Next Article in Journal
Absence of Oligoclonal Bands in Multiple Sclerosis: A Call for Differential Diagnosis
Next Article in Special Issue
Analysis of Mandibular Muscle Variations Following Condylar Fractures: A Systematic Review
Previous Article in Journal
Exploring the Association between Personality Traits, Symptom Burden, and Return to Work after Mild-to-Moderate Traumatic Brain Injury
Previous Article in Special Issue
Prevalence of Temporomandibular Disorders Based on a Shortened Symptom Questionnaire of the Diagnostic Criteria for Temporomandibular Disorders and Its Screening Reliability for Children and Adolescents Aged 7–14 Years
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review

1
Department of Oral Surgery, Preventive Medicine Center, Komorowskiego 12, 30-106 Cracow, Poland
2
Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow, Poland
3
Institute of Public Health, Jagiellonian University Medical College, Skawińska 8, 31-066 Cracow, Poland
4
Preventive Medicine Center, Komorowskiego 12, 30-106 Kraków, Poland
5
Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
6
Department of Maxillofacial Surgery, Hospital of the Ministry of Interior, Wojska Polskiego 51, 25-375 Kielce, Poland
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2023, 12(14), 4655; https://doi.org/10.3390/jcm12144655
Submission received: 23 May 2023 / Revised: 27 June 2023 / Accepted: 11 July 2023 / Published: 13 July 2023

Abstract

:
This mapping review aims to identify and discuss current research directions on intracavitary temporomandibular joints (TMJs) injections. The inclusion criteria allowed studies published in the last full six years, based on patients diagnosed with temporomandibular joint disorders (TMDs), treated by TMJ intra-articular injections. Medical databases covered by the Association for Computing Machinery, Bielefeld Academic Search Engine, PubMed, and Elsevier Scopus engines were searched. The results were visualized with tables, charts, and diagrams. Of the 2712 records identified following the selection process, 152 reports were qualified for review. From January 2017, viscosupplementation with hyaluronic acid (HA) was the best-documented injectable administered into TMJ cavities. However, a significant growing trend was observed in the number of primary studies on centrifuged blood preparations administrations that surpassed the previously leading HA from 2021.

1. Introduction

1.1. Background

The temporomandibular joints (TMJs) connect the mandible to the temporal bones. These joints are essential to the proper functioning of the stomatognathic system, including opening and closing the mouth, chewing, and speaking [1]. Rotation and slide in TMJs are palpable on both sides in the preauricular area during abduction and adduction of the mandible [2,3]. Each TMJ consists of the mandibular condyle, the articular fossa of the temporal bone, and the cartilage disc that separates the two bones and cushions them during movement [1,4]. The joint is surrounded by a network of muscles, ligaments, and nerves that help stabilize and control its function [1,5].
Temporomandibular disorders (TMDs) are a collective term for a group of conditions manifested by abnormal function of the temporomandibular joints (TMJs) [6,7]. According to the meta-analysis by Valesan et al., the overall prevalence of TMDs in the adult population is approximately 31% [6] The causes of TMDs are seen primarily in malocclusions, morphological abnormalities, and post-traumatic changes within TMJs, and masticatory muscle dysfunction [5,8,9,10]. The causes of TMDs should also be sought in general deterioration of health (including psychological burden) and limited access to medical care, which could be observed with an increase in the frequency of TMDs diagnoses during the COVID-19 pandemic, according to the study by Haddad et al., to about 42% [8,9]. However, Ginszt et al. showed that there is a certain mechanical effect of wearing medical masks on muscle activity, in particular the anterior part of the temporalis muscle, which may also be important for the increase in the incidence of TMDs [10]. TMDs can manifest as articular and/or muscular pain, acoustic symptoms from TMJs, and reduced chewing quality [5,11,12]. Amongst TMDs treatment methods are biofeedback, cognitive–behavioral therapy, physiotherapy, oral drug therapy, splint therapy, changing the occlusive conditions, and minimally invasive, arthroscopic, or open surgery [13,14,15,16,17].
Minimally invasive intra-articular manipulations are currently considered a viable alternative in the management of TMDs, especially when more conservative treatments fail to provide relief from TMDs symptoms [18,19,20]. These techniques include arthrocentesis and intra-articular injections [20,21]. Arthrocentesis consists in rinsing the joint cavity with infusion fluids using two- and one-needle methods [20,21]. Intra-articular injections involve injecting the drug directly into the TMJ cavity [22,23]. Intra-articular injections are indicated to relieve joint pain, suppress inflammation and improve joint function [22,23].
Various substances are administered intra-articularly, including corticosteroids (CSs), hyaluronic acid (HA), and blood products such as platelet-rich plasma (PRP) or injectable platelet-rich fibrin (I-PRF) [17,18,24]. CSs are known for their strong anti-inflammatory effect. Supplementation of the main component of synovial fluid, HA, improves the mobility of joint surfaces relative to each other [24,25]. PRP and I-PRF, differing in composition resulting from the preparation, have the added advantage of being highly safe due to their autogenous nature [17,24,25].

1.2. Rationale

Scientific articles published in recent years indicate a sudden increase in the number of substances administered intra-articularly, and surgical technique is constantly improving. The growing number of primary research papers demonstrates the increasing popularity of intra-articular injections. Therefore, it seems reasonable to frequently update the state of knowledge about injection techniques in the treatment of TMDs. To the knowledge of the authors of this paper, no systematic map on this subject has been published to date.

1.3. Objectives

This mapping review aims to identify and discuss current research directions on intracavitary TMJs injections.

2. Materials and Methods

The systematic map was prepared by: (1) defining eligibility criteria; (2) developing a search strategy; (3) searching medical databases using leading engines; (4) selecting reports according to predetermined criteria; (5) assessing the research level of evidence; (6) synthesizing the results; (7) presenting the main research directions.

2.1. Eligibility Criteria

The eligibility criteria were established in accordance with the PICOS methodology (Table 1) [26,27,28]. Studies based on patients diagnosed with TMDs were included. Due to the different etiology and treatment, patients with TMDs as a manifestation of a general disease, e.g., rheumatoid arthritis or juvenile idiopathic arthritis, were excluded. Cadaver, animal, or in vitro studies were omitted as not including patients. Systematic reviews and meta-analyses based on eligible studies were included. Interventions containing the administration or administrations into the temporomandibular joint cavity were included. Additional interventions of a different kind were allowed, such as physiotherapy, pharmacotherapy, splint therapy, etc. Arthrocentesis alone, without intra-articular administration of any substance, was excluded. More invasive intra-articular manipulations, i.e., arthroscopy or open surgery, were disqualified. Due to the inclusion of studies with varying levels of evidence, the criterion of comparison was not applicable. Changes in any TMDs severity index were allowed as an outcome. Single case reports and any series less than 4 cases were rejected. In order to demonstrate the current directions of research, reports published in the last full 6 years, i.e., from 1 January 2017, to final searches conducted on 13 March 2023, were included.

2.2. Search Strategy

The search strategy was based on terms identifying TMJ and injections. In its basic form, the query was:
“(temporomandibular OR TMJ OR TMJs) AND (injection OR injections OR puncture OR punctures OR administration OR administrations)”.
The following search engines were used: (1) Association for Computing Machinery: Guide to Computing Literature (ACM; 3,470,491 records) [29]; (2) Bielefeld Academic Search Engine (BASE; 320,685,924 records) [30]; (3) National Library of Medicine: PubMed (NLM; over 35,000,000 records) [31]; (4) Elsevier Scopus (ES; over 87,000,000 records) [32,33]. For each search engine, the necessary query modifications were made to ensure the validity of the search (Table A1). Filters were used to exclude studies published before 2017, where possible.

2.3. Selection Process

Reports were selected for the systematic map in two stages by two authors (M.C. and A.B.) using Rayyan tool [34]. Screening consisted of including abstracts according to PICOS criteria. Acceptance by any of the judges resulted in the promotion of the record to the eligibility stage. In case of discrepancies regarding inclusion, decisions were made by consensus, with the casting vote of the third investigator (K.C.).

2.4. Qualification of Reports Due to the Study Design

The information on the design of the studies included in the review was extracted from the source reports by two authors (M.C. and K.C.) and unified using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence scale [35]. Systematic reviews involving randomized controlled trials were qualified as Level 1. Levels 2–4 were assigned to randomized controlled, non-randomized controlled, and uncontrolled trials, respectively.

2.5. Syntheses

The results of this mapping review were tabularized and illustrated by an organizational chart representing the research directions forks falling within the eligibility criteria described above. The numbers of individual articles in particular forks were presented with a bar, bubble, and column charts, with trend lines indicating the dominant directions of primary research on the last one.

3. Results

Of the 2712 records identified, 152 reports were ultimately qualified for the mapping review, with 32, 53, 28, and 39 reports in levels of evidence from 1 to 4, respectively (Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5, Table A2) [18,19,22,23,24,25,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171]. In the selection process, a total of 1407 duplicates were rejected, mainly due to overlapping search engines. At the screening stage, 1119 entries not related to TMJs injection treatment were excluded; these were present due to the intentionally unrestrictive choice of keywords in the queries. At the very end of the selection, 34 articles (mainly case reports) were rejected in the course of the full-text evaluation in accordance with the adopted inclusion and exclusion criteria.

4. Discussion

TMDs that cause articular pain and mandibular mobility limitation are two main reasons for delivering intra-articular injections, except for HD and AB administrations which are performed to treat recurrent subluxation of the temporomandibular joint [22,24,37,40,44,53,55,57,61,65,66,69,72,73,90,94,96,97,110,111,131,149,160,165,168]. Currently, there is an intensive search for the gold standard of TMDs treatment, which is difficult due to the variety of etiologies and the specificity of individual dysfunctions. The main directions of research on the use of intra-articular injections in this indication are presented below.

4.1. Hyaluronic Acid (HA) Viscosupplementation

Improving the composition of the synovial fluid by supplementing its main ingredient, HA, is the most frequently described type of injection into the TMJs. 56 primary studies, including 26 randomized, summarized in 17 systematic reviews make this injectable substance the best studied. There is a steady upward trend in the number of primary studies on HA published in subsequent years. The primacy of HA from 2021 seems to be threatened by centrifuged blood products, but this group of substances is heterogeneous and cannot be compared to HA in terms of effectiveness as a whole [18,19,22,25,38,43,49,51,54,58,59,60,63,68,70,71,74,75,78,80,80,82,86,88,89,91,92,93,95,98,99,100,101,102,105,106,110,113,114,115,116,117,120,121,124,126,127,129,130,132,133,134,135,137,138,143,144,146,151,152,153,157,158,161,163,164,166,171].

4.2. Hypertonic Dextrose (HD) Prolotherapy

Unlike viscosupplementation, HD prolotherapy aims to reduce the range of motion of the mandible. The administration of HD as an irritant is one of the treatment methods for hypermobility in TMJs. So far, the concentration of HD has not been standardized and varies from 12.5% to 25%. Only the studies involving the administration of HD into the TMJs are included in this review, but the substance is frequently deposited peri-articularly in this indication. Of the two substances applied to TMJs (HD and autologous blood), HD injections are better documented. The 13 primary studies on intra-articular administration of HD have been summarized in 6 reviews [22,24,37,53,65,66,72,73,94,96,97,110,111,131,149,160,165].

4.3. Blood Preparations Autotransplantation

Blood preparations are a group of substances obtained from autologous peripheral blood including unprocessed blood and blood concentrates. Autologous blood (AB) is the second, next to HD, substance administered into the TMJs for the treatment of hypermobility. Reports since 2017 describing AB therapy are fewer and generally with a lower level of evidence than these regarding HD (four randomized, one non-randomized, and six uncontrolled) [37,40,44,55,57,61,65,66,69,90]. The only included systematic review on AB therapy administrated intra-articularly suggests the need for randomized trials [168].
Blood concentrates are obtained by centrifuging freshly taken venous blood and are delivered immediately after the preparation. Different protocols allow obtaining various concentrates without the red cell fraction. Some of the concentrates can be collected in liquid form and injected into TMDs. In the discussed years, the administration of preparations referred to as plasma rich in growth factors (PRGF), PRP, I-PRF and liquid phase concentrated growth factor (LPCGF) into the TMJs cavities was described. They differ in the centrifugation procedure, and thus in the composition and effectiveness in anti-inflammatory action and stimulation of tissue regeneration. The lack of a standardized centrifugation protocol for platelet-rich concentrates for injection into TMJs clearly illustrates the active development of a therapeutic standard. Of the 152 reports on blood concentrates included, 120 primary studies were published (including 53 randomized trials) as well as 32 systematic reviews. From 2021, primary research on the substances in question has been more numerous than on HA. [18,23,25,36,46,56,60,62,64,67,68,70,74,75,81,84,85,87,95,101,103,104,107,112,113,114,118,119,122,123,123,128,133,134,135,136,137,141,142,143,145,147,148,152,158,161,162,167,169,170].

4.4. Mesenchymal Stem Cells (MSCSs) Autotransplantation

MSCs, obtained primarily from autogenous fat, are an attractive injectable due to their high potential to stimulate the regeneration of TMJ structures. Only four primary studies using MSCs for intracavitary administration are known, of which three were randomized.

4.5. Drugs Administration

Substances used as drugs for other indications, normally with other routes of administration, are included in this group. CSs are definitely the best studied among them. After HA and PRP, CSs were the third most frequently reported injectables group in 2017–2022 (8 systematic reviews, 10 randomized trials, and 8 other trials) [19,25,38,39,41,45,47,47,49,51,54,62,75,86,121,125,127,134,135,137,140,156,164,166,171]. Nevertheless, since 2020, the number of primary studies on intra-articular injection of CSs has clearly decreased. Other papers describe the use of non-steroidal anti-inflammatory drugs (NSAIDs), local anesthetics (LAs), opioids, and polidocanol. These substances have been used exceptionally and so far there is no well-established knowledge about their effectiveness and safety [24,37,38,62,73,77,79,97,101,108,137,150,165].

4.6. Other Substances Injections

Unique studies on the administration of botulinum toxin (BTX), chitosan, and ozone gas provide potential directions for the future development of intra-articular injections. At present, however, these methods should be regarded as insufficiently researched [24,42,83,139,159].

4.7. Limitations

This systematic map was limited to injections into the temporomandibular joint cavities. Therefore, studies focusing on pericapsular injections, which are used in the treatment of mandibular hypermobility, were omitted. Therefore, this paper covers only a part of the articles on AB and HD injections.
A separate large group of interventions, not included in this review, is stand-alone arthrocentesis. They have been excluded as there was no intention to administer any substance intra-articularly. However, TMJs lavage relieves pain and increases mandibular mobility similarly to injections of, for example, HA or PRP, and future mapping of papers on this topic should be considered.

5. Conclusions

In the years 2017–2023, hyaluronic acid was the most common topic of scientific publications among injectables administered into temporomandibular joint cavities (26 randomized controlled trials and 30 other clinical studies). In the same period, there was a significant upward trend in the number of published primary studies focused on centrifuged blood preparations used in the treatment of TMDs. As of 2021, blood products administered into TMJs cavities have become a more popular topic for professional medical articles than hyaluronan. Nevertheless, it should be emphasized that this is a group of substances that differ in composition depending on the centrifugation protocol. The therapeutic efficacies of substances evaluated in at least three clinical trials were synthesized in systematic reviews.

Author Contributions

Conceptualization, M.C. and M.S.; methodology, M.C. and K.C.; software, M.C. and K.C.; validation, K.C. and M.S.; formal analysis, M.C. and K.C.; investigation, M.C. and A.B.; resources, K.C.; data curation, M.C., K.C. and A.B.; writing—original draft preparation, M.C., K.C., N.T., A.B. and M.S.; writing—review and editing, M.C., M.S. and D.C.; visualization, M.C. and K.C.; supervision, M.S. and D.C.; project administration, D.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All collected data are included in the content of this article.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Search queries.
Table A1. Search queries.
EngineInclusion Criteria
ACM[[All: temporomandibular] OR [All: tmj] OR [All: tmjs]] AND [[All: injection] OR [All: injections] OR [All: puncture] OR [All: punctures] OR [All: administration] OR [All: administrations]] AND [E-Publication Date: (1 January 2017 TO 31 December 2023)]
BASE(temporomandibular OR TMJ OR TMJs) AND (injection OR injections OR puncture OR punctures OR administration OR administrations) year: [2017 TO *]
NLM(temporomandibular OR tmj OR tmjs) AND (injection OR injections OR puncture OR punctures OR administration OR administrations) AND (“1 January 2017” [Date—Publication]: “3000” [Date—Publication])
ESTITLE-ABS-KEY ((temporomandibular OR tmj OR tmjs) AND (injection OR injections OR puncture OR punctures OR administration OR administrations)) AND PUBYEAR > 2016
Table A2. Included reports.
Table A2. Included reports.
First AuthorPublication YearLevel of EvidenceInjectablesDOI Number
Bayramoglu20232NSAID10.1186/s12903-023-02852-z
Bhargava20232AB, HD, LA10.1007/s12663-022-01738-x
Chęciński20231HA, HD10.3390/jcm12041664
Chhapane20232AB, HD10.1007/s12663-023-01848-0
Gupta20232NSAID10.7759/cureus.34580
Hegab20232HA, PRP10.1016/j.jormas.2022.11.016
Li20234HA10.1007/s11282-022-00621-2
Vingender20233HA, PRP, I-PRF10.1016/j.jcms.2023.01.017
Wu20234Chitosan10.3390/jcm12041657
Abbadi20222PRP10.7759/cureus.31396
Ansar20223PRP10.25122/jml-2021-0240
Asadpour20222HA, PRP10.1016/j.joms.2022.05.002
Bera20224I-PRF10.1111/ors.12665
Mazzara Bou20221CSs10.20986/recom.2022.1344/2022
Castaño-Joaqui20224HA10.1016/j.jcms.2022.06.004
Cen20223HA10.1007/s00784-021-04241-8
Chęciński20221MSCs10.3390/cells11172709
Chęciński20221HD, LA, MSCs, NSAID, ozone, opioids10.3390/jcm11092305
Chęciński20221HA10.3390/jcm11071901
Dasukil20222HA, PRP10.1016/j.jcms.2022.10.002
Dharamsi20222CSs, HA10.1007/s12663-022-01804-4
Ferreira20223HA10.1080/08869634.2022.2141784
Ghoneim20222I-PRF10.1016/j.jds.2021.07.027
Gutiérrez20221PRP, PRGF10.1016/j.jormas.2021.12.006
Haggag20222HD10.1016/j.jcms.2022.02.009
Hyder20222HA10.1016/j.jormas.2022.05.007
Işık20222I-PRF10.1016/j.jcms.2022.06.006
Jacob20222HA, PRP10.1007/s12663-021-01519-y
Shah20224AB10.4103/jiaomr.jiaomr_199_21
Leketas20222HA, PRGF10.1080/08869634.2022.2081445
Liu20223PRP10.1111/joor.13261
Macedo de Sousa20223CSs, HA, PRP10.3390/life12111739
Manafikhi20224I-PRF10.1186/s12891-022-05421-7
Massé20221CSs, HA, HD, PRPN/A
Memiş20224HA10.1016/j.jcms.2022.07.003
Memiş20223HD10.5125/jkaoms.2022.48.1.33
Pandey20224AB, HD10.4103/njms.njms_509_21
Rajput20222PRP10.1007/s12663-020-01351-w
Ramakrishnan20222HA, PRP10.4103/njms.NJMS_94_20
Sari20223BTX10.1016/j.jormas.2022.04.019
Sharma20224AB10.1007/s12663-021-01540-1
Sikora20224PRP10.3390/ijerph192013299
Sikora20224PRP10.3390/jcm11154281
Singh20222CSs10.4103/njms.njms_291_21
Vaidyanathan20224Polidocanol10.4103/ams.ams_138_22
Xie20221CSs, HA, PRP10.1016/j.jebdp.2022.101720
AbdulRazzak20213CSs10.1007/s10006-020-00901-3
Al-Hamed20211PRP, PRGF10.1177/2380084420927326
Amer20212AB10.21608/EJENTAS.2021.56244.1300
Chandra20213PRP10.4103/jfmpc.jfmpc_1633_20
Cömert Kılıç20212HA10.1016/j.jcms.2021.02.012
Dasukil20214HD, LA10.1007/s12663-020-01328-9
Derwich20211CSs, HA, PRP10.3390/ijms22147405
Ferreira20214HA10.1080/07853890.2021.1897446
Goker20211HA10.23812/21-2supp1-3
Harba20213HA, PRP10.17219/dmp/127446
Karadayi20212I-PRF10.1016/j.jcms.2021.01.018
Li20213PRP10.1016/j.joms.2020.09.016
Liapaki20211HA, PRP10.1016/j.ijom.2021.01.019
Liu20211NSAID, opioids10.1111/joor.13105
Romero-Tapia20213CSs, HA10.5005/JP-JOURNALS-10024-2890
Rossini20214HA10.6061/clinics/2021/e2840
Sàbado-Bundó20211HA10.1080/08869634.2021.1925029
Sarwar20213PRP10.51253/pafmj.v71i4.5361
Sembronio20212MSCs10.1016/j.joms.2021.01.038
Singh20212HA10.4103/jpbs.JPBS_675_20
Singh20212PRP10.1007/s12663-019-01320-y
Sit20211HD10.1038/s41598-021-94119-2
Torul20213HA, I-PRF10.1016/j.ijom.2021.03.004
Wang20214HA10.1016/j.bjoms.2020.07.013
Zubair20214PRP10.21276/apjhs.2021.8.2.2
Aamir20204ABN/A
Abrahamsson20201AB, HD10.1007/s00784-019-03126-1
Ahmed20202PRGFN/A
Albilia20204I-PRF10.1080/08869634.2018.1516183
Bukhari20203AB10.5455/JPMA.5002
Dolwick20202CSs10.1016/j.joms.2020.02.022
Fayed20202HA, opioidsN/A
Hammoodi20203CSs, PRPN/A
Hosgor20203HA10.1016/j.jcms.2020.07.008
Jara Armijos20201HA, PRP, PRGF, NSAID10.4321/s0213-12852020000100005
Li20201PRP10.11607/ofph.2470
Liu20201CSs, HA, PRGF, opioids10.1016/j.joms.2019.10.016
Marzook20203CSs, HA10.1016/j.jormas.2019.05.003
Mohammed20202CSs, HA10.37506/ijfmt.v14i2.2817
Pihut20202HA, PRP10.3390/ijerph17134726
Santagata20204HA10.3390/jfmk5010018
Sezavar20202PRP10.29252/jrdms.5.3.7
Sikora20204HA10.3390/jcm9061749
Singh20203CSs, HA10.1007/s12070-019-01738-3
Macedo De Sousa20202CSs, HA, PRP10.3390/medicina56030113
Stasko20203HA10.4149/BLL_2020_056
Taşkesen20203HD10.1080/08869634.2020.1861887
Yuce20203HA, I-PRF10.1097/SCS.0000000000006545
Zarate20202HD, LA10.1089/acm.2020.0207
Zigmantavičius20201HA, PRPN/A
Abd20192PRPN/A
Bergstrand20192HA10.2334/josnusd.17-0423
Brignardello-Petersen20191I-PRF10.1016/j.adaj.2019.01.015
Carboni20192MSCs10.1097/SCS.0000000000004884
Chung20191PRP10.1016/j.oooo.2018.09.003
De Riu20192MSCs10.1016/j.jcms.2018.11.025
Gavin Clavero20194HA10.1007/s10006-019-00789-8
Giacomello20194PRGFN/A
Gokçe Kutuk20192CSs, HA, PRP10.1097/SCS.0000000000005211
Henk20194CSs10.5935/0946-5448.20190003
Isacsson20192CSs10.1111/joor.12718
Khallaf20194PRPN/A
Louw20192HD, LA10.1016/j.mayocp.2018.07.023
Mahmmood20194MSCs10.1097/SCS.0000000000004938
Sequeira20194HA10.1007/s12663-018-1093-4
Su20194HA10.11607/ofph.2044
Toameh20192HA, PRP10.17219/dmp/109329
Yilmaz20192HA10.1016/j.jcms.2019.07.030
Batifol20184BTX10.1016/j.jormas.2018.06.002
Bousnaki20181HA, PRP10.1016/j.ijom.2017.09.014
Brignardello-Petersen20181PRP10.1016/j.adaj.2017.11.012
Cen20182HA10.1111/odi.12760
Daif20184Ozone10.7203/jo3t.2.2.2018.11132
Davoudi20181CSs10.4317/medoral.21925
Ferreira20181HA10.1016/j.jcms.2018.08.007
Fonseca20184HA10.1155/2018/5392538
Fouda20182HD10.1016/j.bjoms.2018.07.022
Ganti20183HA10.5005/jp-journals-10024-2456
Gupta20182CSs, LA, PRP10.4103/njms.NJMS_69_16
Haigler20181PRP, PRGF10.1016/j.adaj.2018.07.025
Lin20183PRP10.1097/MD.0000000000010477
Liu20181CSs, HA10.1016/j.joms.2017.10.028
Machon20182AB10.1007/s10006-017-0666-6
Moldez20181CSs, HA10.11607/ofph.1783
Mustafa20182HD10.1097/SCS.0000000000004480
Nagori20181HD10.1111/joor.12698
Srinivas20182HA10.5958/0974-360X.2018.00643.1
Sun20183HA10.12659/MSM.908821
Vingender20183CSs, HA10.1556/650.2018.31138
Yang20182HA10.1016/j.joms.2018.04.031
Yapici-Yavuz20182CSs, HA, NSAID10.4317/medoral.22237
Yoshida20184AB10.1016/j.bjoms.2017.08.009
Al-Delayme20174PRP10.1007/s12663-016-0911-9
Bouloux20172CSs, HA10.1016/j.joms.2016.08.006
Castaño-Joaqui20171HA10.1016/j.maxilo.2016.11.002
Cezairli20174HD10.1089/acm.2017.0068
Gorrela20172HA10.1007/s12663-016-0955-x
Guarda-Nardini20174HA10.1080/08869634.2016.1232788
Gurung20172HA10.4103/njms.NJMS_84_16
Iturriaga20171HA10.1016/j.ijom.2017.01.014
Ozdamar20172HA10.1111/joor.12467
Patel20174AB10.4317/jced.53812
Peng20174HA10.1016/j.ijom.2017.02.1219
Pihut20173HA, PRPN/A
Refai20174HD10.1016/j.bjoms.2016.12.002
Yang20174LPCGF10.1097/MD.0000000000006302
N/A—not applicable; AB—autologous blood; BTX—botulinum toxin; CSs—corticosteroids; HA—hyaluronic acid; HD—hypertonic dextrose; I-PRF—injectable platelet-rich fibrin; LA—local anesthetics; LPCGF—liquid-phase concentrated growth factor; MSCs—mesenchymal stem cells; NSAID—non-steroidal anti-inflammatory drug; PRGF—plasma rich in growth factors; PRP—platelet-rich plasma.

References

  1. Iturriaga, V.; Bornhardt, T.; Velasquez, N. Temporomandibular Joint. Dent. Clin. N. Am. 2023, 67, 199–209. [Google Scholar] [CrossRef]
  2. Serrano-Hernanz, G.; Kothari, S.; Castrillón, E.; Álvarez-Méndez, A.; Ardizone-García, I.; Svensson, P. Importance of Standardized Palpation of the Human Temporomandibular Joint. J. Oral Facial Pain Headache 2019, 33, 220–226. [Google Scholar] [CrossRef]
  3. Osiewicz, M.A.; Manfredini, D.; Loster, B.W.; Van Selms, M.K.A.; Lobbezoo, F. Comparison of the Outcomes of Dynamic/Static Tests and Palpation Tests in TMD-Pain Patients. J. Oral Rehabil. 2018, 45, 185–190. [Google Scholar] [CrossRef]
  4. Wilkie, G.; Al-Ani, Z. Temporomandibular Joint Anatomy, Function and Clinical Relevance. Br. Dent. J. 2022, 233, 539–546. [Google Scholar] [CrossRef]
  5. Machado, E.; Machado, P.; Wandscher, V.F.; Marchionatti, A.M.E.; Zanatta, F.B.; Kaizer, O.B. A Systematic Review of Different Substance Injection and Dry Needling for Treatment of Temporomandibular Myofascial Pain. Int. J. Oral Maxillofac. Surg. 2018, 47, 1420–1432. [Google Scholar] [CrossRef]
  6. Valesan, L.F.; Da-Cas, C.D.; Réus, J.C.; Denardin, A.C.S.; Garanhani, R.R.; Bonotto, D.; Januzzi, E.; De Souza, B.D.M. Prevalence of Temporomandibular Joint Disorders: A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2021, 25, 441–453. [Google Scholar] [CrossRef]
  7. Klasser, G.D.; Abt, E.; Weyant, R.J.; Greene, C.S. Temporomandibular Disorders: Current Status of Research, Education, Policies, and Its Impact on Clinicians in the United States of America. Quintessence Int. 2023, 54, 328–334. [Google Scholar] [CrossRef]
  8. Alona, E.-P.; Ilana, E. One Year into the COVID-19 Pandemic—Temporomandibular Disorders and Bruxism: What We Have Learned and What We Can Do to Improve Our Manner of Treatment. Dent. Med. Probl. 2021, 58, 215–218. [Google Scholar] [CrossRef]
  9. Haddad, C.; Sayegh, S.M.; El Zoghbi, A.; Lawand, G.; Nasr, L. The Prevalence and Predicting Factors of Temporomandibular Disorders in COVID-19 Infection: A Cross-Sectional Study. Cureus 2022, 14, e28167. [Google Scholar] [CrossRef]
  10. Ginszt, M.; Zieliński, G.; Szkutnik, J.; Wójcicki, M.; Baszczowski, M.; Litko-Rola, M.; Rózyło-Kalinowska, I.; Majcher, P. The Effects of Wearing a Medical Mask on the Masticatory and Neck Muscle Activity in Healthy Young Women. J. Clin. Med. 2022, 11, 303. [Google Scholar] [CrossRef]
  11. Gębska, M.; Dalewski, B.; Pałka, Ł.; Kołodziej, Ł.; Sobolewska, E. Chronotype Profile, Stress, Depression Level, and Temporomandibular Symptoms in Students with Type D Personality. J. Clin. Med. 2022, 11, 1886. [Google Scholar] [CrossRef]
  12. Chatzopoulos, G.S.; Sanchez, M.; Cisneros, A.; Wolff, L.F. Prevalence of Temporomandibular Symptoms and Parafunctional Habits in a University Dental Clinic and Association with Gender, Age, and Missing Teeth. CRANIO® 2019, 37, 159–167. [Google Scholar] [CrossRef]
  13. Minakuchi, H.; Fujisawa, M.; Abe, Y.; Iida, T.; Oki, K.; Okura, K.; Tanabe, N.; Nishiyama, A. Managements of Sleep Bruxism in Adult: A Systematic Review. Jpn. Dent. Sci. Rev. 2022, 58, 124–136. [Google Scholar] [CrossRef]
  14. Andre, A.; Kang, J.; Dym, H. Pharmacologic Treatment for Temporomandibular and Temporomandibular Joint Disorders. Oral Maxillofac. Surg. Clin. N. Am. 2022, 34, 49–59. [Google Scholar] [CrossRef]
  15. Arribas-Pascual, M.; Hernández-Hernández, S.; Jiménez-Arranz, C.; Grande-Alonso, M.; Angulo-Díaz-Parreño, S.; La Touche, R.; Paris-Alemany, A. Effects of Physiotherapy on Pain and Mouth Opening in Temporomandibular Disorders: An Umbrella and Mapping Systematic Review with Meta-Meta-Analysis. J. Clin. Med. 2023, 12, 788. [Google Scholar] [CrossRef]
  16. Manrriquez, S.L.; Robles, K.; Pareek, K.; Besharati, A.; Enciso, R. Reduction of Headache Intensity and Frequency with Maxillary Stabilization Splint Therapy in Patients with Temporomandibular Disorders-Headache Comorbidity: A Systematic Review and Meta-Analysis. J. Dent. Anesth. Pain Med. 2021, 21, 183. [Google Scholar] [CrossRef]
  17. Pietruszka, P.; Chruścicka, I.; Duś-Ilnicka, I.; Paradowska-Stolarz, A. PRP and PRF—Subgroups and Divisions When Used in Dentistry. J. Pers. Med. 2021, 11, 944. [Google Scholar] [CrossRef]
  18. Liapaki, A.; Thamm, J.R.; Ha, S.; Monteiro, J.L.G.C.; McCain, J.P.; Troulis, M.J.; Guastaldi, F.P.S. Is There a Difference in Treatment Effect of Different Intra-Articular Drugs for Temporomandibular Joint Osteoarthritis? A Systematic Review of Randomized Controlled Trials. Int. J. Oral Maxillofac. Surg. 2021, 50, 1233–1243. [Google Scholar] [CrossRef]
  19. Liu, Y.; Wu, J.; Fei, W.; Cen, X.; Xiong, Y.; Wang, S.; Tang, Y.; Liang, X. Is There a Difference in Intra-Articular Injections of Corticosteroids, Hyaluronate, or Placebo for Temporomandibular Osteoarthritis? J. Oral Maxillofac. Surg. 2018, 76, 504–514. [Google Scholar] [CrossRef]
  20. Bhattacharjee, B.; Bera, R.N.; Verma, A.; Soni, R.; Bhatnagar, A. Efficacy of Arthrocentesis and Stabilization Splints in Treatment of Temporomandibular Joint Disc Displacement Disorder Without Reduction: A Systematic Review and Meta-Analysis. J. Maxillofac. Oral Surg. 2023, 22, 83–93. [Google Scholar] [CrossRef]
  21. Thorpe, A.R.D.S.; Haddad, Y.; Hsu, J. A Systematic Review and Meta-Analysis of Randomized Controlled Trials Comparing Arthrocentesis with Conservative Management for Painful Temporomandibular Joint Disorder. Int. J. Oral Maxillofac. Surg. 2023, 52, 889–896. [Google Scholar] [CrossRef] [PubMed]
  22. Chęciński, M.; Chęcińska, K.; Turosz, N.; Sikora, M.; Chlubek, D. Intra-Articular Injections into the Inferior versus Superior Compartment of the Temporomandibular Joint: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1664. [Google Scholar] [CrossRef]
  23. Gutiérrez, I.Q.; Sábado-Bundó, H.; Gay-Escoda, C. Intraarticular Injections of Platelet Rich Plasma and Plasma Rich in Growth Factors with Arthrocenthesis or Arthroscopy in the Treatment of Temporomandibular Joint Disorders: A Systematic Review. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e327–e335. [Google Scholar] [CrossRef] [PubMed]
  24. Chęciński, M.; Chęcińska, K.; Nowak, Z.; Sikora, M.; Chlubek, D. Treatment of Mandibular Hypomobility by Injections into the Temporomandibular Joints: A Systematic Review of the Substances Used. J. Clin. Med. 2022, 11, 2305. [Google Scholar] [CrossRef] [PubMed]
  25. Xie, Y.; Zhao, K.; Ye, G.; Yao, X.; Yu, M.; Ouyang, H. Effectiveness of intra-articular injections of sodium hyaluronate, corticosteroids, platelet-rich plasma on temporomandibular joint osteoarthritis: A systematic review and network meta-analysis of randomized controlled trials. J. Evid.-Based Dent. Pract. 2022, 22, 101720. [Google Scholar] [CrossRef]
  26. Samson, D.; Schoelles, K.M. Chapter 2: Medical Tests Guidance (2) Developing the Topic and Structuring Systematic Reviews of Medical Tests: Utility of PICOTS, Analytic Frameworks, Decision Trees, and Other Frameworks. J. Gen. Intern. Med. 2012, 27, 11–19. [Google Scholar] [CrossRef] [Green Version]
  27. Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A Comparison Study of Specificity and Sensitivity in Three Search Tools for Qualitative Systematic Reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [Green Version]
  28. Eriksen, M.B.; Frandsen, T.F. The Impact of Patient, Intervention, Comparison, Outcome (PICO) as a Search Strategy Tool on Literature Search Quality: A Systematic Review. J. Med. Libr. Assoc. 2018, 106, 420. [Google Scholar] [CrossRef]
  29. The ACM Guide to Computing Literature. Available online: https://libraries.acm.org/digital-library/acm-guide-to-computing-literature (accessed on 4 May 2023).
  30. BASE—Bielefeld Academic Search Engine | What Is BASE? Available online: https://www.base-search.net/about/en/index.php (accessed on 4 May 2023).
  31. About. Available online: https://pubmed.ncbi.nlm.nih.gov/about/ (accessed on 4 May 2023).
  32. Gusenbauer, M. Search Where You Will Find Most: Comparing the Disciplinary Coverage of 56 Bibliographic Databases. Scientometrics 2022, 127, 2683–2745. [Google Scholar] [CrossRef]
  33. Scopus Content. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 4 May 2023).
  34. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [Green Version]
  35. OCEBM Levels of Evidence—Centre for Evidence-Based Medicine (CEBM), University of Oxford. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 1 May 2023).
  36. Rajput, A.; Bansal, V.; Dubey, P.; Kapoor, A. A Comparative Analysis of Intra-Articular Injection of Platelet-Rich Plasma and Arthrocentesis in Temporomandibular Joint Disorders. J. Maxillofac. Oral Surg. 2022, 21, 168–175. [Google Scholar] [CrossRef]
  37. Bhargava, D.; Sivakumar, B.; Bhargava, P.G. A Comparative Preliminary Randomized Clinical Study to Evaluate Heavy Bupivacaine Dextrose Prolotherapy (HDP) and Autologous Blood Injection (ABI) for Symptomatic Temporomandibular Joint Hypermobility Disorder. J. Maxillofac. Oral Surg. 2023, 22, 110–118. [Google Scholar] [CrossRef]
  38. Yapici-Yavuz, G.; Simsek-Kaya, G.; Ogul, H. A Comparison of the Effects of Methylprednisolone Acetate, Sodium Hyaluronate and Tenoxicam in the Treatment of Non-Reducing Disc Displacement of the Temporomandibular Joint. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e351. [Google Scholar] [CrossRef]
  39. Singh, S.; Prasad, R.; Punga, R.; Datta, R.; Singh, N. A Comparison of the Outcomes Following Intra-Articular Steroid Injection Alone or Arthrocentesis Alone in the Management of Internal Derangement of the Temporomandibular Joint. Natl. J. Maxillofac. Surg. 2022, 13, 80. [Google Scholar] [CrossRef] [PubMed]
  40. Machon, V.; Levorova, J.; Hirjak, D.; Wisniewski, M.; Drahos, M.; Sidebottom, A.; Foltan, R. A Prospective Assessment of Outcomes Following the Use of Autologous Blood for the Management of Recurrent Temporomandibular Joint Dislocation. Oral Maxillofac. Surg. 2018, 22, 53–57. [Google Scholar] [CrossRef] [PubMed]
  41. Dolwick, M.F.; Diaz, D.; Freburg-Hoffmeister, D.L.; Widmer, C.G. A Randomized, Double-Blind, Placebo-Controlled Study of the Efficacy of Steroid Supplementation After Temporomandibular Joint Arthrocentesis. J. Oral Maxillofac. Surg. 2020, 78, 1088–1099. [Google Scholar] [CrossRef] [PubMed]
  42. Wu, C.-B.; Sun, H.-J.; Sun, N.-N.; Zhou, Q. Analysis of the Curative Effect of Temporomandibular Joint Disc Release and Fixation Combined with Chitosan Injection in the Treatment of Temporomandibular Joint Osteoarthrosis. J. Clin. Med. 2023, 12, 1657. [Google Scholar] [CrossRef]
  43. Santagata, M.; De Luca, R.; Lo Giudice, G.; Troiano, A.; Lo Giudice, G.; Corvo, G.; Tartaro, G. Arthrocentesis and Sodium Hyaluronate Infiltration in Temporomandibular Disorders Treatment. Clinical and MRI Evaluation. J. Funct. Morphol. Kinesiol. 2020, 5, 18. [Google Scholar] [CrossRef] [Green Version]
  44. Sharma, V.; Anchlia, S.; Sadhwani, B.S.; Bhatt, U.; Rajpoot, D. Arthrocentesis Followed by Autologous Blood Injection in the Treatment of Chronic Symptomatic Subluxation of Temporomandibular Joint. J. Maxillofac. Oral Surg. 2022, 21, 1218–1226. [Google Scholar] [CrossRef]
  45. AbdulRazzak, N.J.; Sadiq, J.A.; Jiboon, A.T. Arthrocentesis versus Glucocorticosteroid Injection for Internal Derangement of Temporomandibular Joint. Oral Maxillofac. Surg. 2021, 25, 191–197. [Google Scholar] [CrossRef]
  46. Abbadi, W.; Kara Beit, Z.; Al-Khanati, N.M. Arthrocentesis, Injectable Platelet-Rich Plasma and Combination of Both Protocols of Temporomandibular Joint Disorders Management: A Single-Blinded Randomized Clinical Trial. Cureus 2022, 14, e31396. [Google Scholar] [CrossRef]
  47. Mazzara Bou, C.; González Sarrión, Ó. Artrocentesis de La Articulación Temporomandibular y Corticoides. Revisión de La Literatura. Rev. Esp. Cir. Oral Maxilofac. 2022, 44, 303. [Google Scholar] [CrossRef]
  48. Mahmmood, V.H.; Shihab, S.M. Assessment of Therapeutic Effect of Intra-Articular Nanofat Injection for Temporomandibular Disorders. J. Craniofac. Surg. 2019, 30, 659–662. [Google Scholar] [CrossRef]
  49. Mohammed, S.M.; Abusanna, M.M.H.; Daily, Z.A. Assessment the Efficacy of Arthrocentesis with Corticosteroid and Arthrocentesis with Sodium Hyaluronate in Treatment Temporomandibular Joint Disorders: A Comparative Study. Indian J. Forensic Med. Toxicol. 2020, 14, 361–366. [Google Scholar] [CrossRef]
  50. Chęciński, M.; Chęcińska, K.; Turosz, N.; Kamińska, M.; Nowak, Z.; Sikora, M.; Chlubek, D. Autologous Stem Cells Transplants in the Treatment of Temporomandibular Joints Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Cells 2022, 11, 2709. [Google Scholar] [CrossRef]
  51. Vingender, S.; Restár, L.; Csomó, K.B.; Schmidt, P.; Hermann, P.; Vaszilkó, M. Az állkapocsízületi károsodás kezelése szteroiddal, illetve hialuronsavval. Orv. Hetil. 2018, 159, 1475–1482. [Google Scholar] [CrossRef] [Green Version]
  52. De Riu, G.; Vaira, L.A.; Carta, E.; Meloni, S.M.; Sembronio, S.; Robiony, M. Bone Marrow Nucleated Cell Concentrate Autograft in Temporomandibular Joint Degenerative Disorders: 1-Year Results of a Randomized Clinical Trial. J. Cranio-Maxillofac. Surg. 2019, 47, 1728–1738. [Google Scholar] [CrossRef]
  53. Fouda, A.A. Change of Site of Intra-Articular Injection of Hypertonic Dextrose Resulted in Different Effects of Treatment. Br. J. Oral Maxillofac. Surg. 2018, 56, 715–718. [Google Scholar] [CrossRef] [PubMed]
  54. Gokçe Kutuk, S.; Gökçe, G.; Arslan, M.; Özkan, Y.; Kütük, M.; Kursat Arikan, O. Clinical and Radiological Comparison of Effects of Platelet-Rich Plasma, Hyaluronic Acid, and Corticosteroid Injections on Temporomandibular Joint Osteoarthritis. J. Craniofac. Surg. 2019, 30, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
  55. Patel, J.; Nilesh, K.; Parkar, M.; Vaghasiya, A. Clinical and Radiological Outcome of Arthrocentesis Followed by Autologous Blood Injection for Treatment of Chronic Recurrent Temporomandibular Joint Dislocation. J. Clin. Exp. Dent. 2017, 9, e962. [Google Scholar] [CrossRef] [PubMed]
  56. Yang, J.-W.; Huang, Y.-C.; Wu, S.-L.; Ko, S.-Y.; Tsai, C.-C. Clinical Efficacy of a Centric Relation Occlusal Splint and Intra-Articular Liquid Phase Concentrated Growth Factor Injection for the Treatment of Temporomandibular Disorders. Medicine 2017, 96, e6302. [Google Scholar] [CrossRef]
  57. Yoshida, H.; Nakatani, Y.-i.; Gamoh, S.; Shimizutani, K.; Morita, S. Clinical Outcome after 36 Months of Treatment with Injections of Autologous Blood for Recurrent Dislocation of the Temporomandibular Joint. Br. J. Oral Maxillofac. Surg. 2018, 56, 64–66. [Google Scholar] [CrossRef]
  58. Sun, H.; Su, Y.; Song, N.; Li, C.; Shi, Z.; Li, L. Clinical Outcome of Sodium Hyaluronate Injection into the Superior and Inferior Joint Space for Osteoarthritis of the Temporomandibular Joint Evaluated by Cone-Beam Computed Tomography: A Retrospective Study of 51 Patients and 56 Joints. Med. Sci. Monit. 2018, 24, 5793–5801. [Google Scholar] [CrossRef]
  59. Ferreira, J.R.; Nunes, M.A.; Salvado, F. Clinical Outcomes in TMD Patients after Arthrocentesis with Lysis, Lavage and Viscossuplementation. Ann. Med. 2021, 53, S87–S88. [Google Scholar] [CrossRef]
  60. Asadpour, N.; Shooshtari, Z.; Kazemian, M.; Gholami, M.; Vatanparast, N.; Samieirad, S. Combined Platelet-Rich Plasma and Hyaluronic Acid Can Reduce Pain in Patients Undergoing Arthrocentesis for Temporomandibular Joint Osteoarthritis. J. Oral Maxillofac. Surg. 2022, 80, 1474–1485. [Google Scholar] [CrossRef]
  61. Shah, J.; Joshi, K.; Jha, S.; Mathumathi, A. Comparative Analysis of Autologous Blood Injection and Conservative Therapy for the Management of Chronic Temporomandibular Joint Dislocation. J. Indian Acad. Oral Med. Radiol. 2022, 34, 394. [Google Scholar] [CrossRef]
  62. Gupta, S.; Sharma, A.; Purohit, J.; Goyal, R.; Malviya, Y.; Jain, S. Comparison between Intra-Articular Platelet-Rich Plasma Injection versus Hydrocortisone with Local Anesthetic Injections in Temporomandibular Disorders: A Double-Blind Study. Natl. J. Maxillofac. Surg. 2018, 9, 205. [Google Scholar] [CrossRef] [PubMed]
  63. Ferreira, N.R.; Oliveira, A.T.; Sanz, C.K.; Guedes, F.R.; Rodrigues, M.J.; Grossmann, E.; DosSantos, M.F. Comparison between Two Viscosupplementation Protocols for Temporomandibular Joint Osteoarthritis. CRANIO® 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
  64. Sarwar, H.; Shah, I.; Khan, A.A.; Afzal, M.; Babar, A.; Baig, A.M. Comparison of arthrocentesis plus platelet rich plasma with arthrocentesis alone in the treatment of temporomandibular joint dysfunction. Pak. Armed Forces Med. J. 2021, 71, 1377–1381. [Google Scholar] [CrossRef]
  65. Chhapane, A.; Wadde, K.; Sachdev, S.S.; Barai, S.; Landge, J.; Wadewale, M. Comparison of Autologous Blood Injection and Dextrose Prolotherapy in the Treatment of Chronic Recurrent Temporomandibular Dislocation: A Randomized Clinical Trial. J. Maxillofac. Oral Surg. 2023. [Google Scholar] [CrossRef]
  66. Pandey, S.; Baidya, M.; Srivastava, A.; Garg, H. Comparison of Autologous Blood Prolotherapy and 25% Dextrose Prolotherapy for the Treatment of Chronic Recurrent Temporomandibular Joint Dislocation on the Basis of Clinical Parameters: A Retrospective Study. Natl. J. Maxillofac. Surg. 2022, 13, 398. [Google Scholar] [CrossRef]
  67. Li, F.-L.; Wu, C.-B.; Sun, H.-J.; Zhou, Q. Comparison of Autologous Platelet-Rich Plasma and Chitosan in the Treatment of Temporomandibular Joint Osteoarthritis: A Retrospective Cohort Study. J. Oral Maxillofac. Surg. 2021, 79, 324–332. [Google Scholar] [CrossRef]
  68. Ramakrishnan, D.; Kandamani, J.; Nathan, K.S. Comparison of Intraarticular Injection of Platelet-Rich Plasma Following Arthrocentesis, with Sodium Hyaluronate and Conventional Arthrocentesis for Management of Internal Derangement of Temporomandibular Joint. Natl. J. Maxillofac. Surg. 2022, 13, 254. [Google Scholar] [CrossRef] [PubMed]
  69. Bukhari, A.; Rahim, A. Comparison of Mean Decrease in Mouth Opening by Autologous Blood Injection in Superior Joint Space with and without Pericapsular Tissue in Treatment of Chronic Recurrent Temporomandibular Joint Dislocation in Mayo Hospital Lahore. J. Pak. Med. Assoc. 2020, 70, 1878–1882. [Google Scholar] [CrossRef] [PubMed]
  70. Yuce, E.; Komerik, N. Comparison of the Efficiacy of Intra-Articular Injection of Liquid Platelet-Rich Fibrin and Hyaluronic Acid After in Conjunction With Arthrocentesis for the Treatment of Internal Temporomandibular Joint Derangements. J. Craniofac. Surg. 2020, 31, 1870–1874. [Google Scholar] [CrossRef]
  71. Yilmaz, O.; Korkmaz, Y.T.; Tuzuner, T. Comparison of Treatment Efficacy between Hyaluronic Acid and Arthrocentesis plus Hyaluronic Acid in Internal Derangements of Temporomandibular Joint. J. Cranio-Maxillofac. Surg. 2019, 47, 1720–1727. [Google Scholar] [CrossRef]
  72. Haggag, M.A.; Al-Belasy, F.A.; Said Ahmed, W.M. Dextrose Prolotherapy for Pain and Dysfunction of the TMJ Reducible Disc Displacement: A Randomized, Double-Blind Clinical Study. J. Cranio-Maxillofac. Surg. 2022, 50, 426–431. [Google Scholar] [CrossRef]
  73. Zarate, M.A.; Frusso, R.D.; Reeves, K.D.; Cheng, A.-L.; Rabago, D. Dextrose Prolotherapy Versus Lidocaine Injection for Temporomandibular Dysfunction: A Pragmatic Randomized Controlled Trial. J. Altern. Complement. Med. 2020, 26, 1064–1073. [Google Scholar] [CrossRef]
  74. Leketas, M.; Dvylys, D.; Sakalys, D.; Simuntis, R. Different Intra-Articular Injection Substances Following Temporomandibular Joint Arthroscopy and Their Effect on Early Postoperative Period: A Randomized Clinical Trial. CRANIO® 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
  75. Macedo De Sousa, B.; López-Valverde, N.; López-Valverde, A.; Caramelo, F.; Flores Fraile, J.; Herrero Payo, J.; Rodrigues, M.J. Different Treatments in Patients with Temporomandibular Joint Disorders: A Comparative Randomized Study. Medicina 2020, 56, 113. [Google Scholar] [CrossRef] [Green Version]
  76. Li, Z.; Zhou, J.; Yu, L.; He, S.; Li, F.; Lin, Y.; Xu, J.; Chen, S. Disc–Condyle Relationship Alterations Following Stabilization Splint Therapy or Arthrocentesis plus Hyaluronic Acid Injection in Patients with Anterior Disc Displacement: A Retrospective Cohort Study. Oral Radiol. 2023, 39, 198–206. [Google Scholar] [CrossRef] [PubMed]
  77. Liu, S.; Hu, Y.; Zhang, X. Do Intra-articular Injections of Analgesics Improve Outcomes after Temporomandibular Joint Arthrocentesis?: A Systematic Review and Meta-analysis. J. Oral Rehabil. 2021, 48, 95–105. [Google Scholar] [CrossRef]
  78. Cömert Kılıç, S. Does Glucosamine, Chondroitin Sulfate, and Methylsulfonylmethane Supplementation Improve the Outcome of Temporomandibular Joint Osteoarthritis Management with Arthrocentesis plus Intraarticular Hyaluronic Acid Injection. A Randomized Clinical Trial. J. Cranio-Maxillofac. Surg. 2021, 49, 711–718. [Google Scholar] [CrossRef] [PubMed]
  79. Bayramoglu, Z.; Yavuz, G.Y.; Keskinruzgar, A.; Koparal, M.; Kaya, G.S. Does Intra-Articular Injection of Tenoxicam after Arthrocentesis Heal Outcomes of Temporomandibular Joint Osteoarthritis? A Randomized Clinical Trial. BMC Oral Health 2023, 23, 131. [Google Scholar] [CrossRef] [PubMed]
  80. Rossini, R.; Grossmann, E.; Poluha, R.L.; Setogutti, Ê.T.; Dos Santos, M.F. Double-Needle Arthrocentesis with Viscosupplementation in Patients with Temporomandibular Joint Disc Displacement without Reduction. Clinics 2021, 76, e2840. [Google Scholar] [CrossRef]
  81. Lin, S.-L.; Tsai, C.-C.; Wu, S.-L.; Ko, S.-Y.; Chiang, W.-F.; Yang, J.W. Effect of Arthrocentesis plus Platelet-Rich Plasma and Platelet-Rich Plasma Alone in the Treatment of Temporomandibular Joint Osteoarthritis: A Retrospective Matched Cohort Study (A STROBE-Compliant Article). Medicine 2018, 97, e0477. [Google Scholar] [CrossRef]
  82. Iturriaga, V.; Bornhardt, T.; Manterola, C.; Brebi, P. Effect of Hyaluronic Acid on the Regulation of Inflammatory Mediators in Osteoarthritis of the Temporomandibular Joint: A Systematic Review. Int. J. Oral Maxillofac. Surg. 2017, 46, 590–595. [Google Scholar] [CrossRef]
  83. Batifol, D.; Huart, A.; Finiels, P.J.; Nagot, N.; Jammet, P. Effect of Intra-Articular Botulinum Toxin Injections on Temporo-Mandibular Joint Pain. J. Stomatol. Oral Maxillofac. Surg. 2018, 119, 319–324. [Google Scholar] [CrossRef]
  84. Li, F.; Wu, C.; Sun, H.; Zhou, Q. Effect of Platelet-Rich Plasma Injections on Pain Reduction in Patients with Temporomandibular Joint Osteoarthrosis: A Meta-Analysis of Randomized Controlled Trials. J. Oral Facial Pain Headache 2020, 34, 149–156. [Google Scholar] [CrossRef]
  85. Liu, S.; Xu, L.; Fan, S.; Lu, S.; Jin, L.; Liu, L.; Yao, Y.; Cai, B. Effect of Platelet-rich Plasma Injection Combined with Individualised Comprehensive Physical Therapy on Temporomandibular Joint Osteoarthritis: A Prospective Cohort Study. J. Oral Rehabil. 2022, 49, 150–159. [Google Scholar] [CrossRef]
  86. Moldez, M.; Camones, V.; Ramos, G.; Padilla, M.; Enciso, R. Effectiveness of Intra-Articular Injections of Sodium Hyaluronate or Corticosteroids for Intracapsular Temporomandibular Disorders: A Systematic Review and Meta-Analysis. J. Oral Facial Pain Headache 2018, 32, 53–66. [Google Scholar] [CrossRef] [PubMed]
  87. Chung, P.-Y.; Lin, M.-T.; Chang, H.-P. Effectiveness of Platelet-Rich Plasma Injection in Patients with Temporomandibular Joint Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 106–116. [Google Scholar] [CrossRef] [PubMed]
  88. Fonseca, R.M.D.F.B.; Januzzi, E.; Ferreira, L.A.; Grossmann, E.; Carvalho, A.C.P.; de Oliveira, P.G.; Vieira, É.L.M.; Teixeira, A.L.; Almeida-Leite, C.M. Effectiveness of Sequential Viscosupplementation in Temporomandibular Joint Internal Derangements and Symptomatology: A Case Series. Pain Res. Manag. 2018, 2018, 5392538. [Google Scholar] [CrossRef] [PubMed]
  89. Gurung, T.; Singh, R.; Mohammad, S.; Pal, U.; Mahdi, A.; Kumar, M. Efficacy of Arthrocentesis versus Arthrocentesis with Sodium Hyaluronic Acid in Temporomandibular Joint Osteoarthritis: A Comparison. Natl. J. Maxillofac. Surg. 2017, 8, 41. [Google Scholar] [CrossRef] [Green Version]
  90. Amer, I.; Kukereja, P.; Gaber, A. Efficacy of Autologous Blood Injection for Treatment of Chronic Recurrent Temporo-Mandibular Joint Dislocation. Egypt. J. Ear Nose Throat Allied Sci. 2021, 22, 1–6. [Google Scholar] [CrossRef]
  91. Hyder, A.; Tawfik, B.E.; Elmohandes, W. Efficacy of Computer-Guided versus Conventional Sodium Hyaluronate Injection in Superior Joint Space in Treatment of Temporomandibular Joint (TMJ) Internal Derangement: Comparative Randomized Controlled Trial. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e321–e326. [Google Scholar] [CrossRef]
  92. Srinivas, M.R.; James, D.; Muthusekhar, M.R. Efficacy of Hyaluronic Acid in the Treatment of Internal Derangement—Clinical Study. Res. J. Pharm. Technol. 2018, 11, 3483. [Google Scholar] [CrossRef]
  93. Peng, C.Y.; Lu, M.Y. Efficacy of Hyaluronic Acid Injection in Superior Joint Space for the Treatment of Temporomandibular Disorder in Taiwan. Int. J. Oral Maxillofac. Surg. 2017, 46, 362. [Google Scholar] [CrossRef]
  94. Sit, R.W.-S.; Reeves, K.D.; Zhong, C.C.; Wong, C.H.L.; Wang, B.; Chung, V.C.; Wong, S.Y.; Rabago, D. Efficacy of Hypertonic Dextrose Injection (Prolotherapy) in Temporomandibular Joint Dysfunction: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 14638. [Google Scholar] [CrossRef]
  95. Jacob, S.M.; Bandyopadhyay, T.K.; Chattopadhyay, P.K.; Parihar, V.S. Efficacy of Platelet-Rich Plasma Versus Hyaluronic Acid Following Arthrocentesis for Temporomandibular Joint Disc Disorders: A Randomized Controlled Trial. J. Maxillofac. Oral Surg. 2022, 21, 1199–1204. [Google Scholar] [CrossRef]
  96. Taşkesen, F.; Cezairli, B. Efficacy of Prolotherapy and Arthrocentesis in Management of Temporomandibular Joint Hypermobility. CRANIO® 2020, 1–9. [Google Scholar] [CrossRef]
  97. Dasukil, S.; Shetty, S.K.; Arora, G.; Degala, S. Efficacy of Prolotherapy in Temporomandibular Joint Disorders: An Exploratory Study. J. Maxillofac. Oral Surg. 2021, 20, 115–120. [Google Scholar] [CrossRef] [PubMed]
  98. Sequeira, J.; Rao, B.H.S.; Kedia, P.R. Efficacy of Sodium Hyaluronate for Temporomandibular Joint Disorder by Single-Puncture Arthrocentesis. J. Maxillofac. Oral Surg. 2019, 18, 88–92. [Google Scholar] [CrossRef]
  99. Gorrela, H.; Prameela, J.; Srinivas, G.; Reddy, B.V.B.; Sudhir, M.; Arakeri, G. Efficacy of Temporomandibular Joint Arthrocentesis with Sodium Hyaluronate in the Management of Temporomandibular Joint Disorders: A Prospective Randomized Control Trial. J. Maxillofac. Oral Surg. 2017, 16, 479–484. [Google Scholar] [CrossRef] [PubMed]
  100. Ferreira, N.; Masterson, D.; Lopes de Lima, R.; de Souza Moura, B.; Oliveira, A.T.; Kelly da Silva Fidalgo, T.; Carvalho, A.C.P.; DosSantos, M.F.; Grossmann, E. Efficacy of Viscosupplementation with Hyaluronic Acid in Temporomandibular Disorders: A Systematic Review. J. Cranio-Maxillofac. Surg. 2018, 46, 1943–1952. [Google Scholar] [CrossRef] [PubMed]
  101. Jara Armijos, J.; Hidalgo Andrade, B.; Velásquez Ron, B. Eficacia Del Ácido Hialurónico En El Tratamiento de Los Trastornos Temporomandibulares. Revisión Sistemática. Av. Odontoestomatol. 2020, 36, 35–47. [Google Scholar] [CrossRef]
  102. Castaño-Joaqui, O.G.; Muñoz-Guerra, M.F.; Campo, J.; Martínez-Bernardini, G.; Cano, J. Estado actual de la viscosuplementación con ácido hialurónico en el tratamiento de los trastornos temporomandibulares: Revisión sistemática. Rev. Esp. Cir. Oral Maxilofac. 2017, 39, 213–220. [Google Scholar] [CrossRef]
  103. Bera, R.N.; Tiwari, P. Evaluating the Role of Intra Articular Injection of Platelet-rich Fibrin in the Management of Temporomandibular Joint Osteoarthritis: A STROBE Compliant Retrospective Study. Oral Surg. 2022, 15, 218–223. [Google Scholar] [CrossRef]
  104. Singh, A.K.; Sharma, N.K.; Kumar, P.G.N.; Singh, S.; Mishra, N.; Bera, R.N. Evaluation of Arthrocentesis with and Without Platelet-Rich Plasma in the Management of Internal Derangement of Temporomandibular Joint: A Randomized Controlled Trial. J. Maxillofac. Oral Surg. 2021, 20, 252–257. [Google Scholar] [CrossRef]
  105. Goker, F. Evaluation of Arthrocentesis with Hyaluronic Acid Injections for Management of Temporomandibular Disorders: A Systematic Review and Case Series. J. Biol. Regul. Homeost. Agents 2021, 35, 21–35. [Google Scholar] [CrossRef]
  106. Kapadia, J.M.; Ganti, S.; Shriram, P.; Ansari, A.S.; Azad, A.; Dubey, A. Evaluation of Effect of Glucosamine-Chondroitin Sulfate, Tramadol, and Sodium Hyaluronic Acid on Expression of Cytokine Levels in Internal Derangement of Temporomandibular Joint. J. Contemp. Dent. Pract. 2018, 19, 1502–1506. [Google Scholar] [CrossRef]
  107. Sezavar, M.; Shafaei Fard, S.; Sharifzadeh, H.; Pahlevan, R.; Badkoobeh, A. Evaluation of the Effect of Platelet-Rich Plasma on Temporomandibular Joint Disorders: A Split-Match Randomized Clinical Trial. J. Res. Dent. Maxillofac. Sci. 2020, 5, 7–14. [Google Scholar] [CrossRef]
  108. Vaidyanathan, A.; Haidry, N.; Sinha, U.; Singh, A.; Salahudheen, A. Evaluation of the Effects of Polidocanol Injection in the Treatment of Temporomandibular Joint Hypermobility—A Prospective Study. Ann. Maxillofac. Surg. 2022, 12, 166. [Google Scholar] [CrossRef]
  109. Memiş, S. Evaluation of the Effects of Prolotherapy on Condyles in Temporomandibular Joint Hypermobility Using Fractal Dimension Analysis. J. Korean Assoc. Oral Maxillofac. Surg. 2022, 48, 33–40. [Google Scholar] [CrossRef] [PubMed]
  110. Memiş, S. Evaluation of the Effects of Temporomandibular Joint Arthrocentesis with Hyaluronic Acid Injection on Mandibular Condyles Using Fractal Dimension Analysis: A Retrospective Study. J. Cranio-Maxillofac. Surg. 2022, 50, 643–650. [Google Scholar] [CrossRef]
  111. Mustafa, R.; Güngörmüş, M.; Mollaoğlu, N. Evaluation of the Efficacy of Different Concentrations of Dextrose Prolotherapy in Temporomandibular Joint Hypermobility Treatment. J. Craniofac. Surg. 2018, 29, e461–e465. [Google Scholar] [CrossRef]
  112. Manafikhi, M.; Ataya, J.; Heshmeh, O. Evaluation of the Efficacy of Platelet Rich Fibrin (I-PRF) Intra-Articular Injections in the Management of Internal Derangements of Temporomandibular Joints—A Controlled Preliminary Prospective Clinical Study. BMC Musculoskelet. Disord. 2022, 23, 454. [Google Scholar] [CrossRef]
  113. Vingender, S.; Dőri, F.; Schmidt, P.; Hermann, P.; Vaszilkó, M.T. Evaluation of the Efficiency of Hyaluronic Acid, PRP and I-PRF Intra-Articular Injections in the Treatment of Internal Derangement of the Temporomandibular Joint: A Prospective Study. J. Cranio-Maxillofac. Surg. 2023, 51, 1–6. [Google Scholar] [CrossRef]
  114. Harba, A.; Harfoush, M. Evaluation of the Participation of Hyaluronic Acid with Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Disorders. Dent. Med. Probl. 2021, 58, 81–88. [Google Scholar] [CrossRef]
  115. Cen, X.; Liu, Y.; Wang, S.; Yang, X.; Shi, Z.; Liang, X. Glucosamine Oral Administration as an Adjunct to Hyaluronic Acid Injection in Treating Temporomandibular Joint Osteoarthritis. Oral Dis. 2018, 24, 404–411. [Google Scholar] [CrossRef]
  116. Cen, X.; Pan, X.; Zhang, B.; Liu, C.; Huang, X.; Zhao, Z. Hyaluronan Injection versus Oral Glucosamine and Diclofenac in the Treatment of Temporomandibular Joint Osteoarthritis. Clin. Oral Investig. 2022, 26, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
  117. Stasko, J.; Statelova, D.; Janickova, M.; Mikuskova, K.; Bacinsky, M.; Sokol, J.; Frlickova, Z.; Hvizdos, D.; Malachovsky, I. Hyaluronic Acid Application vs Arthroscopy in Treatment of Internal Temporomandibular Joint Disorders. Bratisl. Med. J. 2020, 121, 352–357. [Google Scholar] [CrossRef]
  118. Işık, G.; Kenç, S.; Özveri Koyuncu, B.; Günbay, S.; Günbay, T. Injectable Platelet-Rich Fibrin as Treatment for Temporomandibular Joint Osteoarthritis: A Randomized Controlled Clinical Trial. J. Cranio-Maxillofac. Surg. 2022, 50, 576–582. [Google Scholar] [CrossRef]
  119. Brignardello-Petersen, R. Injection of Platelet-Rich Fibrin Probably Reduces Pain but Not Trismus When Used after Arthrocentesis or Arthroscopy in Patients with Temporomandibular Joint Osteoarthritis. J. Am. Dent. Assoc. 2019, 150, e57. [Google Scholar] [CrossRef]
  120. Guarda-Nardini, L.; Cadorin, C.; Frizziero, A.; Masiero, S.; Manfredini, D. Interrelationship between Temporomandibular Joint Osteoarthritis (OA) and Cervical Spine Pain: Effects of Intra-Articular Injection with Hyaluronic Acid. CRANIO® 2017, 35, 276–282. [Google Scholar] [CrossRef] [PubMed]
  121. Marzook, H.A.M.; Abdel Razek, A.A.; Yousef, E.A.; Attia, A.A.M.M. Intra-Articular Injection of a Mixture of Hyaluronic Acid and Corticosteroid versus Arthrocentesis in TMJ Internal Derangement. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 30–34. [Google Scholar] [CrossRef] [PubMed]
  122. Dasukil, S.; Arora, G.; Boyina, K.K.; Jena, A.K.; Jose, A.; Das, S. Intra-Articular Injection of Hyaluronic Acid versus Platelet-Rich Plasma Following Single Puncture Arthrocentesis for the Management of Internal Derangement of TMJ: A Double-Blinded Randomised Controlled Trial. J. Cranio-Maxillofac. Surg. 2022, 50, 825–830. [Google Scholar] [CrossRef]
  123. Brignardello-Petersen, R. Intra-Articular Injections of Platelet-Rich Plasma May Improve Pain Associated with Temporomandibular Disorders Compared with Arthrocentesis and Arthroscopy. J. Am. Dent. Assoc. 2018, 149, e52. [Google Scholar] [CrossRef]
  124. Sàbado-Bundó, H.; Sánchez-Garcés, M.; Camps-Font, O.; Gay-Escoda, C. Intraarticular Injections of Hyaluronic Acid in Arthrocentesis and Arthroscopy as a Treatment of Temporomandibular Joint Disorders: A Systematic Review. CRANIO® 2021, 1–10. [Google Scholar] [CrossRef]
  125. Davoudi, A.; Khaki, H.; Mohammadi, I.; Daneshmand, M.; Tamizifar, A.; Bigdelou, M.; Ansaripoor, F. Is Arthrocentesis of Temporomandibular Joint with Corticosteroids Beneficial? A Systematic Review. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e367. [Google Scholar] [CrossRef]
  126. Hosgor, H. Is Arthrocentesis plus Hyaluronic Acid Superior to Arthrocentesis Alone in the Treatment of Disc Displacement without Reduction in Patients with Bruxism? J. Cranio-Maxillofac. Surg. 2020, 48, 1023–1027. [Google Scholar] [CrossRef]
  127. Bouloux, G.F.; Chou, J.; Krishnan, D.; Aghaloo, T.; Kahenasa, N.; Smith, J.A.; Giannakopoulos, H. Is Hyaluronic Acid or Corticosteroid Superior to Lactated Ringer Solution in the Short-Term Reduction of Temporomandibular Joint Pain After Arthrocentesis? Part 1. J. Oral Maxillofac. Surg. 2017, 75, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Albilia, J.; Herrera-Vizcaíno, C.; Weisleder, H.; Choukroun, J.; Ghanaati, S. Liquid Platelet-Rich Fibrin Injections as a Treatment Adjunct for Painful Temporomandibular Joints: Preliminary Results. CRANIO® 2020, 38, 292–304. [Google Scholar] [CrossRef] [PubMed]
  129. Castaño-Joaqui, O.G.; Maza Muela, C.; Casco Zavala, B.; Casares García, G.; Domínguez Gordillo, A.Á. Long Term Oral Health Related Quality of Life after TMJ Arthrocentesis with Hyaluronic Acid. A Retrospective Cohort Study. J. Cranio-Maxillofac. Surg. 2022, 50, 583–589. [Google Scholar] [CrossRef] [PubMed]
  130. Bergstrand, S.; Ingstad, H.K.; Møystad, A.; Bjørnland, T. Long-Term Effectiveness of Arthrocentesis with and without Hyaluronic Acid Injection for Treatment of Temporomandibular Joint Osteoarthritis. J. Oral Sci. 2019, 61, 82–88. [Google Scholar] [CrossRef] [Green Version]
  131. Refai, H. Long-Term Therapeutic Effects of Dextrose Prolotherapy in Patients with Hypermobility of the Temporomandibular Joint: A Single-Arm Study with 1–4 Years’ Follow up. Br. J. Oral Maxillofac. Surg. 2017, 55, 465–470. [Google Scholar] [CrossRef]
  132. Singh, N.; Dubey, S.; Bhanawat, N.; Rai, G.; Kumar, A.; Vatsa, R. Management of Internal Disc Derangement Using Normal Saline and Sodium Hyaluronate: A Comparative Study. J. Pharm. Bioallied Sci. 2021, 13, 207. [Google Scholar] [CrossRef]
  133. Toameh, M.; Alkhouri, I.; Karman, M.A. Management of Patients with Disk Displacement without Reduction of the Temporomandibular Joint by Arthrocentesis Alone, plus Hyaluronic Acid or plus Platelet-Rich Plasma. Dent. Med. Probl. 2019, 56, 265–272. [Google Scholar] [CrossRef] [Green Version]
  134. Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Mechanisms of Action and Efficacy of Hyaluronic Acid, Corticosteroids and Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Osteoarthritis—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7405. [Google Scholar] [CrossRef]
  135. Macedo de Sousa, B.; López-Valverde, A.; Caramelo, F.; Rodrigues, M.J.; López-Valverde, N. Medium-Term Effect of Treatment with Intra-Articular Injection of Sodium Hyaluronate, Betamethasone and Platelet-Rich Plasma in Patients with Temporomandibular Arthralgia: A Retrospective Cohort Study. Life 2022, 12, 1739. [Google Scholar] [CrossRef] [PubMed]
  136. Chandra, L.; Goyal, M.; Srivastava, D. Minimally Invasive Intraarticular Platelet Rich Plasma Injection for Refractory Temporomandibular Joint Dysfunction Syndrome in Comparison to Arthrocentesis. J. Fam. Med. Prim. Care 2021, 10, 254. [Google Scholar] [CrossRef] [PubMed]
  137. Liu, Y.; Wu, J.; Tang, Y.; Tang, Y.; Fei, W.; Liang, X. Multiple Treatment Meta-Analysis of Intra-Articular Injection for Temporomandibular Osteoarthritis. J. Oral Maxillofac. Surg. 2020, 78, 373.e1–373.e18. [Google Scholar] [CrossRef]
  138. Yang, W.; Liu, W.; Miao, C.; Sun, H.; Li, L.; Li, C. Oral Glucosamine Hydrochloride Combined With Hyaluronate Sodium Intra-Articular Injection for Temporomandibular Joint Osteoarthritis: A Double-Blind Randomized Controlled Trial. J. Oral Maxillofac. Surg. 2018, 76, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
  139. Daif, E.T.; Basha, H.Y. Ozone Therapy as a treatment modality for temporo-mandibular joint dysfunction. J. Ozone Ther. 2018, 2, 3. [Google Scholar] [CrossRef]
  140. Isacsson, G.; Schumann, M.; Nohlert, E.; Mejersjö, C.; Tegelberg, Å. Pain Relief Following a Single-dose Intra-articular Injection of Methylprednisolone in the Temporomandibular Joint Arthralgia—A Multicentre Randomised Controlled Trial. J. Oral Rehabil. 2019, 46, 5–13. [Google Scholar] [CrossRef] [PubMed]
  141. Sikora, M.; Sielski, M.; Chęciński, M.; Chęcińska, K.; Czerwińska-Niezabitowska, B.; Chlubek, D. Patient-Reported Quality of Life versus Physical Examination in Treating Temporomandibular Disorders with Intra-Articular Platelet-Rich Plasma Injections: An Open-Label Clinical Trial. Int. J. Environ. Res. Public. Health 2022, 19, 13299. [Google Scholar] [CrossRef]
  142. Al-Hamed, F.S.; Hijazi, A.; Gao, Q.; Badran, Z.; Tamimi, F. Platelet Concentrate Treatments for Temporomandibular Disorders: A Systematic Review and Meta-Analysis. JDR Clin. Transl. Res. 2021, 6, 174–183. [Google Scholar] [CrossRef]
  143. Bousnaki, M.; Bakopoulou, A.; Koidis, P. Platelet-Rich Plasma for the Therapeutic Management of Temporomandibular Joint Disorders: A Systematic Review. Int. J. Oral Maxillofac. Surg. 2018, 47, 188–198. [Google Scholar] [CrossRef] [PubMed]
  144. Su, N.; Wang, H.; van Wijk, A.; Visscher, C.; Lobbezoo, F.; Shi, Z.; van der Heijden, G. Prediction Models for Oral Health–Related Quality of Life in Patients with Temporomandibular Joint Osteoarthritis 1 and 6 Months After Arthrocentesis with Hyaluronic Acid Injections. J. Oral Facial Pain Headache 2019, 33, 54–66. [Google Scholar] [CrossRef]
  145. Ansar, A.S.; Munna, K.; Iqbal, A.; Mohammad, F.; Naved, A.; Shamimul, H. Prognostic Criteria for the Management of Temporomandibular Disorders Using Arthrocentesis with Normal Saline and Arthrocentesis with Normal Saline and Platelet-Rich Plasma. J. Med. Life 2022, 15, 698–704. [Google Scholar] [CrossRef]
  146. Gavin Clavero, M.A.; Simón Sanz, M.V.; Mur Til, A.; Blasco Palacio, J. Prospective Study to Evaluate the Influence of Joint Washing and the Use of Hyaluronic Acid on 111 Arthrocentesis. Oral Maxillofac. Surg. 2019, 23, 415–421. [Google Scholar] [CrossRef]
  147. Karadayi, U.; Gursoytrak, B. Randomised Controlled Trial of Arthrocentesis with or without PRF for Internal Derangement of the TMJ. J. Cranio-Maxillofac. Surg. 2021, 49, 362–367. [Google Scholar] [CrossRef]
  148. Sikora, M.; Sielski, M.; Chęciński, M.; Nowak, Z.; Czerwińska-Niezabitowska, B.; Chlubek, D. Repeated Intra-Articular Administration of Platelet-Rich Plasma (PRP) in Temporomandibular Disorders: A Clinical Case Series. J. Clin. Med. 2022, 11, 4281. [Google Scholar] [CrossRef]
  149. Cezairli, B.; Sivrikaya, E.C.; Omezli, M.M.; Ayranci, F.; Seyhan Cezairli, N. Results of Combined, Single-Session Arthrocentesis and Dextrose Prolotherapy for Symptomatic Temporomandibular Joint Syndrome: A Case Series. J. Altern. Complement. Med. 2017, 23, 771–777. [Google Scholar] [CrossRef] [PubMed]
  150. Gupta, A.; Ali, I.; Zeeshan, M.; Singh, S.; Kumar, A.; Adil, A. Role of Intra-Articular Piroxicam in the Temporomandibular Joint After Arthrocentesis for Anterior Disc Displacement Without Reduction. Cureus 2023, 15, e34580. [Google Scholar] [CrossRef]
  151. Sikora, M.; Czerwińska-Niezabitowska, B.; Chęciński, M.A.; Sielski, M.; Chlubek, D. Short-Term Effects of Intra-Articular Hyaluronic Acid Administration in Patients with Temporomandibular Joint Disorders. J. Clin. Med. 2020, 9, 1749. [Google Scholar] [CrossRef] [PubMed]
  152. Hegab, A.F.; Hameed, H.I.A.A.; Hassaneen, A.M.; Hyder, A. Synergistic Effect of Platelet Rich Plasma with Hyaluronic Acid Injection Following Arthrocentesis to Reduce Pain and Improve Function in TMJ Osteoarthritis. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101340. [Google Scholar] [CrossRef] [PubMed]
  153. Wang, X.W.; Fang, W.; Li, Y.J.; Long, X.; Cai, H.X. Synovial Fluid Levels of VEGF and FGF-2 before and after Intra-Articular Injection of Hyaluronic Acid in Patients with Temporomandibular Disorders: A Short-Term Study. Br. J. Oral Maxillofac. Surg. 2021, 59, 64–69. [Google Scholar] [CrossRef] [PubMed]
  154. Carboni, A.; Amodeo, G.; Perugini, M.; Arangio, P.; Orsini, R.; Scopelliti, D. Temporomandibular Disorders Clinical and Anatomical Outcomes After Fat-Derived Stem Cells Injection. J. Craniofac. Surg. 2019, 30, 793–797. [Google Scholar] [CrossRef]
  155. Sembronio, S.; Tel, A.; Tremolada, C.; Lazzarotto, A.; Isola, M.; Robiony, M. Temporomandibular Joint Arthrocentesis and Microfragmented Adipose Tissue Injection for the Treatment of Internal Derangement and Osteoarthritis: A Randomized Clinical Trial. J. Oral Maxillofac. Surg. 2021, 79, 1447–1456. [Google Scholar] [CrossRef]
  156. Henk, K.; Mark, K. Temporomandibular Steroids in Patients with Tinnitus: Only on Indication. Int. Tinnitus J. 2019, 23, 10–17. [Google Scholar] [CrossRef]
  157. Chęciński, M.; Sikora, M.; Chęcińska, K.; Nowak, Z.; Chlubek, D. The Administration of Hyaluronic Acid into the Temporomandibular Joints’ Cavities Increases the Mandible’s Mobility: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1901. [Google Scholar] [CrossRef] [PubMed]
  158. Pihut, M.; Gala, A. The Application of Intra-Articulr Injections for Management of the Consequences of Disc Displacement without Reduction. Int. J. Environ. Res. Public. Health 2020, 17, 4726. [Google Scholar] [CrossRef] [PubMed]
  159. Sari, B.C.; Develi, T. The Effect of Intraarticular Botulinum Toxin-A Injection on Symptoms of Temporomandibular Joint Disorder. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, e316–e320. [Google Scholar] [CrossRef] [PubMed]
  160. Nagori, S.A.; Jose, A.; Gopalakrishnan, V.; Roy, I.D.; Chattopadhyay, P.K.; Roychoudhury, A. The Efficacy of Dextrose Prolotherapy over Placebo for Temporomandibular Joint Hypermobility: A Systematic Review and Meta-Analysis. J. Oral Rehabil. 2018, 45, 998–1006. [Google Scholar] [CrossRef]
  161. Torul, D.; Cezairli, B.; Kahveci, K. The Efficacy of Intra-Articular Injectable Platelet-Rich Fibrin Application in the Management of Wilkes Stage III Temporomandibular Joint Internal Derangement. Int. J. Oral Maxillofac. Surg. 2021, 50, 1485–1490. [Google Scholar] [CrossRef]
  162. Al-Delayme, R.M.A.; Alnuamy, S.H.; Hamid, F.T.; Azzamily, T.J.; Ismaeel, S.A.; Sammir, R.; Hadeel, M.; Nabeel, J.; Shwan, R.; Alfalahi, S.J.; et al. The Efficacy of Platelets Rich Plasma Injection in the Superior Joint Space of the Tempromandibular Joint Guided by Ultra Sound in Patients with Non-Reducing Disk Displacement. J. Maxillofac. Oral Surg. 2017, 16, 43–47. [Google Scholar] [CrossRef] [Green Version]
  163. Ozdamar, S.M.; Alev, B.; Yarat, A. The Impact of Arthrocentesis with and without Hyaluronic Acid Injection in the Prognosis and Synovial Fluid Myeloperoxidase Levels of Patients with Painful Symptomatic Internal Derangement of Temporomandibular Joint: A Randomised Controlled Clinical Trial. J. Oral Rehabil. 2017, 44, 73–80. [Google Scholar] [CrossRef]
  164. Romero-Tapia, P.; Sedano-Balbin, G.; Mayta-Tovalino, F.; Pérez-Vargas, F.; Marín, J. Therapeutic Effect of Sodium Hyaluronate and Corticosteroid Injections on Pain and Temporomandibular Joint Dysfunction: A Quasi-Experimental Study. J. Contemp. Dent. Pract. 2021, 21, 1084–1090. [Google Scholar] [CrossRef]
  165. Louw, W.F.; Reeves, K.D.; Lam, S.K.H.; Cheng, A.-L.; Rabago, D. Treatment of Temporomandibular Dysfunction With Hypertonic Dextrose Injection (Prolotherapy): A Randomized Controlled Trial With Long-Term Partial Crossover. Mayo Clin. Proc. 2019, 94, 820–832. [Google Scholar] [CrossRef] [Green Version]
  166. Singh, J.; Bhardwaj, B. Treatment of Temporomandibular Joint Arthritis with Triamcinolone Acetonide and Hyaluronic Acid Injection: An Observational Study. Indian J. Otolaryngol. Head Neck Surg. 2020, 72, 403–410. [Google Scholar] [CrossRef] [PubMed]
  167. Ghoneim, N.I.; Mansour, N.A.; Elmaghraby, S.A.; Abdelsameaa, S.E. Treatment of Temporomandibular Joint Disc Displacement Using Arthrocentesis Combined with Injectable Platelet Rich Fibrin versus Arthrocentesis Alone. J. Dent. Sci. 2022, 17, 468–475. [Google Scholar] [CrossRef] [PubMed]
  168. Abrahamsson, H.; Eriksson, L.; Abrahamsson, P.; Häggman-Henrikson, B. Treatment of Temporomandibular Joint Luxation: A Systematic Literature Review. Clin. Oral Investig. 2020, 24, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. Zubair, H.; Hashmi, G.S.; Rahman, S.A.; Ahmed, S.S.; Ahmad, M. Ultrasonography-Guided Injections of Platelet-Rich Plasma in the Management of Internal Derangement of Temporomandibular Joint. Asian Pac. J. Health Sci. 2021, 8, 5–8. [Google Scholar] [CrossRef]
  170. Haigler, M.C.; Abdulrehman, E.; Siddappa, S.; Kishore, R.; Padilla, M.; Enciso, R. Use of Platelet-Rich Plasma, Platelet-Rich Growth Factor with Arthrocentesis or Arthroscopy to Treat Temporomandibular Joint Osteoarthritis. J. Am. Dent. Assoc. 2018, 149, 940–952.e2. [Google Scholar] [CrossRef]
  171. Dharamsi, R.; Nilesh, K.; Mouneshkumar, C.D.; Patil, P. Use of Sodium Hyaluronate and Triamcinolone Acetonide Following Arthrocentesis in Treatment of Internal Derangement of Temporomandibular Joint: A Prospective Randomized Comparative Study. J. Maxillofac. Oral Surg. 2022. [Google Scholar] [CrossRef]
Figure 1. Flow diagram of the selection process. ACM—Association for Computing Machinery: Guide to Computing Literature; BASE—Bielefeld Academic Search Engine; NLM—National Library of Medicine: PubMed; ES—Elsevier Scopus.
Figure 1. Flow diagram of the selection process. ACM—Association for Computing Machinery: Guide to Computing Literature; BASE—Bielefeld Academic Search Engine; NLM—National Library of Medicine: PubMed; ES—Elsevier Scopus.
Jcm 12 04655 g001
Figure 2. Classification of injectables (based on the included reports).
Figure 2. Classification of injectables (based on the included reports).
Jcm 12 04655 g002
Figure 3. The number of reports on individual injectables.
Figure 3. The number of reports on individual injectables.
Jcm 12 04655 g003
Figure 4. The number of reports by the level of evidence (horizontal axis) and injectables (vertical axis). Reports on injectables evaluated in less than 3 papers not included.
Figure 4. The number of reports by the level of evidence (horizontal axis) and injectables (vertical axis). Reports on injectables evaluated in less than 3 papers not included.
Jcm 12 04655 g004
Figure 5. The number of primary research reports (level of evidence 2–4) on individual mandibular hypomobility treatment injectables with third-degree polynomial trendlines.
Figure 5. The number of primary research reports (level of evidence 2–4) on individual mandibular hypomobility treatment injectables with third-degree polynomial trendlines.
Jcm 12 04655 g005
Table 1. Review eligibility criteria.
Table 1. Review eligibility criteria.
DomainInclusion CriteriaExclusion Criteria
PopulationPatients diagnosed with TMDsTMDs as a systemic disease component
InterventionTMJ intra-articular injectionArthrocentesis alone or more invasive interventions, e.g., arthroscopy
ComparisonAny or noneNot applicable
OutcomesTMDs severity assessmentNot applicable
SettingsReports based on 4 or more casesReports published before 2017
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chęciński, M.; Chęcińska, K.; Turosz, N.; Brzozowska, A.; Chlubek, D.; Sikora, M. Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review. J. Clin. Med. 2023, 12, 4655. https://doi.org/10.3390/jcm12144655

AMA Style

Chęciński M, Chęcińska K, Turosz N, Brzozowska A, Chlubek D, Sikora M. Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review. Journal of Clinical Medicine. 2023; 12(14):4655. https://doi.org/10.3390/jcm12144655

Chicago/Turabian Style

Chęciński, Maciej, Kamila Chęcińska, Natalia Turosz, Anita Brzozowska, Dariusz Chlubek, and Maciej Sikora. 2023. "Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review" Journal of Clinical Medicine 12, no. 14: 4655. https://doi.org/10.3390/jcm12144655

APA Style

Chęciński, M., Chęcińska, K., Turosz, N., Brzozowska, A., Chlubek, D., & Sikora, M. (2023). Current Clinical Research Directions on Temporomandibular Joint Intra-Articular Injections: A Mapping Review. Journal of Clinical Medicine, 12(14), 4655. https://doi.org/10.3390/jcm12144655

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop