Effects of Vibrotherapy with Different Characteristics and Body Position on Post-Exercise Recovery after Anaerobic Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Somatic Measurements and Exercise Tests
2.4. Blood Sampling and Biochemical and Hematological Analyses
2.5. Statistical Analysis
3. Results
3.1. Physiological Parameters
3.2. Wingate Test
3.3. Biochemical Parameters
3.4. Lactate Concentration in Arterialised Blood
3.5. Hematological Blood Parameters and Plasma Volume Changes
4. Discussion
Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laing, S.; Jackson, A.; Walters, R.; Lloyd-Jones, E.; Whitham, M.; Maassen, N.; Walsh, N. Human Blood Neutrophil Responses to Prolonged Exercise with and without a Thermal Clamp. J. Appl. Physiol. 2008, 104, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Uher, I. Vibration Therapy and Its Influence on Health. Biomed. J. Sci. Tech. Res. 2018, 6, 3–7. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Massage Alleviates Delayed Onset Muscle Soreness after Strenuous Exercise: A Systematic Review and Meta-Analysis. Front. Physiol. 2017, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.; Bakshi, N.; Freehill, M.T.; Awan, T.M. Whole-Body Cryotherapy in Sports Medicine. Curr. Sports Med. Rep. 2019, 18, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.; Nosaka, K. Effect of Vibration Treatment on Symptoms Associated with Eccentric Exercise-Induced Muscle Damage. Am. J. Phys. Med. Rehabil. 2011, 90, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Magoffin, R.; Parcell, A.; Hyldahl, R.; Fellingham, G.; Hopkins, J.; Feland, J. Whole-Body Vibration as a Warm-up Before Exercise-Induced Muscle Damage on Symptoms of Delayed-Onset Muscle Soreness in Trained Subjects. J. Strength Cond. Res. 2020, 34, 1123–1132. [Google Scholar] [CrossRef]
- Piotrowska, A.; Pilch, W.; Tota, Ł.; Maciejczyk, M.; Mucha, D.; Bujas, P.; Wiecha, S.; Sadowska-kr, E.; Bigosinska, M. Local Vibration Reduces Muscle Damage after Prolonged Exercise in Men. J. Clin. Med. 2021, 10, 5461. [Google Scholar] [CrossRef] [PubMed]
- Rhea, M.; Bunker, D.; Marín, P.; Lunt, K. Effect of Tonic Whole-Body Vibration on Delayed-Onset Muscle Soreness among Untrained Individuals. J. Strength Cond. Res. 2009, 23, 1677–1682. [Google Scholar] [CrossRef] [Green Version]
- Aminian-Far, A.; Hadian, M.; Olyaei, G.; Talebian, S.; Bakhtiary, A.H. Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness. J. Athl. Train. 2011, 46, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Orthop, J.; Res, S.; Akehurst, H.; Grice, J.E.; Angioi, M.; Morrissey, D.; Migliorini, F.; Maffulli, N. Whole-Body Vibration Decreases Delayed Onset Muscle Soreness Following Eccentric Exercise in Elite Hockey Players: A Randomised Controlled Trial. J. Orthop. Surg. Res. 2021, 16, 589. [Google Scholar] [CrossRef]
- Pinto, N.S.; Monteiro, M.B.; Arthur, A.P.; Paiva, D.N.; Meyer, P.F.; Santos-Filho, S.D.; Marín, P.J.; Bernardo-filho, M. Effectiveness of a Protocol Involving Acute Whole-Body Vibration Exercises in an Adult and Health Individual with Delayed-Onset Muscle Soreness Observed after Running: A Case Report. J. Med. Med. Sci. 2011, 2, 612–617. [Google Scholar]
- Veqar, Z.; Imtiyaz, S. Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS). J. Clin. Diagn. Res. 2014, 8, LE01–LE04. [Google Scholar] [CrossRef]
- Kabata-Piżuch, A.; Suder, A.; Jagielski, P.; Kubasiak, K.; Handzlik, P.; Teległów, A.; Marchewka, A. Effect of Vibrotherapy on Body Fatness, Blood Parameters and Fibrinogen Concentration in Elderly Men. J. Clin. Med. 2021, 10, 3259. [Google Scholar] [CrossRef]
- Blanks, A.M.; Rodriguez-Miguelez, P.; Looney, J.; Tucker, M.A.; Jeong, J.; Thomas, J.; Blackburn, M.; Stepp, D.W.; Weintraub, N.J.; Harris, R.A. Whole body vibration elicits differential immune and metabolic responses in obese and normal weight individuals. Brain Behav. Immun. Health 2020, 1, 100011. [Google Scholar] [CrossRef]
- Di Giminiani, R.; Rucci, N.; Capuano, L.; Ponzetti, M.; Aielli, F.; Tihanyi, J. Individualized Whole-Body Vibration: Neuromuscular, Biochemical, Muscle Damage and Inflammatory Acute Responses. Dose Response 2020, 18, 1559325820931262. [Google Scholar] [CrossRef]
- Gattner, H.; Adamiak, J.; Piotrowska, A.; Czerwińska-Ledwig, O.; Mętel, S.; Kępińska-Szyszkowska, M.; Pilch, W. Effect of Whole-Body Vibration Training on Hemorheological Blood Indices in Young, Healthy Women. Int. J. Environ. Res. Public Health 2023, 20, 3232. [Google Scholar] [CrossRef]
- Corum, M.; Topkara, B.; Kokce, M.; Ozkan, M.; Bucak, O.F.; Ayture, L.; Karacan, I.; Türker, K.S. The reflex mechanism underlying the neuromuscular effects of whole-body vibration: Is it the tonic vibration reflex? J. Musculoskelet. Neuronal Interact. 2022, 22, 37–42. [Google Scholar]
- Piotrowska, A. Vibration as a physical stimulus useful in physical training. In The Importance of Physical Activity for Human Health; Tygiel: Lublin, Poland, 2022. [Google Scholar]
- Nawayseh, N. Effect of the seating condition on the transmission of vibration through the seat pan and backrest. Int. J. Ind. Erg. 2015, 45, 82–90. [Google Scholar] [CrossRef]
- Niazmand-Aghdam, N.; Ranjbarian, M.; Khodakarim, S.; Mohammadian, F.; Farhang Dehghan, S. The effects of combined exposure to road traffic noise and whole body vibration on types of attention among men. Med. Lav. 2021, 112, 360–369. [Google Scholar] [CrossRef]
- Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirement; International Organization for Standardization: Beijing, China, 1997.
- Morel, D.S.; Dionello, C.d.F.; Moreira-Marconi, E.; Brandao-Sobrinho-Neto, S.; Paineiras-Domingos, L.L.; Souza, P.L.; Sa-Caputo, D.d.C.; Dias, G.; Figueiredo, C.; Carmo, R.C.R.; et al. Relevance of Whole Body Vibration Exercise in Sport: A Short Review With Soccer, Diver and Combat Sport. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.; Schiller, H.H. Discharge Pattern of Single Motor Units in the Tonic Vibration Reflex of Human Triceps Surae. J. Neurol. Neurosurg. Psychiatry 1976, 39, 729–741. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiary, A.H.; Safavi-Farokhi, Z.; Aminian-Far, A. Influence of Vibration on Delayed Onset of Muscle Soreness Following Eccentric Exercise. Br. J. Sports Med. 2007, 41, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Tyka, A.; Pałka, T.; Piotrowska, A.; Żiżka, D.; Pilch, W.; Cebula, A.; Tyka, A. The Effect of Vibro-Massage on the Level of Selected Marker of Muscle Damage and Connective Tissues after Long-Term Physical Exercise in Males. J. Kinesiol. Exerc. Sci. 2018, 28, 21–27. [Google Scholar] [CrossRef]
- van Heuvelen, M.J.G.; Rittweger, J.; Judex, S.; Sañudo, B.; Seixas, A.; Fuermaier, A.B.M.; Tucha, O.; Nyakas, C.; Marín, P.J.; Taiar, R.; et al. Reporting Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A Consensus Statement from an International Group of Experts. Biology 2021, 10, 965. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate Anaerobic Test. An Update on Methodology, Reliability and Validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Kostecka, M.; Bojanowska, M.; Kostecka, J.; Ciołek, A. An analysis of dietary patterns and body composition parameters in the Polish population. Rocz. Panstw. Zakl. Hig. 2021, 72, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Jarosza, M.; Rychlik, E.; Stoś, K.; Charzewskiej, J. Nutrition Standards for the Population of Poland and Their Application; Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny Warszawa: Warszawa, Poland, 2020. [Google Scholar]
- Dill, D.B.; Costill, D.L. Calculation of Percentage Changes in Volumes of Blood, Plasma, and Red Cells in Dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Harrison, M.; Graveney, M.; Cochrane, L. Some Sources of Error in the Calculation of Relative Change in Plasma Volume. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 13–21. [Google Scholar] [CrossRef]
- Kraemer, R.; Brown, B. Alterations in Plasma-Volume-Corrected Blood Components of Marathon Runners and Concomitant Relationship to Performance. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 579–584. [Google Scholar] [CrossRef]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef] [Green Version]
- Zunner, B.E.M.; Wachsmuth, N.B.; Eckstein, M.L.; Scherl, L.; Schierbauer, J.R.; Haupt, S.; Stumpf, C.; Reusch, L.; Moser, O. Myokines and Resistance Training: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 3501. [Google Scholar] [CrossRef]
- Peake, J.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar]
- Otsuki, T.; Takanami, Y.; Aoi, W.; Kawai, Y.; Ichikawa, H.; Yoshikawa, T. Arterial Stiffness Acutely Decreases after Whole-Body Vibration in Humans. Acta Physiol. 2008, 194, 189–194. [Google Scholar] [CrossRef]
- Games, K.E.; Sefton, J.M.; Wilson, A.E. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis. J. Athl. Train. 2015, 50, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska, A. The use of a local application of a vibrating stimulus for anesthesia during procedures. Aesthetic Cosm. Med. 2019, 8, 369–370. [Google Scholar]
- Cornish, S.M.; Chase, J.E.; Bugera, E.M.; Giesbrecht, G.G. Systemic IL-6 and Myoglobin Response to Three Different Resistance Exercise Intensities in Older Men. J. Aging Phys. Act. 2018, 26, 451–456. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 Myokine Signaling in Skeletal Muscle: A Double-Edged Sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Broadbent, S.; Rousseau, J.J.; Thorp, R.M.; Choate, S.L.; Jackson, F.S.; Rowlands, D.S. Vibration Therapy Reduces Plasma IL6 and Muscle Soreness after Downhill Running. Br. J. Sports Med. 2010, 44, 888–894. [Google Scholar] [CrossRef]
- Ozolin, P. Blood flow in the extremities of athletes. Int. J. Sports Med. 1986, 7, 117–122. [Google Scholar] [CrossRef]
- Imtiyaz, S.; Veqar, Z.; Shareef, M.Y. To Compare the Effect of Vibration Therapy and Massage in Prevention of Delayed Onset Muscle Soreness (DOMS). J. Clin. Diagn. Res. 2014, 8, 133–136. [Google Scholar] [CrossRef]
- Schofield, J.S.; Dawson, M.R.; Carey, J.P.; Hebert, J.S. Characterizing the Effects of Amplitude, Frequency and Limb Position on Vibration Induced Movement Illusions: Implications in Sensory-Motor Rehabilitation. Technol. Health Care 2015, 23, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simsek, D. Different Fatigue-Resistant Leg Muscles and EMG Response during Whole-Body Vibration. J. Electromyogr. Kinesiol. 2017, 37, 147–154. [Google Scholar] [CrossRef] [PubMed]
Variable | Min | Max | SD | |
---|---|---|---|---|
Basic anthropometric characteristics | ||||
Age (years) | 20.90 | 26.50 | 22.17 | 1.40 |
Body height; BH (cm) | 166.20 | 186.10 | 175.70 | 5.64 |
Body mass; BM (kg) | 64.00 | 91.30 | 74.74 | 7.60 |
Lean body mass. LBM (kg) | 51.50 | 79.50 | 61.94 | 7.24 |
Soft lean mass. SLM (kg) | 47.80 | 74.10 | 57.57 | 6.80 |
Total body water; TBW | 37.10 | 57.20 | 44.59 | 5.20 |
BMI (kg/m2) | 22.00 | 29.60 | 24.21 | 2.24 |
Percentage of body fat; PBF (%) | 11.20 | 21.90 | 17.20 | 2.89 |
Fat mass; FM (kg) | 8.10 | 18.00 | 12.79 | 2.25 |
Visceral fat area; VFA (cm2) | 34.00 | 71.00 | 55.56 | 9.67 |
Proteins | 10.70 | 16.90 | 12.98 | 1.60 |
Minerals | 3.70 | 5.40 | 4.38 | 0.46 |
Physiological indicators determined in the aerobic and anaerobic tests | ||||
Respiratory rate; BF (1 min−1) | 36.70 | 80.30 | 54.86 | 11.29 |
Max. heart rate; HRmax (beats·min−1) | 158.00 | 203.00 | 185.69 | 11.79 |
Max. pulmonary ventilation; VEmax (L·min−1) | 77.10 | 205.50 | 133.78 | 32.98 |
Respiratory exchange ratio; RER | 1.00 | 1.55 | 1.28 | 0.15 |
Tidal volume; TV (L) | 2.17 | 3.42 | 2.62 | 0.32 |
Max. oxygen consumption; VO2max (L·min−1) | 2.72 | 4.46 | 3.47 | 0.47 |
Max. oxygen consumption; VO2max (mL·kg−1·min−1) | 37.60 | 53.60 | 46.37 | 3.97 |
Maximal power; MWL (W) | 260.00 | 390.00 | 316.25 | 36.81 |
Load capacity (kg) | 4.80 | 6.85 | 5.60 | 0.57 |
Mean power; MP (W) | 553.00 | 899.00 | 681.00 | 96.18 |
Mean power; MP (W·kg−1) | 7.60 | 10.50 | 9.09 | 0.66 |
Total work; TW (kJ) | 16.59 | 26.97 | 20.43 | 2.88 |
Total work; TW (J·kg−1) | 229.00 | 314.00 | 273.56 | 19.46 |
Peak power; PP (W) | 687.00 | 1159.00 | 871.75 | 136.62 |
Relative peak power; RPP (W·kg−1) | 9.87 | 13.75 | 11.63 | 0.96 |
Power decrease indicator; IDP (W·kg·s−1) | 0.15 | 0.33 | 0.26 | 0.05 |
Time to obtain peak power; toPP (s) | 3.00 | 5.72 | 4.40 | 0.76 |
Time to maintain peak power; tmPP (s) | 2.39 | 8.13 | 3.75 | 1.42 |
I-T1-A | I-T1-B | I-T2-A | I-T2-B | II-T1-A | II-T1-B | II-T2-A | II-T2-B | ||
---|---|---|---|---|---|---|---|---|---|
SBP (mmHg) | 0 | 116.00 ± 9.08 | 119.56 ± 9.27 | 120.31 ± 7.27 | 117.29 ± 9.92 | 117.82 ± 10.48 | 116.65 ± 9.11 | 117.47 ± 6.22 | 117.59 ± 8.85 |
60 min | 118.35 ± 9.93 | 119.13 ± 9.09 | 123.63 ± 5.26 | 116.76 ± 11.09 | 119.76 ± 10.63 | 120.47 ± 6.76 | 119.82 ± 6.54 | 123.06 ± 8.50 | |
24 h | 118.41 ± 11.61 | 116.94 ± 8.87 | 117.25 ± 9.01 | 118.47 ± 7.67 | 115.71 ± 8.62 | 117.53 ± 7.87 | 115.41 ± 6.37 | 116.65 ± 7.71 | |
DBP (mmHG) | 0 | 71.88 ± 6.18 | 71.19 ± 4.87 | 73.25 ± 5.43 | 72.82 ± 4.88 | 71.24 ± 7.32 | 71.35 ± 5.66 | 70.53 ± 6.52 | 72.06 ± 6.23 |
60 min | 72.88 ± 5.60 | 72.56 ± 4.75 | 74.88 ± 5.03 | 72.88 ± 5.70 | 72.24 ± 4.98 | 73.29 ± 4.40 | 73.35 ± 4.97 | 73.88 ± 6.13 | |
24 h | 71.88 ± 7.01 | 69.63 ± 6.12 | 69.25 ± 7.26 | 71.12 ± 4.64 | 69.94 ± 6.15 | 71.12 ± 4.95 | 69.47 ± 4.96 | 71.47 ± 6.51 | |
HR (bpm) | 0 | 74.35 ± 9.62 | 76.31 ± 6.80 | 75.69 ± 6.94 | 77.76 ± 7.82 | 79.41 ± 8.09 | 73.76 ± 7.22 | 75.47 ± 9.46 | 78.24 ± 8.00 |
60 min | 82.47 ± 4.98 | 85.00 ± 4.73 | 83.81 ± 5.34 | 82.71 ± 5.72 | 81.53 ± 4.71 | 82.59 ± 3.50 | 80.94 ± 6.16 | 80.29 ± 10.09 | |
24 h | 76.82 ± 9.15 | 75.69 ± 8.93 | 73.75 ± 9.77 | 73.18 ± 7.95 | 76.00 ± 7.94 | 74.88 ± 9.08 | 73.06 ± 6.84 | 78.12 ± 6.27 | |
SpO (%) | 0 | 98.35 ± 0.61 | 98.31 ± 0.70 | 96.75 ± 2.84 | 97.41 ± 2.18 | 97.65 ± 2.42 | 98.00 ± 1.06 | 98.47 ± 0.80 | 98.24 ± 0.75 |
60 min | 98.29 ± 0.69 | 97.56 ± 1.63 | 97.81 ± 1.52 | 97.76 ± 1.09 | 98.18 ± 1.38 | 97.94 ± 1.09 | 97.94 ± 1.43 | 97.88 ± 1.73 | |
24 h | 97.88 ± 1.22 | 97.44 ± 1.75 | 73.75 ± 9.77 | 98.41 ± 0.62 | 97.82 ± 2.30 | 97.82 ± 1.01 | 98.59 ± 0.71 | 98.12 ± 1.73 |
Indices | I-T1-A | I-T1-B | I-T2-A | I-T2-B | II-T1-A | II-T1-B | II-T2-A | II-T2-B |
---|---|---|---|---|---|---|---|---|
TW (kJ) | 17.9 ± 3.03 | 14.74 ± 0.78 | 14.87 ± 1.03 | 14.58 ± 0.54 | 14.39 ± 0.95 | 14.77 ± 1.28 | 14.68 ± 1.04 | 17.70 ± 0.89 |
PP (W) | 880.38 ± 66.79 | 891.94 ± 31.39 | 892.13 ± 41.99 | 879.81 ± 29.35 | 880.31 ± 46.29 | 887.06 ± 58.03 | 887.06 ± 53.07 | 875.94 ± 65.54 |
RPP (W·kg−1) | 11.74 ± 0.59 | 11.97 ± 0.47 | 11.79 ± 0.94 | 11.79 ± 1.01 | 11.89 ± 0.75 | 11.68 ± 0.67 | 11.89 ± 1.14 | 11.64 ± 0.95 |
toPP (s) | 4.15 ± 0.79 | 4.05 ± 0.84 | 3.77 ± 0.51 | 3.88 ± 0.49 | 3.88 ± 0.77 | 3.98 ± 0.63 | 3.84 ± 0.62 | 3.78 ± 0.69 |
tmPP (s) | 3.52 ± 1.54 | 2.60 ± 0.55 | 2.77 ± 0.28 | 3.08 ± 0.39 | 2.83 ± 0.35 | 2.89 ± 0.69 | 3.22 ± 0.92 | 3.45 ± 0.70 |
IDP (W·kg·s−1) | 0.299 ± 0.057 | 0.347 ± 0.059 | 0.316 ± 0.051 | 0.332 ± 0.042 | 0.341 ± 0.029 | 0.324 ± 0.035 | 0.351 ± 0.053 | 0.316 ± 0.048 |
I-T1-A | I-T1-B | I-T2-A | I-T2-B | II-T1-A | II-T1-B | II-T2-A | II-T2-B | ||
---|---|---|---|---|---|---|---|---|---|
Mb ng/mL | 0 | 37.83 ± 4.72 | 50.12 ± 13.85 | 49.06 ± 14.43 | 46.38 ± 14.99 | 45.87 ± 14.10 | 42.36 ± 13.94 | 41.79 ± 12.84 | 43.00 ± 12.71 |
60 min | 50.18 ± 16.85 | 66.83 ± 17.94 | 66.33 ± 22.50 | 74.30 ± 20.31 | 72.55 ± 30.94 | 66.20 ± 26.58 | 73.11 ± 32.03 | 69.53 ± 20.32 | |
24 h | 38.06 ± 7.84 | 43.92 ± 11.40 | 47.22 ± 9.62 | 47.45 ± 13.99 | 37.13 ± 12.10 | 54.05 ± 20.98 | 46.71 ± 15.58 | 46.86 ± 9.94 | |
CK ng/mL | 0 | 0.65 ± 0.76 | 0.59 ± 1.01 | 1.37 ± 1.20 | 1.08 ± 1.44 | 1.34 ± 1.19 | 0.55 ± 0.53 | 1.60 ± 1.49 | 1.06 ± 1.00 |
60 min | 2.04 ± 1.84 | 2.67 ± 1.71 | 2.42 ± 1.87 | 1.29 ± 1.11 | 1.54 ± 1.90 | 0.86 ± 0.77 | 1.94 ± 1.82 | 1.36 ± 1.66 | |
24 h | 0.97 ± 1.12 | 1.76 ± 2.29 | 3.14 ± 2.01 | 1.62 ± 1.69 | 1.32 ± 1.39 | 1.35 ± 1.78 | 2.69 ± 2.87 | 1.52 ± 1.48 | |
Il-1β pg/mL | 0 | 1.68 ± 0.44 | 1.65 ± 0.41 | 1.79 ± 0.47 | 1.67 ± 0.62 | 1.78 ± 0.37 | 1.79 ± 0.40 | 1.80 ± 0.62 | 1.88 ± 0.37 |
60 min | 1.68 ± 0.45 | 1.66 ± 0.40 | 1.81 ± 0.54 | 1.69 ± 0.58 | 1.79 ± 0.36 | 1.85 ± 0.40 | 1.80 ± 0.64 | 1.96 ± 0.32 | |
24 h | 1.67 ± 0.42 | 1.67 ± 0.40 | 1.82 ± 0.46 | 1.62 ± 0.65 | 1.78 ± 0.39 | 1.79 ± 0.38 | 1.83 ± 0.62 | 1.84 ± 0.41 | |
Il-6 pg/mL | 0 | 2.20 ± 0.33 | 1.90 ± 0.46 | 2.06 ± 0.18 | 2.22 ± 0.38 | 2.21 ± 0.51 | 2.17 ± 0.29 | 2.10 ± 0.49 | 2.18 ± 0.24 |
60 min | 2.82 ± 0.80 | 2.15 ± 0.58 | 2.49 ± 0.25 | 2.59 ± 0.39 | 2.70 ± 0.96 | 2.94 ± 0.93 | 2.52 ± 0.87 | 2.45 ± 0.41 | |
24 h | 2.01 ± 0.31 | 1.75 ± 0.20 | 2.25 ± 0.29 | 2.16 ± 0.31 | 2.13 ± 0.40 | 2.06 ± 0.34 | 1.90 ± 0.34 | 2.14 ± 0.39 | |
Hb g/dL | 0 | 15.95 ± 0.50 | 15.85 ± 0.85 | 15.44 ± 0.70 | 16.15 ± 0.61 | 15.80 ± 0.69 | 15.72 ± 0.65 | 15.61 ± 0.73 | 15.70 ± 0.64 |
60 min | 15.84 ± 0.74 | 15.41 ± 0.94 | 15.42 ± 0.63 | 16.24 ± 0.73 | 15.78 ± 0.73 | 15.62 ± 0.64 | 15.45 ± 0.92 | 15.50 ± 0.72 | |
24 h | 15.90 ± 0.55 | 15.62 ± 0.88 | 15.53 ± 0.60 | 16.12 ± 0.53 | 15.52 ± 0.62 | 15.62 ± 0.76 | 15.36 ± 0.64 | 15.49 ± 0.74 | |
Hct % | 0 | 45.56 ± 0.89 | 45.44 ± 1.75 | 44.62 ± 1.49 | 46.69 ± 1.78 | 45.53 ± 1.46 | 45.23 ± 1.34 | 44.71 ± 2.19 | 44.86 ± 1.86 |
60 min | 45.26 ± 1.20 | 44.41 ± 1.77 | 43.91 ± 1.48 | 46.21 ± 1.60 | 44.85 ± 1.35 | 44.40 ± 1.33 | 44.28 ± 2.10 | 44.19 ± 1.99 | |
24 h | 45.09 ± 1.20 | 45.03 ± 1.81 | 43.78 ± 1.20 | 45.83 ± 1.50 | 43.93 ± 1.12 | 44.86 ± 1.58 | 43.72 ± 1.60 | 43.93 ± 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pałka, T.; Maciejczyk, M.; Czerwińska-Ledwig, O.; Tota, Ł.; Bawelski, M.; Leiva-Arcas, A.; Stabrawa, R.; Bujas, P.; Mucha, D.; Wiśniewski, A.; et al. Effects of Vibrotherapy with Different Characteristics and Body Position on Post-Exercise Recovery after Anaerobic Exercise. J. Clin. Med. 2023, 12, 4629. https://doi.org/10.3390/jcm12144629
Pałka T, Maciejczyk M, Czerwińska-Ledwig O, Tota Ł, Bawelski M, Leiva-Arcas A, Stabrawa R, Bujas P, Mucha D, Wiśniewski A, et al. Effects of Vibrotherapy with Different Characteristics and Body Position on Post-Exercise Recovery after Anaerobic Exercise. Journal of Clinical Medicine. 2023; 12(14):4629. https://doi.org/10.3390/jcm12144629
Chicago/Turabian StylePałka, Tomasz, Marcin Maciejczyk, Olga Czerwińska-Ledwig, Łukasz Tota, Marek Bawelski, Alejandro Leiva-Arcas, Rafał Stabrawa, Przemysław Bujas, Dawid Mucha, Andrzej Wiśniewski, and et al. 2023. "Effects of Vibrotherapy with Different Characteristics and Body Position on Post-Exercise Recovery after Anaerobic Exercise" Journal of Clinical Medicine 12, no. 14: 4629. https://doi.org/10.3390/jcm12144629
APA StylePałka, T., Maciejczyk, M., Czerwińska-Ledwig, O., Tota, Ł., Bawelski, M., Leiva-Arcas, A., Stabrawa, R., Bujas, P., Mucha, D., Wiśniewski, A., & Piotrowska, A. (2023). Effects of Vibrotherapy with Different Characteristics and Body Position on Post-Exercise Recovery after Anaerobic Exercise. Journal of Clinical Medicine, 12(14), 4629. https://doi.org/10.3390/jcm12144629