnick, A.D.; Diamond, M.P.; Krawetz, S.A. Assisted reproductive technology alters deoxyribonucleic acid methylation profiles in bloodspots of newborn infants. Fertil. Steril. 2016, 106, 629–639.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, M.; Dong, X.; Lyu, S.; Zheng, Y.; Ai, J. The Impact of Embryo Storage Time on Pregnancy and Perinatal Outcomes and the Time Limit of Vitrification: A Retrospective Cohort Study. Front. Endocrinol. 2021, 12, 724853. [Google Scholar] [CrossRef]
- Waddington, C.H. The epigenotype. Int J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Mak, W.; Weaver, J.R.; Bartolomei, M.S. Is ART changing the epigenetic landscape of imprinting? Anim. Reprod. 2010, 7, 168–176. [Google Scholar]
- Marcho, C.; Cui, W.; Mager, J. Epigenetic dynamics during preimplantation development. Reproduction 2015, 150, R109–R120. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.K. Environmental epigenomics and disease susceptibility. EMBO Rep. 2011, 12, 620–622. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.M.; Ren, B. Mapping Human Epigenomes. Cell 2013, 155, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Gujar, H.; Weisenberger, D.J.; Liang, G. The Roles of Human DNA Methyltransferases and Their Isoforms in Shaping the Epigenome. Genes 2019, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, A.D.; Allis, C.D.; Bernstein, E. Epigenetics: A Landscape Takes Shape. Cell 2007, 128, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallinari, P.; Di Marco, S.; Jones, P.; Pallaoro, M.; Steinkühler, C. HDACs, histone deacetylation and gene transcription: From molecular biology to cancer therapeutics. Cell Res. 2007, 17, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lu, C.; Yang, Y.; Fan, Y.; Yang, R.; Liu, C.-F.; Korolev, N.; Nordenskiöld, L. Influence of Histone Tails and H4 Tail Acetylations on Nucleosome–Nucleosome Interactions. J. Mol. Biol. 2011, 414, 749–764. [Google Scholar] [CrossRef]
- Schatten, H.; Sun, Q.Y. Posttranslationally Modified Tubulins and other Cytoskeletal Proteins: Their Role in Gametogenesis, Oocyte Maturation, Fertilization and Pre-Implantation Embryo Development. In Posttranslational Protein Modifications in the Reproductive System; Sutovsky, P., Ed.; Springer: New York, NY, USA, 2014; Volume 59, pp. 57–87. [Google Scholar]
- Feitosa, W.B.; Hwang, K.; Morris, P.L. Temporal and SUMO-specific SUMOylation contribute to the dynamics of Polo-like kinase 1 (PLK1) and spindle integrity during mouse oocyte meiosis. Dev. Biol. 2017, 434, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Briley, S.M.; Patton, B.K.; Tripurani, S.K.; Rajapakshe, K.; Coarfa, C.; Rajkovic, A.; Andrieux, A.; Dejean, A.; Pangas, S.A. Loss of the E2 SUMO-conjugating enzyme Ube2i in oocytes during ovarian folliculogenesis causes infertility in mice. Development 2019, 146, dev176701. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef]
- Skaar, D.A.; Li, Y.; Bernal, A.J.; Hoyo, C.; Murphy, S.K.; Jirtle, R.L. The human imprintome: Regulatory mechanisms, methods of ascertainment, and roles in disease susceptibility. ILAR J. 2012, 53, 341–358. [Google Scholar] [CrossRef]
- Glaser, R.L. The imprinted gene and parent-of-origin effect database now includes parental origin of de novo mutations. Nucleic Acids Res. 2006, 34, D29–D31. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Genomic imprinting is a parental effect established in mammalian germ cells. Curr. Top Dev. Biol. 2013, 102, 35–59. [Google Scholar] [CrossRef]
- Das, R.; Lee, Y.K.; Strogantsev, R.; Jin, S.; Lim, Y.C.; Ng, P.Y.; Lin, X.M.; Chng, K.; Yeo, G.S.; Ferguson-Smith, A.C.; et al. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genom. 2013, 14, 685. [Google Scholar] [CrossRef] [Green Version]
- Thamban, T.; Agarwaal, V.; Khosla, S. Role of genomic imprinting in mammalian development. J. Biosci. 2020, 45, 20. [Google Scholar] [CrossRef] [PubMed]
- Kalish, J.M.; Jiang, C.; Bartolomei, M.S. Epigenetics and imprinting in human disease. Int. J. Dev. Biol. 2014, 58, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Eggermann, T.; de Nanclares, G.P.; Maher, E.R.; Temple, I.K.; Tümer, Z.; Monk, D.; Mackay, D.J.G.; Grønskov, K.; Riccio, A.; Linglart, A.; et al. Imprinting disorders: A group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenet. 2015, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiura, H.; Okae, H.; Chiba, H.; Miyauchi, N.; Sato, F.; Sato, A.; Arima, T. Imprinting methylation errors in ART. Reprod. Med. Biol. 2014, 13, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazaraviciute, G.; Kauser, M.; Bhattacharya, S.; Haggarty, P.; Bhattacharya, S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum. Reprod. Update 2014, 20, 840–852. [Google Scholar] [CrossRef] [Green Version]
- Azzi, S.; Habib, A.W.; Netchine, I. Beckwith-Wiedemann and Russell-Silver Syndromes: From New Molecular Insights to the Comprehension of Imprinting Regulation. Curr. Opin. Endocrinol. Diabetes Obes. 2014, 21, 30–38. [Google Scholar] [CrossRef]
- Mabb, A.M.; Judson, M.C.; Zylka, M.J.; Philpot, B.D. Angelman Syndrome: Insights into Genomic Imprinting and Neurodevelopmental Phenotypes. Trends Neurosci. 2011, 234, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi Syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- DeBaun, M.R.; Niemitz, E.L.; Feinberg, A.P. Association of In Vitro Fertilization with Beckwith-Wiedemann Syndrome and Epigenetic Alterations of LIT1 and H19. Am. J. Hum. Genet. 2003, 72, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gicquel, C.; Gaston, V.; Mandelbaum, J.; Siffroi, J.-P.; Flahault, A.; Le Bouc, Y. In Vitro Fertilization May Increase the Risk of Beckwith-Wiedemann Syndrome Related to the Abnormal Imprinting of the KCNQ1OT Gene. Am. J. Hum. Genet. 2003, 72, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Halliday, J.; Oke, K.; Breheny, S.; Algar, E.; Amor, D.J. Beckwith-Wiedemann Syndrome and IVF: A Case-Control Study. Am. J. Hum. Genet. 2004, 75, 526–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, V.E.A.; Martienssen, R.A.; Riggs, A.D. Epigenetic Mechanisms of Gene Regulation; Monograph 32; Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1996. [Google Scholar]
- Klose, R.J.; Bird, A.P. Genomic DNA methylation: The mark and its mediators. Trends Biochem. Sci. 2006, 31, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 2011, 21, 381–395. [Google Scholar] [CrossRef]
- Faulk, C.; Dolinoy, D.C. Timing is everything: The when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011, 6, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Weaver, J.R.; Susiarjo, M.; Bartolomei, M.S. Imprinting and epigenetic changes in the early embryo. Mamm. Genome 2009, 20, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Iwatani, M.; Ikegami, K.; Kremenska, Y.; Hattori, N.; Tanaka, S.; Yagi, S.; Shiota, K. Dimethyl Sulfoxide Has an Impact on Epigenetic Profile in Mouse Embryoid Body. Stem Cells 2006, 24, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.C.; Figueira-Coelho, J.; Martins-Silva, J.; Saldanha, C. Multidisciplinary utilization of dimethyl sulfoxide: Pharmacological, cellular, and molecular aspects. Biochem. Pharmacol. 2003, 65, 1035–1041. [Google Scholar] [CrossRef]
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Long, C.; Liu, G.; Bai, H.; Ma, L.; Bai, T.; Zuo, Y.; Li, S. WGBS combined with RNA-seq analysis revealed that Dnmt1 affects the methylation modification and gene expression changes during mouse oocyte vitrification. Theriogenology 2021, 177, 11–21. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Deng, T.; Zou, P.; Wang, Y.; Quan, F.; Zhang, Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 2016, 86, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, L.; Wang, Z.; Chang, H.; Xie, X.; Fu, L.; Zhang, Y.; Quan, F. Resveratrol improved the developmental potential of oocytes after vitrification by modifying the epigenetics. Mol. Reprod. Dev. 2019, 86, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, L.; He, F. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil. Steril. 2010, 93, 2729–2733. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-H.; Wang, J.-J.; Zhang, P.-P.; Hao, H.-S.; Pang, Y.-W.; Wang, H.-Y.; Du, W.-H.; Zhao, S.-J.; Ruan, W.-M.; Zou, H.-Y.; et al. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod. Fertil. Dev. 2020, 32, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Xiang-Wei, F.; Jun-Jie, L.; Dian-Shuai, Y.; Shi-En, Z. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: Effect of oocyte vitrification. Zygote 2014, 2, 138–145. [Google Scholar]
- De Munck, N.; Petrussa, L.; Verheyen, G.; Staessen, C.; Vandeskelde, Y.; Sterckx, J.; Bocken, G.; Jacobs, K.; Stoop, D.; De Rycke, M. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy) methylation analysis consolidate the safety of human oocyte vitrification. Basic Sci. Reprod. Med. 2015, 21, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-H.; Zhou, W.-H.; Chu, D.-P.; Fu, L.; Sha, W.; Li, Y. Ultrastructural Changes and Methylation of Human Oocytes Vitrified at the Germinal Vesicle Stage and Matured in vitro after Thawing. Gynecol. Obstet. Investig. 2017, 82, 252–261. [Google Scholar] [CrossRef]
- Al-Khtib, M.; Perret, A.; Khoueiry, R.; Ibala-Romdhane, S.; Blachère, T.; Greze, C.; Lornage, J.; Lefèvre, A. Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro. Fertil. Steril. 2011, 95, 1955–1960. [Google Scholar] [CrossRef]
- Cantatore, C.; George, J.S.; Depalo, R.; D’amato, G.; Moravek, M.; Smith, G.D. Mouse oocyte vitrification with and without dimethyl sulfoxide: Influence on cryo-survival, development, and maternal imprinted gene expression. J. Assist. Reprod. Genet. 2021, 38, 2129–2138. [Google Scholar] [CrossRef]
- Jahangiri, M.; Shahhoseini, M.; Movaghar, B. H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod. Biomed. Online 2014, 29, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Movahed, E.; Shabani, R.; Hosseini, S.; Shahidi, S.; Salehi, M. Interfering effects of in vitro fertilization and vitrification on expression of Gtl2 and Dlk1 in mouse blastocysts. Int. J. Fertil. Steril. 2020, 14, 110. [Google Scholar] [PubMed]
- Barberet, J.; Romain, G.; Binquet, C.; Guilleman, M.; Bruno, C.; Ginod, P.; Chapusot, C.; Choux, C.; Fauque, P. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil. Steril. 2021, 116, 1468–1480. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.-F.; Huang, Y.-F.; Huang, R.-F.; Lin, S.-X.; Guo, C.-Q.; Hua, C.-Z.; Wu, P.-Y.; Hu, J.-F.; Li, Y.-Z. Effects of Vitrification on the Imprinted Gene Snrpn in Neonatal Placental Tissue. Reprod. Dev. Med. 2020, 4, 25–31. [Google Scholar] [CrossRef]
- Huo, Y.; Yuan, P.; Qin, Q.; Yan, Z.; Yan, L.; Liu, P.; Li, R.; Yan, J.; Qiao, J. Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes. Front. Med. 2020, 15, 144–154. [Google Scholar] [CrossRef]
- Suo, L.; Meng, Q.; Pei, Y.; Fu, X.; Wang, Y.; Bunch, T.D.; Zhu, S. Effect of cryopreservation on acetylation patterns of lysine 12 of histone H4 (acH4K12) in mouse oocytes and zygotes. J. Assist. Reprod. Genet. 2010, 27, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangiri, M.; Shahhoseini, M.; Movaghar, B. The Effect of Vitrification on Expression and Histone Marks of Igf2 and Oct4 in Blastocysts Cultured from Two-Cell Mouse Embryos. Cell J. 2018, 19, 607–613. [Google Scholar] [CrossRef]
- Chatterjee, A.; Saha, D.; Niemann, H.; Gryshkov, O.; Glasmacher, B.; Hofmann, N. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 2016, 74, 1–7. [Google Scholar] [CrossRef]
- Estudillo, E.; Jiménez, A.; Bustamante-Nieves, P.E.; Palacios-Reyes, C.; Velasco, I.; López-Ornelas, A. Cryopreservation of Gametes and Embryos and Their Molecular Changes. Int. J. Mol. Sci. 2021, 22, 10864. [Google Scholar] [CrossRef]
- Yan, L.-Y.; Yan, J.; Qiao, J.; Zhao, P.-L.; Liu, P. Effects of oocyte vitrification on histone modifications. Reprod. Fertil. Dev. 2010, 22, 920–925. [Google Scholar] [CrossRef]
- Maldonado, M.B.C.; Penteado, J.C.T.; Faccio, B.M.C.; Lopes, F.L.; Arnold, D.R. Changes in tri-methylation profile of lysines 4 and 27 of histone H3 in bovine blastocysts after cryopreservation. Cryobiology 2015, 71, 481–485. [Google Scholar] [CrossRef]
- Stigliani, S.; Moretti, S.; Anserini, P.; Casciano, I.; Venturini, P.L.; Scaruffi, P. Storage time does not modify the gene expression profile of cryopreserved human metaphase II oocytes. Hum. Reprod. 2015, 30, 2519–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Zhang, Q.; Yang, L.; Zhou, W.; Ni, T.; Yan, J. Pregnancy and neonatal outcomes after long-term vitrification of blastocysts among 6900 patients after their last live birth. Fertil. Steril. 2022, 119, 36–44. [Google Scholar] [CrossRef]
- Bouillon, C.; Leandri, R.; Desch, L.; Ernst, A.; Bruno, C.; Cerf, C.; Chiron, A.; Souchay, C.; Burguet, A.; Jimenez, C.; et al. Does Embryo Culture Medium Influence the Health and Development of Children Born after In Vitro Fertilization? PLoS ONE 2016, 11, e0150857. [Google Scholar] [CrossRef]
- Sciorio, R.; Tramontano, L.; Rapalini, E.; Bellaminutti, S.; Bulletti, F.M.; D’Amato, A.; Manna, C.; Palagiano, A.; Bulletti, C.; Esteves, S.C. Risk of genetic and epigenetic alteration in children conceived following ART: Is it time to return to nature whenever possible? Clin. Genet. 2022, 103, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Sciorio, R.; El Hajj, N. Epigenetic Risks of Medically Assisted Reproduction. J. Clin. Med. 2022, 11, 2151. [Google Scholar] [CrossRef] [PubMed]
- Barberet, J.; Barry, F.; Choux, C.; Guilleman, M.; Karoui, S.; Simonot, R.; Bruno, C.; Fauque, P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin. Epigenet. 2020, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Tran, K.T.D.; Valli-Pulaski, H.; Colvin, A.; E Orwig, K. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies. Biol. Reprod. 2022, 107, 382–405. [Google Scholar] [CrossRef]
- Bunge, R.G.; Sherman, J.K. Fertilizing Capacity of Frozen Human Spermatozoa. Nature 1953, 172, 767–768. [Google Scholar] [CrossRef]
- Riva, N.S.; Ruhlmann, C.; Iaizzo, R.S.; Marcial Lopez, C.A.; Martinez, A.G. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRA Assist. Reprod. 2018, 22, 331–337. [Google Scholar] [CrossRef]
- Isachenko, V.; Maettner, R.; Petrunkina, A.M.; Sterzik, K.; Mallmann, P.; Rahimi, G.; Sanchez, R.; Risopatron, J.; Damjanoski, I.; Isachenko, E. Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: New capillary technology. J. Androl. 2012, 33, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.; De Iuliis, G. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2009, 16, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Ni, X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr. Drug Targets 2015, 16, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Ziech, D.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. Mol. Mech. Mutagen. 2011, 711, 167–173. [Google Scholar] [CrossRef]
- Valipour, J.; Nashtaei, M.S.; Khosravizadeh, Z.; Mahdavinezhad, F.; Nekoonam, S.; Esfandyari, S.; Amidi, F. Effect of sulforaphane on apoptosis, reactive oxygen species and lipids peroxidation of human sperm during cryopreservation. Cryobiology 2020, 99, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Kläver, R.; Tüttelmann, F.; Bleiziffer, A.; Haaf, T.; Kliesch, S.; Gromoll, J. DNA methylation in spermatozoa as a prospective marker in andrology. Andrology 2013, 1, 731–740. [Google Scholar] [CrossRef]
- El Hajj, N.; Zechner, U.; Schneider, E.; Tresch, A.; Gromoll, J.; Hahn, T.; Schorsch, M.; Haaf, T. Methylation Status of Imprinted Genes and Repetitive Elements in Sperm DNA from Infertile Males. Sex. Dev. 2011, 5, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.J.; Francisco, T.; Sousa, S.; Carvalho, F.; Barros, A.; Sousa, M. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil. Steril. 2010, 94, 585–594. [Google Scholar] [CrossRef]
- Poplinski, A.; Tüttelmann, F.; Kanber, D.; Horsthemke, B.; Gromoll, J. Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int. J. Androl. 2010, 33, 642–649. [Google Scholar]
- Laurentino, S.; Beygo, J.; Nordhoff, V.; Kliesch, S.; Wistuba, J.; Borgmann, J.; Buiting, K.; Horsthemke, B.; Gromoll, J. Epigenetic germline mosaicism in infertile men. Hum. Mol. Genet. 2014, 24, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- de Mello, F.; Garcia, J.S.; Godoy, L.C.; Depincé, A.; Labbé, C.; Streit, D.P., Jr. The effect of cryoprotectant agents on DNA methylation patterns and progeny development in the spermatozoa of Colossoma macropomum. Gen. Comp. Endocrinol. 2017, 245, 94–101. [Google Scholar] [CrossRef]
- Depincé, A.; Gabory, A.; Dziewulska, K.; Le Bail, P.; Jammes, H.; Labbé, C. DNA methylation stability in fish spermatozoa upon external constraint: Impact of fish hormonal stimulation and sperm cryopreservation. Mol. Reprod. Dev. 2019, 87, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Mahdavi, A.H.; Sharafi, M.; Shahverdi, A. Cryopreservation of rooster semen: Evidence for the epigenetic modifications of thawed sperm. Theriogenology 2020, 142, 15–25. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Sun, Υ.; Zhang, S.; Feng, X.; Xu, M.; Dai, J.; Ni, X.; Wang, X.; Wu, Q. Profiling the DNA methylation patterns of imprinted genes in abnormal semen samples by next-generation bisulfite sequencing. J. Assist. Reprod. Genet. 2020, 37, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- Khosravizadeh, Z.; Hassanzadeh, G.; Bazzaz, J.T.; Alizadeh, F.; Totonchi, M.; Salehi, E.; Khodamoradi, K.; Khanehzad, M.; Hosseini, S.R.; Abolhassani, F. The effect of cryopreservation on DNA methylation patterns of the chromosome 15q11–q13 region in human spermatozoa. Cell Tissue Bank 2020, 21, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Bogle, O.A.; Kumar, K.; Attardo-Parrinello, C.; Lewis, S.E.M.; Estanyol, J.M.; Ballescà, J.L.; Oliva, R. Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology 2016, 5, 10–22. [Google Scholar] [CrossRef]
- Santi, D.; De Vincentis, S.; Magnani, E.; Spaggiari, G. Impairment of sperm DNA methylation in male infertility: A meta-analytic study. Andrology 2017, 5, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Güngör, İ.H.; Tektemur, A.; Arkali, G.; Cinkara, S.D.; Acisu, T.C.; Koca, R.H.; Önalan, E.E.; Kaya, Ş.Ö.; Kizil, M.; Sönmez, M.; et al. Effect of freeze–thawing process on lipid peroxidation, miRNAs, ion channels, apoptosis and global DNA methylation in ram spermatozoa. Reprod. Fertil. Dev. 2021, 33, 747–759. [Google Scholar] [CrossRef]
Embryo Cryopreservation in ART Practice | |
---|---|
Preimplantation genetic testing | Genetic assessment is facilitated by the opportunity to utilize the cryopreservation method to store embryos to be transferred in a future cycle, and to overcome the time interval between the blastocyst biopsy and genetic result |
Avoiding ovarian hyperstimulation syndrome (OHSS) | When a fresh embryo transfer cannot be performed due to the risk of OHSS, embryos might be cryopreserved and used in a future cycle |
Increasing the policy of elective single embryo transfer (eSET) | The cryopreservation of surplus embryos is considered a valid method to reduce the number of embryos transferred during a fresh cycle and to thus minimize the risk of multiple pregnancies and to increase the policy of eSET—as well as to reduce the need for repeated stimulation cycles |
Embryo freezing for cancer patients | In women with a stable partner about to go through gonadotoxic/chemotherapy treatment for cancer |
Elevated progesterone or other conditions, such as endometriosis | Elevated progesterone in the late follicular phase has a negative impact on pregnancy outcomes; or other conditions and medical pathology that might affect fertility |
Cryoprotectant | Red Blood Cells at 4 °C Study Reference [52] | Sperm Cells at 22 °C Study Reference [53] | Oocytes at 22 °C Study Reference [54] |
---|---|---|---|
Methanol | 11.35 | N/A | N/A |
Formamide | 8.05 | N/A | N/A |
Ethylene glycol | 3.38 | 13.2 | 1.95 |
Dimethyl sulfoxide | 1.30 | 1.33 | 2.60 |
Propylene glycol | 1.79 | 3.83 | 3.83 |
Glycerol | 0.58 | 3.50 | Low |
Cryoprotectants | Concentration Required to Vitrify (C-Vit) %/Volume |
---|---|
DMSO | 49–50 |
PG | 43.5 |
EG | 55 |
GLY | 65 |
Study [Ref.] | Materials: Human or Animal | Oocytes or Embryo Analyzed (n) | Technology of Assessment | Studied Sequences or Genes | Main Findings |
---|---|---|---|---|---|
De Munck et al. [128] | (Human) Mature (MII) donated oocytes | 31 embryos (Day 3) from 17 fresh oocytes and 14 after vitrification | Immunofluorescence (5mC, 5hmC) | Global Analysis | No differences in fluorescence intensities between embryos from fresh and vitrified oocytes |
Liu et al. [129] | (Human) Vitrified mature oocytes (MII), and MII from GV matured in-vitro | 56 in vivo MII, 106 MII from GV matured in-vitro, 122 MII from vitrified GV | Immunofluorescence (5mC) | Global analysis | No significant differences in fluorescence intensities between groups |
Al-Khtib et al. [130] | (Human) GV oocytes donated for research and IVM to MII | 77 MII after IVM from 184 vitrified GV stage, and 85 MII from 120 fresh GV | Pyrosequencing | Methylation profile of H19 and KCNQ1OT1, H19DMR and KvDMR1 | Oocyte vitrification at the GV stage does not affect the methylation profiles of H19-DMR and KvDMR1 |
Cantatore et al. [131] | (Mouse) Cleavage stage embryos and blastocysts from vitrified MII oocytes | Two-cell embryos and blastocysts from vitrified oocytes | q-PCR | Igf2r and Gtl2 | No significant differences observed |
Zhao et al. [126] | (Bovine) Oocytes | Vitrified MII oocytes matured in-vitro | Single-cell whole-genome methylation sequencing | Global analysis | Peg3 methylation level significantly decreased in the derived blastocysts |
Chen et al. [124] | (Mouse) Oocytes | MII oocytes and two-cell embryos | q-PCR and bisulfite sequencing | Gtl2, H19, Igf2, Peg3, Peg10, Igf2r | Peg3, Peg10, and Igf2r were significantly different in MII oocytes and two-cell embryos after vitrification |
Chen et al. [123] | (Bovine) Oocytes | Vitrified MII oocytes matured in vitro | q-PCR | Peg3, Peg10, Kcnq1ot1, Xist, Igf2r | Peg10, Kcnq1ot1, and Xist significantly increased after vitrification |
Cheng et al. [76] | (Mouse) Blastocysts | Blastocysts from vitrified MII oocytes | Bisulfite sequencing | H19, Peg3, Snrpn | No significant differences in oocytes; decrease in blastocysts after oocyte vitrification |
Ma et al. [122] | (Mouse) Oocytes | Mature metaphase II oocytes | WGBS combined with RNA-seq | Global analysis | Kcnq1ot1 was significantly downregulated in the vitrified oocytes |
Jahangiri et al. [132] | (Mouse) Embryos | Mouse blastocysts from vitrified two-cell embryos | q-PCR | H3, H19 and Mest |
The expression level of the chosen imprinted genes increased significantly in experimental groups compared to
in vivo blastocysts |
Movahed et al. [133] | (Mouse) Embryos | Mouse blastocysts from vitrified two-cell embryos | q-PCR | Gtl2 and Dlk1 | Gtl2 was downregulated and Dlk1 was upregulated after vitrification |
Barberet et al. [134] | (Human) Placenta | Human placenta | Pyrosequencing and q-PCR | H19, IGF2, KCNQ1OT1 SNURF | The placental DNA methylation levels of H19/IGF2 were lower in the fresh embryo transfer group than in the control (H19/IGF2-seq1) and frozen embryo transfer (H19/IGF2-seq2) groups |
Yao et al. [135] | (Human) Placenta | Human placenta obtained from vitrified embryos | q-PCR, Western blotting, and pyrosequencing | SNRPN | The expression level of SNRPN increased after vitrification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sciorio, R.; Manna, C.; Fauque, P.; Rinaudo, P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? J. Clin. Med. 2023, 12, 4444. https://doi.org/10.3390/jcm12134444
Sciorio R, Manna C, Fauque P, Rinaudo P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? Journal of Clinical Medicine. 2023; 12(13):4444. https://doi.org/10.3390/jcm12134444
Chicago/Turabian StyleSciorio, Romualdo, Claudio Manna, Patricia Fauque, and Paolo Rinaudo. 2023. "Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos?" Journal of Clinical Medicine 12, no. 13: 4444. https://doi.org/10.3390/jcm12134444
APA StyleSciorio, R., Manna, C., Fauque, P., & Rinaudo, P. (2023). Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? Journal of Clinical Medicine, 12(13), 4444. https://doi.org/10.3390/jcm12134444